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ABSTRACT 
 

Aims: This work aims to develop a system that can be used to accurately and timely predict the 
fatality of a positively tested COVID-19 patient through the use of a deep learning technique – a 
swarm intelligent convolutional neural network. 
Methodology: The dataset used in this study was acquired from the Kaggle repository database. 
The dataset contains the Lung Chest X-Ray images of COVID-19 patients. The images were pre- 
processed to obtain the desired image quality for further processing. This was followed by 
segmenting the pre-processed images. An Enhanced Firefly Algorithm (EFA) was formulated by 
applying the roulette wheel selection procedure to model the movement process of the firefly as a 
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deterministic process to assist the standard Firefly Algorithm (FA) and application of Chaotic 
Sinusoidal Map Function to model the attractive process of the firefly which establishes a balance 
between exploration and exploitation in FA. The EFA was applied to optimize Convolution Neural 
Network (CNN) hyper-parameters (number of layers, number of filters per layer, filter size and 
batch size). The segmented result was subsequently presented to EFA-CNN feature extraction and 
prediction of COVID-19 patient fatality cases. The formulated deep learning models (EFA-CNN and 
CNN) were implemented using Matrix Laboratory 2020a software. The implemented models were 
evaluated using specificity, sensitivity, false positive rate, accuracy, and recognition time/rate to 
determine the performance of the developed models. 
Results: The findings revealed that the EFA-CNN model performs better in the prediction of 
COVID-19 patients’ fatality compared to the CNN model. It was also discovered that the formulated 
EFA applied to select optimal values of the hyper-parameters for the CNN architecture accounted 
for improved recognition accuracy and reduced recognition time of the developed COVID-19 
Patients’ Fatality Prediction System. 
Conclusion: The system developed will assist both the government and healthcare workers in 
providing the needed computational capability for the prediction of the fatality level of a positively 
tested COVID-19 patient. 
 
 

 
Keywords: COVID-19; deep learning; feature extraction; fatality level; prediction. 
 

1. INTRODUCTION 
 

“The novel Coronavirus disease 2019 (COVID- 
19) is a virus of the Coronavirus family which has 
clinical characteristics similar to the SARS-CoV 
and is also a source of a respiratory ailment 
plague throughout the world that originated in 
Wuhan, China and has swiftly spread to almost 
every region of the world” [1]. “The disease is 
caused by a new and severe kind of Coronavirus 
known as Severe Acute Respiratory Syndrome 
Coronavirus 2 (SARSCoV-2) with its primary 
symptoms including fever and cough, while 
gastrointestinal symptoms are uncommon. In 
COVID-19-infected patients, the absence of fever 
is more incessant than in patients tainted by 
comparable infections, such as the MERS 
Corona Virus and the SARS Corona Virus” [2]; 
thus, “there is a chance of non-febrile patients 
being missed by an observation instrument with 
an essential spotlight on distinguishing fever” [3]. 
 

“The Coronavirus (SARS-CoV-2 virus) has 
caused damaging effects on humanity since its 
beginning in late 2019. In the months since the 
virus has advanced to become a prevalent global 
pandemic causing significant morbidity and 
mortality” [4]. As stated in [5], “this pandemic has 
been declared a worldwide well-being crisis and 
is spreading at an alarming rate”. “As of July 5th, 
2020, over two hundred countries have been 
afflicted by the virus, amounting to almost a total 
of 530,000 deaths worldwide and have 
accounted for over 4.7 million confirmed cases 
internationally” [6,7,8]. 

This pandemic continues to inflict severe public 
health and socio-economic burden in many parts 
infection seriously influenced people who have 
gotten the disease, but it has in addition affected 
medical care representatives and even patients 
with ailments disconnected to COVID-19. 
Currently, there is a safe and effective vaccine or 
antiviral for use against the pandemic in humans, 
as stated in [9], “the control and mitigation efforts 
against the pandemic are focused on 
implementing non-pharmaceutical interventions 
(NPIs), such as social (physical)-distancing, 
community lockdown, contact tracing, quarantine 
of suspected cases, isolation of confirmed cases 
and the use of face masks in public”. 
 
“Owing to the severity that some COVID-19 
cases progress to, hospitalization is required, 
and these cases may advance to ICU admission. 
This inflicts huge stress on healthcare workforces 
as hospitals are working at full capacity and at 
times lack adequate equipment. The incidence of 
hospitals frequently reaching full capacity has 
become a devastating and disturbing issue, this 
results in extensive physician exhaustion” [10] 
which can be detrimental to physician-patient 
interactions. With the pressure on medical 
facilities, it is indispensable for governments and 
the healthcare sector to detect and treat cases 
that are most likely to survive, by so doing, 
astutely utilizing the limited stock of medical 
resources and medications. 
 

Many studies have investigated various Artificial 
Intelligence (AI) – based models (machine 
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learning models with deep learning techniques) 
for understanding the transmission dynamics, 
control, prediction, and classification of potential 
treatments of COVID-19 infection [9,11,12]. 
 
Hussain et al. [13] developed “an AI imaging 
analysis tool to classify COVID-19 lung infection 
in patients based on portable CXRs from other 
conditions, using five supervised ML AI 
algorithms and multi-class datasets. Texture and 
morphological Features extracted. Two-class and 
multi-class classifications were performed. 
Statistical analysis was carried out using 
unpaired two-tailed t-tests with unequal variance 
between groups. The receiver-operating 
characteristic (ROC) curve analysis was used to 
evaluate the performance of the developed 
classification models. It was established that AI 
classification of texture and morphological 
features of portable CXRs accurately 
distinguishes COVID-19 lung infection in patients 
in multi-class datasets, and Deep-learning 
methods have the potential to improve diagnostic 
efficiency and accuracy for portable CXRs”. 
 
Khalifa et al. [11] developed “a classification 
model based on the DL model (Deep 
Convolutional Neural Network (DCNN)) and 
classical ML algorithms (support vector machine, 
decision tree, and ensemble). The model was 
used to classify potential coronavirus treatments 
on a single human cell, using the subset of the 
dataset obtained from RxRx.ai. The dataset was 
grouped into the treatment type and the 
treatment concentration. The numerical features 
from the original dataset were transformed into 
the image domain and then fed into a DCNN 
model. The DCNN model consisted of three 
convolutional layers, three ReLU layers, three 
pooling layers, and two fully connected layers. It 
was found that the DCNN achieved a high-quality 
result when compared with ML algorithms in 
terms of testing accuracy for the treatment 
classification, while the classical ML algorithms 
(decision tree and support vector machine) 
achieved a similar result with the DCNN for the 
treatment concentration level prediction”. 
 
