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ABSTRACT 
 

A fully implicit hybrid Block- Predictor Corrector method for the numerical integration of initial value 
problems of third order ordinary differential equations is presented in this paper. We adopted the 
approach of collocation approximation in the derivation of the scheme to generate a scheme with 
continuous coefficients, from where additional schemes were developed. The implementation 
strategy involves combination of the main scheme and other additional schemes as simultaneous 
Integrator to initial value problems of third order ordinary differential equations. Properties analysis 
of the block method showed that it is consistent, convergent, zero stable and absolutely stable. 
Numerical examples were given. 
 

 
Keywords: Block predictor corrector; fully implicit; hybrid; numerical integration; third order ordinary 

differential equations. 
 

1. INTRODUCTION  
 
The initial value problems of third order ordinary 
differential equation: 
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is considered. It is assumed that the numerical 
solution to (1) is required on a given set of mesh: 
 

 Nnxxhnhaxx nnnn ,...2,1,0,,/ 1    

Where 
h

ab
N


 . 

 
Many researchers have worked on the numerical 
solution of (1), they include: [1-8,9] to mention 
but just a few. The works of [9,10] have their 
implementation strategy being predictor - 
corrector mode. The drawbacks of the Predictor 
– Corrector methods are well known, as 
discussed in [11]; they are not self-starting; they 
advance the numerical integration of the ordinary 
differential equations in one-step at a time, which 
leads to overlapping of the piecewise 
polynomials solution model; [12]. It was observed 
that, the overlapping creates a disadvantage 
because the numerical model fails to represent 
the solution uniquely elsewhere than the mesh-
points. [13] observed that for the numerical 
solution of boundary value problems, this is the 
major criticism of the linear multistep methods in 
favor of the finite element methods.  
 
The works of [8,5,2,3,4] whose implementation 
strategy is block mode addressed the afore – 
mentioned draw backs of the Linear multi step 
method whose implementation is Predictor – 
Corrector mode. 
 
It is pertinent to note that [2] advanced the 
course of study in the proposition of block 
method by developing a single step implicit 
hybrid block method for the numerical solution of 
initial value problems of third order ordinary 
differential equations. [3,4] went further in the  
study of numerical solution of initial value 
problems of third order ordinary differential 
equations using single step method by 
proposition of two schemes that were found to be 
efficient, adequate and suitable towards catering 
for the class of problem- higher order ordinary 
differential equations - for which they were 
designed. The contribution to knowledge of the 
afore – mentioned works is that a single step 
method was shown and effectively tested to be 
capable of solving higher order ordinary 
differential equations, against the initial believe, 
before now, that single step numerical methods 
were only capable of solving first order ordinary 
differential equations. 
 
Consequently, in this work, we are motivated to 
go further in the proposition of a single step 

method for the direct numerical solution of higher 
order ordinary differential equations; thus, we 
increase the partitioning of the single step lenght

 1, nn xx  into five sub steps, having initially 

considered cases  three and four substeps in the 
initial works of [3,4] to give rise to a fully Implicit 
block linear multi step scheme for the solution of 
initial value problems of third order ordinary 
differential equations. The merit of this is the 
elimination of the use of predictors by the 
provision of sufficiently accurate simultaneous 
difference equations from a single continuous 
formula and its derivatives. 
 
The general block formula is given by: 
 

   mnnm ybFhydfheyY               (2) 

 
where e is ss  vector, d is r - vector and b is 

rr   vector, s is the interpolation points and r is 

the collection points. F is a k – vector whose 
thJ  

entry is ),( , jnjnjn ytff    is the order of 

the differential equation [14].  
 
Given a predictor equation in the form: 
 

 .)0(
nnm ydfheyY                         (3) 

 
By Putting (3) in (2) we have: 
 

   .nnnnm dfyheybFhydfheyY   (4) 

 

According to [16,17], equation (4) is called a self 
starting block-predictor-corrector method 
because the prediction equation is gotten directly 
from the block formula. 
 
Consequently, our focus in this paper is the 
proposition of a fully implicit continuous hybrid 