Ardabili et al. [14] presented “a comparative 
analysis of ML and soft computing models (in 
terms of generalization ability and accuracy) in 
predicting the COVID-19 outbreak as an 
alternative to epidemiological models. The data 
used was collected for over 30 days in five 
countries (Italy, Germany, Iran, USA, and China) 
from the Worldometers website. Equations 
(Logistic, linear, logarithmic, quadratic, cubic, 

compound, power, and exponential) were 
employed to develop the desired model for the 
estimation of the time-series data. To choose the 
best model for the comparative analysis, 
Parameter tuning of these models was 
performed using Evolutionary Algorithms 
(Genetic Algorithm (GA), Particle Swarm 
Optimization (PSO) and Grey Wolf Optimizer 
(GWO). Multi-Layered Perceptron (MLP) and 
Adaptive Network-based Fuzzy Inference 
System (ANFIS) were used for the prediction of 
the outbreak in the five countries. The developed 
models were evaluated in terms of performance 
and accuracy, using the Root Mean Square Error 
(RMSE) and Correlation Coefficient. It was 
observed that the ML models are effective in 
modelling the time series of the outbreak and 
that high-quality outbreak prediction can be 
obtained by integrating ML and SEIR models 
since ML models are useful in handling the 
shortcomings associated with SEIR models for 
COVID-19 prediction”. 
 
In the work of Narin et al. [15] “Convolutional 
Neural Networks (CNNs) that predicted novel 
coronavirus with X-ray images were developed. 
The DL technique was exploited for the 
automatic prediction of 2019-nCoV patients. The 
dataset (chest X-ray images) and pre-trained 
models consisting of InceptionV3, ResNet50 and 
Inception ResNetV2 were trained and tested on 
the dataset. The evaluation of the CNNs models 
indicated that the RestNet50 pre-trained model 
gave the highest accuracy (98%) among the 
three models and that the model can aid health 
employees to make high-accuracy decisions in 
clinical practice and also detecting 2019-nCoV in 
the early stages of infection”. 
 
In the work of Yang et al. [16] “a modified 
susceptible-exposed-infectious-removed (SEIR) 
Model and ML Model for the prediction of the 
trend of the 2019-nCoV pandemic in China were 
evolved. Population migration data before and 
after 23rd January 2020 and updated 2019-nCoV 
epidemiological data were integrated into the 
SEIR Model to derive the pandemic curve. The 
ML approach was trained on 2003 SARS data to 
predict the pandemic. It was observed that the 
developed models were effective in predicting 
the pandemic peaks and size”. 
 
In the work of Ayyoubzadeh et al. [17] “data 
mining and a deep learning model were used to 
predict 2019-nCoV incidence through levering 
Google trend data in Iran. Long Short-Term 
Memory and Linear Regression Models were 



 
 
 
 

Kareem et al.; Asian J. Res. Com. Sci., vol. 16, no. 2, pp. 12-35, 2023; Article no.AJRCOS.99986 
 

 

 
15 

 

used to guess the number of 2019-nCoV positive 
cases. The evaluation of the models was done 
with Root Mean Square Error (RMSE) metric and 
10 folds cross-validation techniques, 
respectively. The RMSE of long short-term 
memory and linear regression models were 
27.187 and 7.562, respectively. It was observed 
that both data mining and a deep learning model 
predicted the trend of the 2019-nCoV outbreak. 
Such predictions can support healthcare 
managers and policymakers with planning, 
allocating and deploying healthcare resources 
effectively”. 
 

Muhammad et al. [12] developed “Supervised ML 
models for COVID-19 infection detection with 
some learning algorithms (logistic regression, 
decision tree, support vector machine, naive 
Bayes, and artificial neural network) using 
epidemiology labelled dataset for positive and 
negative COVID-19 cases of Mexico. The 
correlation coefficient analysis between various 
dependent and independent features was carried 
out to determine a strong relationship between 
each dependent feature and independent feature 
of the dataset before the development of the 
models. 80% of the training dataset was used for 
training the models while the remaining 20% was 
used for testing the models. The efficiency and 
quality of the models were evaluated using 
accuracy, sensitivity and specificity performance 
metrics. The results indicated that the Decision 
Tree model has the highest accuracy of 94.99% 
while the Support Vector Machine model has the 
highest sensitivity of 93.34% and the Naïve 
Bayes model has the highest specificity of 
94.30%. It was observed that the supervised ML 
models can be used as retrospective evaluation 
techniques or tools to validate COVID-19 
infection cases”. 
 

Dianbo et al. [18] developed “a machine learning- 
based approach which combines disease 
estimates from mechanistic models with digital 
traces, through interpretable machine-learning 
methodologies, to consistently forecast COVID- 
19 activity in Chinese provinces in real-time. The 
machine-learning approach used a clustering 
method that allows the exploitation of geospatial 
synchronicities of COVID-19 activity across 
Chinese provinces, and a data augmentation 
method to deal with the small number of 
historical disease activity observations, 
characteristic of emerging outbreaks. The 
approach used as inputs (a) official health 
reports from the Chinese Center for Disease for 
Control and Prevention (China CDC), (b) COVID- 
19-related internet search activity from Baidu, (c) 

news media activity reported by Media Cloud, 
and (d) daily forecasts of COVID-19 activity from 
GLEAM, an agent-based mechanistic model. It 
was established that the model produced steady 
and accurate forecasts 2 days in advance of the 
current time, and the model's predictive power 
outperformed a collection of baseline models in 
27 out of the 32 Chinese provinces and could be 
easily extended to other geographies presently 
affected by the COVID-19 outbreak to help 
decision makers”. 

 
In the work of Edison et al. [19], “the existing 
coronavirus vaccine development status was 
surveyed, and the Vaxign and Vaxign-ML RV 
approaches were used to predict COVID-19 
protein candidates for vaccine development. Six 
possible adhesins were identified, including the 
structural S protein and five other non-structural 
proteins, and three of them (S, nsp3, and nsp8 
proteins) were predicted to induce high protective 
immunity. The S protein was predicted to have 
the highest protective antigenicity score, and it 
has been extensively studied as the target of 
coronavirus vaccines by other researchers. The 
sequence conservation and immunogenicity of 
the multi-domain nsp3 protein, which was 
predicted to have the second-highest protective 
antigenicity score yet, was further analyzed in 
this study. It was observed that predicted vaccine 
targets have the potential for effective and safe 
COVID-19 vaccine development”. The authors 
proposed that a "Structural Protein(s) (SP) / a 
Non-Structural Protein(s) (NSP) cocktail vaccine" 
containing an SP and an NSP would stimulate 
effective complementary immune responses. 

 
Malik [20] presented “a data-driven ML approach 
for the analysis of the COVID-19 pandemic from 
its early infection transmission dynamics 
especially the inflation counter over time, using 
US data starting from the first case on 21st 
January 2020. The actionable public health 
insight was extracted which includes infectious 
force, rate of the mild infection becoming serious, 
estimates for asymptomatic infections and 
prediction of new infections over time. The 
approach revealed a very significant number of 
cases of asymptomatic infections during the 
COVID-19 pandemic, a lag of about ten days. It 
was quantitatively confirmed that the infectious 
force of the virus is strong, with about 0.14% 
transition from mild to serious infection. It was 
observed that the approach was efficient, robust 

and general, being agnostic to the specific virus 
and applicable to different populations or 
cohorts”. 
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A review of the above-related works with 
literature analysis revealed that although ML 
models and other DL techniques have played 
significant roles in the prediction, diagnosis and 
containment of the COVID-19 pandemic, 
however, an effective method to discover and 
treat COVID-19 cases that are most likely to 
survive which depends possibly on quality 
classification and accurate prediction has not 
been developed. COVID-19 is an infectious 
emergency respiratory disease, and the disease 
state is usually reflected in the lungs. Therefore, 
the prediction of fatality level of COVID-19 
patients by automated classification and 
recognition of lung chest X-ray images of 
COVID-19 patients is significant research and 
practical value. 
 
Therefore, this research focused on the use of 
deep learning technique called Swarm Intelligent 
Convolution Neural Network.to develop a 
COVID-19 Patients’ Fatality Prediction System 
utilizing the strength and minimizing the 
weaknesses of Convolution Neural Network 
(CNN) and Firefly Algorithm (FA). As stated by 
Odeniyi et al [21], the advantage of using a 
machine learning model for prediction is mainly 
based on the accuracy of predictions, which in 
turn helps to redirect resources more accurately.  
 
“Deep Learning (DL) or more commonly known 
as deep structured learning or hierarchical 
learning is a division of Machine Learning (ML) 
which is based on a set of algorithms that 
attempt to model high-level abstractions in data” 
[22,23]. “Such algorithms develop a layered, 
hierarchical architecture of learning and 
representing data. This hierarchical learning 
architecture is inspired by artificial intelligence 
emulating the deep, layered learning process of 
the primary sensorial areas of the neocortex in 
the human brain, which automatically extracts 
features and abstractions from underlying data” 
[24-26]. Based on [27,28], “DL algorithms are 
useful when it comes to dealing with large 
amounts of unsupervised data and naturally 
learn data representations in a greedy layer-wise 
method”. 
 
The conventional machine learning techniques 
need feature extraction as the prerequisite, and 
this requires a domain expert [29]. Furthermore, 
selection of appropriate features for a given 
problem is a challenging task. Deep learning 
techniques overcome the problem of feature 
selection by not requiring pre-selected features 
but extracting the significant features from raw 

input automatically for a problem in hand [30]. 
Also, the deep Learning technique's important 
characteristics are its ability to handle relatively 
large amounts of unlabeled data efficiently [31], 
the ability to eliminate the need to extract 
essential features manually, and make a better 
analysis. learning model consists of a collection 
of processing layers that can learn various 
features of data through multiple levels of 
abstraction [31]. Multiple levels allow the network 
to learn distinct features.  
 
Deep learning has emerged as an approach for 
achieving promising results in various 
applications like image recognition [32], speech 
recognition [33], topic classification, sentiment 
analysis [34], language translation, natural 
language understanding, signal processing [35], 
face recognition [36], prediction of bioactivity of 
small molecules [37], and particularly in medical 
research [38-46]. 
 
There are different deep learning architectures 
such as deep belief networks, recurrent neural 
networks, convolution neural networks etc. 
Convolution Neural Network (CNN), often called 
ConvNet, has deep feed-forward architecture 
and has astonishing ability to generalize in a 
better way as compared to networks with fully 
connected layers [47]. [48] describes CNN as the 
concept of hierarchical feature detectors in 
biologically inspired manner. It can learn highly 
abstract features and can identify objects 
efficiently [49].  
 
The considerable reasons why CNN is 
considered above other classical models are as 
follows. First, the key interest for applying CNN 
lies in the idea of using concept of weight 
sharing, due to which the number of parameters 
that needs training is substantially reduced, 
resulting in improved generalization [50]. Due to 
lesser parameters, CNN can be trained smoothly 
and does not suffer overfitting [51]. Secondly, the 
classification stage is incorporated with feature 
extraction stage [29], both uses learning process. 
Thirdly, it is much difficult to implement large 
networks using general models of artificial neural 
network (ANN) than implementing in CNN [52]. 
CNNs are widely being used in various domains 
due to their remarkable performance [53] such as 
image classification [54,55,56], object detection 
[57], face detection [58], speech recognition [31], 
vehicle recognition [59], diabetic retinopathy [60], 
facial expression recognition [61], gesture 
recognition [62], object classification [63] and 
generating scene descriptions. and many more. 
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However, when designing CNN architectures, 
researchers usually face some challenges which 
include the high computational costs for 
information processing and finding the optimal 
CNN parameters (architecture) for each problem 
[64]. CNN architectures are made up of 
numerous parameters and, depending on their 
configuration, can generate a variety of 
classification results when applied to solve the 
same tasks; the setting of the hyper-parameter 
values is usually based on a random search, 
performing several tests or adjusting manually 
and this represents a complex search process. 
To solve this challenge, various researchers 
have proposed the implementation of 
evolutionary computation approaches to 
automatically design the optimal CNN 
architectures and to increase its performance 
[65-73]. In particular, Fregoso et al. [74] indicated 
that optimization of the hyper-parameters for the 
CNN architecture can improve the recognition 
accuracy and reduce the recognition time of the 
CNN model. 
 

In the state of the art, we can find a variety of 
meta-heuristics algorithms that have been 
applied to optimize CNN hyper-parameters, 
including the FGSA [75,76,77], harmonic search 
(HS) [78], differential evolution (DE) [79], 
microcanonical optimization algorithm [80], 
Whale optimization algorithm [81], Tree growth 
algorithm framework [82] and PSO [74] to 
mention a few. Hence, the adjustment of the 
hyper-parameters and finding the optimal 
network architecture of convolutional neural 
networks represents an important challenge. 
 

Swarm Intelligent based algorithms are a class of 
metaheuristic optimization algorithms which are 
inspired by the social behavior of plants and 
animals. Firefly Algorithm (FA) is one of Swarm 
Intelligent based metaheuristics optimization 
algorithms inspired by the the behavior and light 
intensity of fireflies [83]. FA has a stochastic 
nature and is based on population. In the FA, 
randomly generated solutions are considered as 
fireflies, and brightness is assigned depending 
on their performance on the objective function. 
Studies have shown that FA is a powerful and 
very efficient meta-heuristic algorithm which has 
shown effective performance in the recent 
literature when applied to solving diverse range 
of problems including optimization, 
classifications, travelling salesman problem, 
scheduling, image processing, and engineering 
designs [84-87]. In addition, literatures found that 
most of the cases that used FA technique have 

outperformed compare to other metaheuristic 
algorithms. 

 
However, FA is prone to parameter setting and 
also dependents on controlling the exploration 
and exploitation of the search space. Hence, 
these algorithms may suffer from premature 
convergence and poor global exploration when 
used to optimize complex and high dimension 
optimization problems. Therefore many 
researchers have tried to develop various 
variants (modified and enhanced or hybridized 
with other techniques) for specific types of 
applications with improved efficiency [88].  

 
For instance, the integration of FA and support 
vector machine (SVM) was used in [89] to predict 
the amount of water evaporation. Another study 
incorporated a variant of FA called improved 
dynamic discrete FA [90]. Lagunes et al. [91] 
used FA to optimize parameters of membership 
functions in type-2 fuzzy controllers. Neural 
networks combined with FA are adopted in [92] 
to restore a power network. FA integrated by bee 
colony algorithm is presented to find variables of 
a concrete damage model [93]. To enhance the 
rate of convergence and accuracy of FA 
optimizer, the FA is combined with deep learning 
[94]. Jinhua et al., Devanathan and SureshBabu, 
and Chuanxin et al. [95,96.97] proposed some 
interesting applications of FA in engineering. In 
an attempt to diversify the FA for optimization 
purposes, literature [98] combines the FA with 
chaos search. A modified FA optimizer is 
adopted to solve a dispatch problem in [99]. FAs 
are used to find the optimal size and place of DG 
[100]. 

 
A new version of FA is investigated in a dynamic 
environment [101]. Parameters of FA were tuned 
using learning automata [102], where the group 
of fireflies is divided into several groups to share 
information and react to the variations in the 
environment. The modified FAs have also been 
used in [103,104] to plan the paths of the 
uninhabited combat air vehicles. Using this 
algorithm, the information shared among fireflies 
is modified and the light intensity of fireflies is 
updated to enhance the convergence speed of 
FA. To avoid premature convergence, the light 
intensity of FA optimizer is modified in [105]. 
Meena and Chitra [106] suggested the 
application of modified FA in non-minimum 
phase systems. The literature [107] examines a 
new type of FA, named chaotic FA optimizer, to 
solve some problems. 
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Considering the above-mentioned applications of 
FA, it can still be used to solve many complex 
problems including image classification and 
prediction. However, FA needs to be enhanced 
and become more robust as it traps in local 
optima in some problems and its optimization 
power deteriorates. To approach this, the present 
paper introduces a novel, effective variant of FA, 
called Enhanced Firefly Algorithm (EFA). 
 
In this work, we extend previous studies on the 
the prediction, diagnosis and containment of the 
COVID-19 pandemic. We proposed Swarm 
Intelligent Convolution Neural Network model 
(EFA-CNN) to predict the fatality of positively 
tested COVID-19 patients. Due to the high 
computational costs for information processing 
and finding the optimal CNN parameters 
(architecture), we proposed a new swarm 
intelligent based meta-heuristic optimization 
algorithm, called Enhanced Firefly Algorithm 
(EFA) which uses roulette wheel selection 
procedure to model the attraction process as a 
deterministic process and Chaotic Sinusoidal 
Map Function to establish a balance between 
exploration and exploitation, to select optimal 
values for the hyper-parameters for the CNN 
architecture for feature extraction and prediction 
of COVID-19 patient fatality cases.  
 
The aim of this work is to develop an effective 
system that can be used to accurately and timely 
predict the fatality of positively tested COVID-19 
patients through the use of a deep learning 
technique. The overall idea is to overcome the 
problem of hyper-parameter tuning associated 
with CNN architecture, as well as premature 
convergence and poor global exploration 
associated with standard FA. The formulated 
deep learning models (EFA-CNN and CNN) were 
implemented using Matrix Laboratory 2020a 
software. In order to validate and demonstrate 
the performance of the proposed models, it was 
tested with the lung chest X-ray images of 
positive and negative COVID-19 patients 
acquired from the Kaggle repository database 
using accuracy, specificity, sensitivity, false 
positive rate, and recognition time/rate. From the 
comparative analyses of the results, it is shown 
that the EFA-CNN model performs better in the 
prediction of COVID-19 patients’ fatality 
compared to the CNN model.  
 
The rest of this paper is organized as follows: 
Section 2 details the research methodology. The 
results and discussion are presented in Section 
3. Section 4 concludes the paper with the 

discussion of the study’s implications, 
recommendations, and future research 
directions. 
 

2. METHODOLOGY 
 
In this work, an ensemble model that makes 
use of an Enhanced Firefly Algorithm-based 
Convolutional Neural Network (EFA-CNN) was 
used to implement the COVID-19 patients' 
fatality prediction system. As shown in Fig. 1, 
the lung chest X-ray images of positive and 
negative COVID-19 patients were first acquired 
from the Kaggle repository database. The 
positive COVID-19 cases (lung chest X-ray 
images) were later categorized into severe, 
mild and moderate via the average value of 
individual features extracted. Then, the lung 
chest X-ray images were pre-processed to 
obtain the desired image quality for further 
processing. This was followed by segmenting 
the pre-processed images. An Enhanced Firefly 
Algorithm (EFA) was formulated by applying a 
roulette wheel selection procedure to model the 
attraction process as a deterministic process to 
assist the standard FA and application of the 
Chaotic Sinusoidal Map Function to establish a 
balance between exploration and exploitation in 
standard FA. The EFA was applied to optimize 
CNN hyperparameters (number of layers, 
number of filters per layer, filter size and batch 
size). The segmented result was subsequently 
presented to EFA-CNN feature extraction and 
prediction of COVID-19 patients’ fatality cases.  
 
The formulated deep learning models (EFA-CNN 
and CNN) were implemented using Matrix 
 
Laboratory 2020a software in Windows 10 
Professional 64- bit operating system 
environment deployed on Hewlett-Packard G56 
Branded computer system (Laptop), Intel® Core 
™i5 Duo with 2.7GHz speed, 6GB Random 
Access Memory (RAM) and 1 TB hard disk drive. 
The implemented models were evaluated using 
specificity, sensitivity, false positive rate, 
accuracy, and recognition time/rate to determine 
the performance of the developed model. 
 

2.1 Image Acquisition 
 

The dataset used in this study was acquired from 
the Kaggle repository database. The dataset 
contains the Lung Chest X-Ray images of 
positive and negative COVID-19 fatality patients. 
3550 lung Chest X-Ray image datasets were 
used in the study; 2130 datasets were used for 
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training while 1420 datasets were used for 
testing. The test data comprises 709 positive 
datasets and 711 negative datasets. 
 

2.2 Image Pre-processing 
 

The acquired images of COVID-19 were 
preprocessed. The Pre-processing techniques 
applied were image resizing, data augmentation 
and image normalization. The Lung Chest X-Ray 
images were resized to 224 X 224 pixels to make 
them suitable for the VGG-16 model and were 
subjected to data augmentation to increase 
training data and to reduce over-fitting problems. 
The augmentation techniques applied include 
rotation, vertical flipping, and horizontal flipping. 
The Lung Chest X-Ray images were enhanced 
through image normalization. 
 

The histogram equalization method was applied 
for the Lung Chest X-Ray image normalization in 
which the intensity values of the images were 
distributed using the cumulative distribution 
function. This function finds out the 
transformation that maps input image grayscale 
values to transform image grayscale values. 
Histogram equalization was used for 
enhancement contrast that ensures that the input 
pixel intensity, x is transformed to a new intensity 
value x′ by T as shown in Equation (1). The 
transformed function (T) is the product of a 
cumulative histogram and a scale factor. The 
scale factor was needed to fit the new intensity 
value within the range of the intensity values [31]. 
 

           
 
    

      

 
            (1) 

where    is the number of pixels at the intensity I, 

 

  is the total number of pixels in the image and 

max( ) is the maximum intensity  .. 
 

2.3 Image Segmentation 
 
Segmentation of the Lung Chest X-Ray images 
was achieved using the Sobel-edge detection 
algorithm. Edge detection is more popular for 
identifying discontinuities in grey level than 
detecting isolated points and thin lines. The edge 
is the boundary between two regions with 
relatively distinct grey-level properties. The 
transitions between the two regions were 
determined based on the grey-level 
discontinuities. The Sobel operator performs a 2- 
D spatial gradient measurement on an image 
and so emphasizes regions of high spatial 
frequency that correspond to edges. In the input 
grayscale image, the approximate gradient 
magnitude was also identified at each point by 
the edge detector. The operator consists of a pair 
of 3x3 convolution kernels which are rotated by 
90 degrees. The convolution masks of the Sobel 
detector are given in Equation (2) and Equation 
(3) [32]. 
 

    
     
     
     

 
          (2) 

 

    
      
   
      

 
           (3) 

 
 

 
Fig. 1. Methodology to build deep learning models for Covid-19 Patients’ Fatality Prediction 

system 
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Every point in the image used these two kernels 

   and   to do convolution. One of the two 

kernels has a maximum response to the vertical 
edge and the other has a maximum response to 
the level edge. The maximum value of the two 
convolutions was used as the output bit of the 
point, and the result was an image of edge 
amplitude. 
 
The procedure employed to achieve Sobel Edge 
Detection is as follows [32]: 
 
Input: A Sample Image. 

Output: Detected Edges. 

Step 1: Accept the input image. 

Step 2: Apply mask Gx, Gy to the input image. 

Step 3: Apply the Sobel edge detection algorithm 

and the gradient. 
Step 4: Masks manipulation of Gx, and Gy 

separately on the input image. 
Step 5: Results combined to find the absolute 

magnitude of the gradient. 
Step 6: The absolute magnitude is the output 

edges. 
 

2.4 Formulation of Enhanced Firefly 
Algorithm 

 
In the standard Firefly Algorithm (FA), the 
procedure starts from an initial population of 
randomly generated individuals. The quality of 
each individual is calculated using Equation (4) 
and the best solution among them is selected. In 
FA, the form of attractiveness function of a firefly 
is depicted by Equation (4):  
 

                                                    (4) 

 
 where,  
  
r = The distance between any two fireflies 
    = The initial attractiveness at r = 0 

 γ = An absorption coefficient which controls the  
 decrease of the light intensity  
  
The distance that exists in-between any two 
fireflies I and j, at a particular position xi and xj, 
can be defined respectively as a Cartesian or 
Euclidean distance as shown in Equation (5) 
 

                           
  

   

          (5) 

 
where, 

 
d is the dimensionality of the given problem. 

The pattern of movement of a particular firefly I 
that is attracted by another brighter firefly j can 
be represented by the following Equation (6) and 
Equation (7): 
 

                  
                   

 

 
   (6) 

 

              
 

 
                         (7) 

 
In equation (6), the term    which is the first term 

is the present position of a firefly, and the term 

 0 exp(-     2)   (   -   ) which is the second 

term is meant for movement of the firefly towards 
the most attractive of the firefly by the intensity of 
light and the third term is meant to cater for the 
random movement of a firefly (random part) 
when it lacks the brighter ones. The α coefficient 
is a parameter for randomization, its value 
depends on the problem that is to be solved, 
while 'rand' is consistently distributed in the 
space (0, 1) as it is a random number generator. 
In equation 7, the movement of the best 
candidate is done randomly. 
 
The Enhanced Firefly Algorithm (EFA) was 
formulated using Equation (8) to model the 
movement process of the firefly as a 
deterministic process instead of the random 
process in the existing firefly. The pattern of 
movement of a particular firefly I that is attracted 
by another brighter firefly j was enhanced by 
roulette wheel selection ( ) is expressed in 
Equation (8). 
 

        
    

   

     
    

   

                        (8) 

 
where  (    ) is the objective function value of 

firefly. 
 
The enhanced pattern of movement of the firefly 
is shown in Equation (9) and Equation (10): 
 

                  
                 

 

 
      (9) 

 

            
 

 
                                   (10) 

 
In equation (9), the term    which is the first term 

is the present position of a firefly, and the term 

 0 exp(-     2)   (   -   ) which is the second 

term is meant for movement of the firefly towards 
the most attractive of the firefly by the intensity of 
light and the third term is meant to cater for the 
random movement of a firefly (random part), 
when it lacks the brighter ones. The α coefficient 
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is a parameter for randomization, its value 
depends on the problem that is to be solved, 
while ‘  ’ is consistently distributed using roulette 

wheel selection. In Equation (10), the movement 
of the best candidate is done randomly. 
 
The challenges of imbalance between 
exploration and exploitation experienced by the 
standard firefly algorithm were resolved in this 
study by enhancing the attractiveness of fireflies 
with the application of chaotic theory and 
sinusoidal mapping. This described chaotic 
absorption coefficient ( ) which controls the 
decrease of the light intensity, but not 
constricting these fireflies to search space 
boundaries but counts on the nature of the 
chaotic system that generates random and 
unpredictable outputs from preceding conditions. 
The new attractiveness of the firefly was 
expressed in Equation (11), Equation (12) and 
Equation (13). 
 

      
             

  

         (11) 

 

             
                     (12) 

 

                                         (13) 

 
In which 
 

 0 = is the initial attractiveness at r = 0, 

r = is the distance between any two 
fireflies, 
γ = is an absorption coefficient which 
controls the decrease of the light intensity, 
( ) = was the existing light intensity update, 

      = was the chaotic sinusoidal mapping, 

where   = 2.3 as chaotic map parameters. 

      = was calculated to transform ( ). 
( ) = is the enhanced updated light intensity 

of the firefly. 
 

2.5 Development of COVID-19 Patients’  
Fatality System using EFA-CNN 

 

The main feature of this work is to create a 
model for the classification of chest X-ray images 
using deep learning convolutional neural 
network. The classified lung chest X-ray images 
(severe, mild or moderate) were given as the 
input to this model so that the output could be the 
exact classified image. CNN was fine-tuned by 
using the EFA algorithm. By using this 
optimization approach, CNN was retrained with 
lung chest X-ray images to achieve the exact 
classification output. This developed approach 

was an efficient way of improving the CNN 
network's efficiency by pre-trained CNN 
networks, that is, VGG-19. To achieve the best 
performance of the developed approach, the 
hyper-parameters such as the number of layers, 
number of filters per layer, filter size and batch 
size of the CNN were optimized using the EFA 
algorithm. 
 
After the convolutional and pooling layers, fully 
connected layers were located to merge the 
features obtained and in the last, the SoftMax 
layer, the output was computed. The strategy 
was to combine fully connected layers blocks by 
studying a nonlinear combination of the extracted 
features and also to execute the resultant 
classification. 
 
2.5.1 The optimization of hyper-parameters 

 
The pre-trained CNN architectures have several 
limitations. The noted limitations are that most of 
the hyper-parameters of any such pre-trained 
CNN cannot be modified and has some of the 
hyper-parameters which require adjustment 
namely, the batch size and also the unit numbers 
in every dense layer and the dropout layer. In 
this research, the EFA algorithm was employed 
in the CNN architecture model classifier section 
to optimize the batch size and dropout layer rate. 
 
The dynamic parameters optimized through EFA 
were the number of convolutional layers, the size 
of the filters used in each convolutional layer, the 
number of convolutional filters, and the batch 
size. The overall methodology of the developed 
model is presented in Fig. 2 which expressed the 
flowchart of the optimization process of the CNN 
by the EFA algorithm. The “training and 
optimization” block is the most important part of 
the whole process, where the CNN was 
initialized to integrate the parameter optimization 
by applying the EFA algorithm. In this process, 
the EFA was initialized according to the 
parameter given for the execution and this 
generated the fireflies. Each firefly is a possible 
solution and its position has the parameter to be 
optimized, so each solution represents a 
complete CNN training. 

 
The training process is an iterative cycle that 
ends when all the fireflies generated by the EFA 
are evaluated for each generation. The 
computational cost is higher and, it depends on 
the database size, the size of fireflies, the 
number of iterations of the EFA and, the number 
of fireflies in each iteration. For instance, if the 
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EFA is executed with 10 fireflies and10 iterations, 
the CNN training process would be executed 100 
times. The steps to optimize the CNN by the EFA 
algorithm are illustrated in Fig. 2 and explained 
as follows: 
 

i. Input the COVID-19 database to train the 
CNN. This step consists of selecting the 
COVID-19 database to be processed 
and classified for the CNN (COVID-19 
severe, mild and moderate patients). 

ii. Generate the firefly population for the 
EFA algorithm. The EFA parameters are 
set to include the number of iterations 
and the number of fireflies. This step 
involves the design of the fireflies. 

iii. Initialize the CNN architecture, with the 
parameter obtained by the EFA 
(convolution layers number, the filter 
size, the number of convolution filters, 
and the batch size). The CNN parameter 
is initialized and in conjunction with the 
additional parameter specified, the CNN 
is ready to train the input COVID-19 
database. 

iv. CNN training and validation: The CNN 
reads and processes the input COVID-
19 database taking the images for 
training, validation, and testing; this step 
produces a recognition rate. These 
values return to the EFA as part of the 
objective function. 

v. Evaluate the objective function: The EFA 
algorithm evaluates the objective 
function to determine the best value. 

vi. Update EFA parameters: At each 
iteration, each firefly updates its light 
intensity depending on its own best-
known movement and attractiveness in 
the search space and the global best-
known movement and attractiveness of 
the firefly. 

vii. The process is repeated, evaluating all 
the fireflies until the stop criteria are 
found (in this case, it is the number of 
iterations). 

viii. Finally, the optimal CNN parameters 
were selected. In this process, the firefly 
represented by the global best-known 
movement and attractiveness is the 
optimal one for the CNN model. 

 

2.5.2 Learning phase 
 

In the learning phase, the CNN architecture 
models were used to classify the Chest X-Ray 
images as depicted in Fig. 3. Hence, feature 
extraction and fine-tuning were employed to 

adjust the VGG-19 network model to the current 
database used for this work. The Convolutional 
layer was stuck within the feature extraction 
process, while the classifier segment was 
swapped by the corresponding one. There were 
several layers in the current classifier: the fully 
connected layers consist of a dropout layer, 
flatten layer, a batch normalization layer, and two 
dense layers. The first fully connected layer 
consists of neuron groups with a rectified linear 
unit and the second fully connected layer 
consists of four function units of SoftMax. After 
training the classifier for the number of iterations, 
the fine-tuning was achieved by reactivating the 
Convolutional last two layers and retraining with 
the classifier. Once the training process was 
completed, all these were merged to create the 
final prediction of Covid-19 using Chest X-Ray 
images which average their posteriors of 
SoftMax class. 
 

2.6 Implementation of EFA-CNN for 
COVID-19 Patients’ Fatality Prediction 
System 

 

An interactive Graphic User Interface (GUI) 
application was developed for the COVID-19 
Patients’ Fatality Prediction System. The GUI 
was designed using toolboxes such as image 
processing and optimization in MATLAB 2020a. 
The MATLAB software package was used for the 
implementation on a computer system and run 
on Hewlett-Packard G56 with Intel® Core ™ i5 
Duo, Windows 10 Professional 64-bit operating 
system, Central Processing Unit (CPU) with a 
speed of 2.7GHz, 6GB Random Access Memory 
(RAM) and 1 TB hard disk drive. 

 
2.7 Evaluation Measures 

 
The models were evaluated using Specificity, 
Sensitivity, False Positive Rate (FPR), Accuracy, 
and Recognition time/rate performance 
evaluation metrics to determine their efficiency 
and quality. A confusion matrix was used to 
determine the values of these performance 
metrics. The confusion matrix is performance 
measurement in machine learning classification 
problems. It describes all combinatorially 
possible outcomes of a classification system and 
lays the foundations necessary to understand 
accuracy measurements for a classifier. It is a 2 
by-2 table showing the True Positive (TP), False 
Positive (FP), False Negative (FN) and True 
Negative (TN). When considering multi-class 

classification, the confusion matrix table takes 
the size equal to the number of classes squared. 
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Fig. 2. Flowchart of Enhanced Firefly Algorithm-based Convolutional Neural Network model 

(EFA-CNN) classifier 
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Fig. 3. COVID-19 Classification using Enhanced Firefly Algorithm-based Convolutional Neural 

Network model (EFA-CNN) 

 
TP contains the amount of the dataset instances 
that are correctly identified as positive. FP 
contains the amount of the dataset instances 
which are negative but predicted as positive. TN 
is the number of dataset instances that are 
negative and predicted as negative. FN is the 

number of dataset instances that are positive but 
predicted as negative. 
 
The specificity evaluation metric shows the 
percentage of COVID-19 negative patients 
correctly predicted by the models, as it is 
expressed in Equation (14). 
 

             
  

     
                      (14) 

 
The sensitivity evaluation metric shows the 
percentage of COVID-19-positive patients 
correctly predicted by the models, as it is 
expressed in Equation (15) 

             
  

     
                    (15) 

 

The False Positive Rate evaluation metric is a 
measure of accuracy which shows the 
percentage of the COVID-19 negative patients 
incorrectly predicted as COVID-19 positive 
patients in the dataset by the models, as it is 
expressed in the Equation (16), 
 

                            
  

     
            (16) 

 

The accuracy evaluation metric shows the 
percentage of the dataset instances correctly 
predicted by the models, as it is expressed in the 
Equation (17) 
 

          
     

           
                    (17) 

 

                  

 
                               

                            
              (18) 
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3. RESULTS AND DISCUSSION 
 
The developed deep learning models (EFA-CNN 
and CNN) were experimented with by 
recognizing lung COVID-19 diseases using lung 
chest X-ray images. The recognition was further 
analyzed based on the degree of severity such 
as severe, mild and moderate cases. The 
average features value range of 0.23-0.34 

depicted moderate COVID-19 diseases, 0.34-
0.78 portrayed mild COVID-19 disease and 0.79-
0.98 described severe COVID-19 disease. The 
pre-processed and segmented images used for 
the study were presented in Fig. 4. The 
Graphical User Interface (GUI) of the lung chest 
x-ray image based on COVID-19 during training, 
testing and classification were expressed in                
Fig. 5 and Fig. 6 respectively. 

 
 

 
Fig. 4. Pre-processed and segmented image 

 
 

 
Fig. 5. Graphical User Interface (GUI) showing the training section 
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Fig. 6. Graphical User Interface (GUI) showing the testing and classification phase 

 
The developed system was tested and          
evaluated using the following performance 
metric: Sensitivity (SEN), Specificity (SPEC), 
False Positive Rate (FPR), Accuracy (ACC)                    
and Recognition time (Time). All performance 
metrics were analyzed using a square                
dimension pixel resolution at different average 
thresholds of 0.30, 0.40, 0.50 and 0.80                        
from a range of thresholds of 0-0.30, 0.31-0.40, 
0.41-0.50 and 0.51-1.00 respectively. Each 
threshold value range generated the same 
accuracy but changes at 0.30, 0.40, 0.50 and 
0.80 threshold values respectively as defined in 
Fig. 7 were significant. Fig. 7 showed the choice 
of threshold value used in this study. Sixty per 
cent (60%) of the total images were used for 

training and forty (40%) were used for testing 
using the random sampling cross-validation 
method. 
 
Table 1 showed the optimization results of EFA 
respectively on CNN at 30 iterations with 
different filter sizes, number of filters, number of 
convolution layers and batch sizes. Accuracy 
was used as the objection function of EFA. The 
best recognition rate was achieved by EFA at a 
value of 99.23% as depicted in Table 1. Based 
on the results, the optimal CNN architecture 
attained by the application of EFA were as 
follows: 3 convolutional layers, 128 filters per 
layer with a filter size of 7 × 7, and the batch size 
with a value of 256 for EFA. 

 
 

 
Fig. 7. Graph showing a choice of the threshold used for the evaluation 
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Table 1. Optimization results obtained by the EFA-CNN 
 

S/N No. of Layers No. of Filters Filter Size Batch Size Recognition Rate (%) 

1 3 58 7x7 230 95.31 

2 1 67 3x3 196 99.16 

3 1 97 7x7 137 95.27 

4 2 60 4x4 115 95.69 

5 1 61 7x7 230 95.50 

6 1 128 6x6 107 98.10 

7 2 128 7x7 109 98.12 

8 2 128 4x4 221 98.60 

9 3 128 5x5 256 95.86 

10 3 128 5x5 256 97.30 

11 3 128 4x4 256 95.95 

12 3 128 4x4 196 96.00 

13 2 128 7x7 256 95.90 

14 1 128 3x3 256 96.50 

15 3 128 5x5 196 95.39 

16 2 128 3x3 256 98.49 

17 3 128 5x5 256 97.42 

18 2 128 7x7 256 98.39 

19 2 128 4x4 256 96.70 

20 2 128 7x7 256 98.22 

21 2 128 3x3 256 98.26 

22 1 128 7x7 256 95.78 

23 1 128 4x4 256 95.66 

24 1 128 7x7 256 95.79 

25 1 128 5x5 256 95.84 

26 3 128 3x3 256 98.17 

27 1 128 4x4 256 95.87 

28 2 128 7x7 256 97.66 

29 2 128 3x3 256 95.43 

30 3 128 7x7 256 99.23 

 

3.1 Results for CNN 
 
The result presented in Table 2 depicts the result 
of the CNN model based on the 3550 lung Chest 
X-ray image dataset. The lung Chest X-ray 
image comprises 2130 trained datasets and 
1420 positive and negative test datasets. There 
are 709 positive datasets and 711 negative 
datasets. The 709 positive test datasets consist 
of 121 severe cases, 467 mild cases and 121 
moderate cases. As shown in Table 2, at the 
optimum threshold of 0.80, out of 121 severe 
cases test lung chest X-ray image datasets, 99 
severe lung chest X-ray image datasets were 
classified correctly as severe, 22 lung chest X- 
ray image datasets were misclassified as 
negative cases while out of 122 negative lung 
chest X-ray image datasets, 103 lung chest X-ray 
image datasets were classified correctly as 

negative and 19 lung chest X-ray image datasets 
were misclassified as severe cases. In addition, 
out of 467 mild cases, 448 mild lung chest X-ray 
image datasets were classified correctly as mild, 
19 lung chest X-ray image datasets were 
misclassified as negative cases while out of 468 
negative lung chest X-ray image datasets, 452 
lung chest X-ray image datasets were classified 
correctly as negative and 16 lung chest X-ray 
image datasets were misclassified as mild cases. 
Also, out of 121 moderate cases, 101 moderate 
lung chest x-image datasets were classified 
correctly as moderate, 20 lung chest X-ray image 
datasets were misclassified as negative cases 
while out of 121 negative lung chest X-ray image 
datasets, 104 lung chest X-ray image datasets 
were classified correctly as negative and 17 lung 
chest X-ray image datasets were misclassified as 
moderate cases. 
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Table 2. Performance of the CNN model 
 

TP FN FP TN SPEC 
(%) 

SEN  
(%) 

FPR 
(%) 

ACC 
(%) 

R Time 
(sec) 

Threshold Type 

102 19 26 96 78.69 84.30 21.31 81.48 35.94 0.30 Severe 
451 16 23 445 95.09 96.57 4.91 95.83 34.90 0.30 Mild 
104 17 24 97 80.17 85.95 19.83 83.06 32.51 0.30 Moderate 
101 20 24 98 80.33 83.47 19.67 81.89 35.94 0.40 Severe 
450 17 21 447 95.51 96.36 4.49 95.94 34.90 0.40 Mild 
103 18 22 99 81.82 85.12 18.18 83.47 32.51 0.40 Moderate 
100 21 22 100 81.97 82.64 18.03 82.30 35.94 0.50 Severe 
449 18 19 449 95.94 96.15 4.06 96.04 34.90 0.50 Mild 
102 19 20 101 83.47 84.30 16.53 83.88 32.51 0.50 Moderate 
99 22 19 103 84.43 81.82 15.57 83.13 35.94 0.80 Severe 
448 19 16 452 96.58 95.93 3.42 96.26 34.90 0.80 Mild 
101 20 17 104 85.95 83.47 14.05 84.71 32.51 0.80 Moderate 

 
Additionally, Table 2 depicts the result obtained 
by the CNN model at different threshold values 
concerning the performance metrics. The results 
obtainable from Table 2 at an optimum threshold 
value of 0.80 revealed that CNN had FPR of 
15.57%, 3.42% and 14.05%, Sensitivity of 
81.82%, 95.93% and 83.47%, Specificity of 
84.43%, 96.58% and 85.95%, and accuracy of 
83.13%, 96.26% and 84.71% at 35.94 seconds, 
34.90% seconds and 32.51 seconds, for severe, 
mild and moderate cases of COVID-19 disease, 
respectively. 
 

3.2 Results for EFA-CNN 
 
The results depicted in Table 3 were obtained 
from 709 positive datasets and 711 negative 
datasets. The 709 positive test datasets consist 
of 121 severe cases, 467 mild cases and 121 
moderate cases. As shown in Table 3, at an 
optimum threshold of 0.80 with the EFA-CNN 
model, having selected CNN optimum parameter 
of 3 convolutional layers, 128 filters per layer with 
a filter size of 7 × 7, and the batch size with a 
value of 256 by EFA, out of 121 severe cases 
test lung chest X-ray image datasets, 113 severe 
lung chest x-ray image datasets were classified 
correctly as severe, 8 lung chest X-ray image 
datasets were misclassified as negative cases 
while out of 122 negative lung chest x-ray image 
datasets, 117 lung chest X-ray image datasets 
were classified correctly as negative and 5 lung 
chest X-ray image datasets were misclassified as 
severe cases. In addition, out of 467 mild cases, 
458 mild lung chest X-ray image datasets were 
classified correctly as mild, 9 lung chest x-ray 
image datasets were misclassified as negative 
cases while out of 468 negative lung chest x-ray 
image datasets, 462 lung chest X-ray image 
datasets were classified correctly as negative 

and 6 lung chest X-ray image datasets were 
misclassified as mild cases. Also, out of 121 
moderate cases, 114 moderate lung chest X-ray 
image datasets were classified correctly as 
moderate, 7 lung chest X-ray image datasets 
were misclassified as negative cases while out of 
121 negative lung chest X-ray image datasets, 
117 lung chest X-ray image datasets were 
classified correctly as negative and 4 lung chest 
X-ray image datasets were misclassified as 
moderate cases. 
 
Furthermore, Table 3 presented the result 
achieved by the EFA-CNN model at different 
threshold values concerning the performance 
metrics. The results obtainable from Table 3 at 
an optimum threshold value of 0.80 revealed that 
EFA-CNN had FPR of 4.10%, 1.28% and 3.31%, 
Sensitivity of 93.39%, 98.07% and 94.21%, 
Specificity of 95.90%, 98.72% and 96.69%, and 
Accuracy of 94.65%, 98.40% and 95.45% at 
16.61 seconds, 16.14 seconds and 15.16 
seconds, for severe, mild and moderate cases of 
COVID-19 disease, respectively. 
 

3.3 Discussion 
 
The results depicted in Table 2 and Table 3 
described the performance of the developed 
deep learning models (CNN and EFA-CNN) 
respectively. The results illustrated that there is 
significant variation in the performance metrics 
across all metrics (Sensitivity, Specificity, FPR, 
Accuracy and Recognition time) for the CNN 
model and EFA-CNN model. At an optimum 
threshold value of 0.80, the EFA-CNN gave 
Recognition Accuracy of 94.65%, 98.40% and 
95.45% while the CNN technique had 83.13%, 
96.26% and 84.71% Recognition Accuracy for all 
classification cases respectively. Similarly, the 
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Table 3. Performance of the EFA-CNN model 
 

TP FN FP TN SPEC 
(%) 

SEN 
(%) 

FPR 
(%) 

ACC 
(%) 

R Time 
(sec) 

Threshold Type 

116 5 13 109 89.34 95.87 10.66 92.59 16.61 0.3 Severe 
461 6 14 454 97.01 98.72 2.99 97.86 16.14 0.3 Mild 
117 4 12 109 90.08 96.69 9.92 93.39 15.16 0.3 Moderate 
115 6 10 112 91.80 95.04 8.20 93.42 16.61 0.4 Severe 
460 7 11 457 97.65 98.50 2.35 98.07 16.14 0.4 Mild 
116 5 9 112 92.56 95.87 7.44 94.21 15.16 0.4 Moderate 
114 7 7 115 94.26 94.21 5.74 94.24 16.61 0.5 Severe 
459 8 8 460 98.29 98.29 1.71 98.29 16.14 0.5 Mild 
115 6 6 115 95.04 95.04 4.96 95.04 15.16 0.5 Moderate 
113 8 5 117 95.90 93.39 4.10 94.65 16.61 0.8 Severe 
458 9 6 462 98.72 98.07 1.28 98.40 16.14 0.8 Mild 
114 7 4 117 96.69 94.21 3.31 95.45 15.16 0.8 Moderate 

 
EFA-CNN model produced a False Positive Rate 
of 4.10%, 1.28% and 3.31% and a Recognition 
Time of 16.61 seconds, 16.14 seconds and 
15.16 seconds for all classification cases while 
the CNN model produced a False Positive Rate 
of 15.57%, 3.42% and 14.05% and Recognition 
Time of 35.94 seconds, 34.90 seconds and 
32.51 seconds in all classification cases 
respectively. It can be inferred from the results 
based on the performance metrics that the EFA-
CNN model gave an increased Recognition 
Accuracy of 11.52%, 2.14% and 10.74% and 
decreased False Positive Rate of 11.47%, 2.14% 
and 10.74% over the CNN model. 
 
Given the results, the EFA-CNN model is more 
accurate due to the low number of false positives 
at reduced recognition time. The improved 
recognition accuracy and reduced recognition 
time of the developed EFA-CNN was as a result 
of (1) the imbalance problem between 
exploration and exploitation experienced in the 
standard firefly algorithm that was resolved in 
this study by enhancement of the attractiveness 
of firefly with the application of chaotic theory and 
sinusoidal mapping, and (2) the hyper- 
parameters for the CNN architecture that was 
optimally selected with EFA (the number of 
convolutional layers, the size of the filters used in 
each convolutional layer, the number of 
convolutional filters, and the batch size) 
compared with CNN. 
 
The result of the EFA-CNN model confirmed the 
previous literature [74] that indicated that 
improved recognition accuracy and reduced 
recognition time can only be obtained if hyper- 
parameters (the number of convolutional layers, 
the size of the filters used in each convolutional 
layer, the number of convolutional filters, and the 

batch size) for the CNN architecture can be 
optimally selected. 
 

4. CONCLUSION 
 
In this work, the deep learning model which is the 
best in predicting COVID-19 patient fatality was 
determined. The study was able to deduce that, 
out of the two deep learning models developed 
EFA-CNN is more accurate in prediction with 
higher recognition accuracy, reduced false 
positive rate and reduced recognition time. Also, 
the researchers have been able to ascertain that, 
enhancement of the attractiveness of firefly with 
the application of chaotic theory and sinusoidal 
mapping in EFA and optimal selection of the 
hyper-parameters for the CNN architecture (the 
number of convolutional layers, the size of the 
filters used in each convolutional layer, the 
number of convolutional filters, and the batch) by 
EFA contributed immensely to the improved 
recognition accuracy as well as reduced 
recognition time of the developed COVID-19 
patients’ fatality prediction system. The results 
provide evidence of the importance of applying 
optimization algorithms to find the optimal 
parameters of CNN architectures. 
 
The researchers are of the view that the 
developed system in this research can aid the 
government and healthcare workers in providing 
the needed computational capability for the 
prediction of the fatality level of a positively 
tested COVID-19 patient and also help to guide 
and plan to reduce the severe public health and 
socio-economic burden resulted from COVID-19 
pandemic. The model and the system developed 
could also help healthcare clinicians and 
radiologists for further diagnosis, tracking and 
control of the disease progression.  
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As future work, the formulated EFA could be 
applied to optimize other CNN hyper-parameters, 
implement another variant of the FA or explore 
different Swarm Intelligent based computational 
techniques to produce more robust CNN 
architectures that could be implemented in 
different recognition and prediction tasks. In 
addition, the formulated EFA could be applied to 
other fields of optimization, design and 
applications 
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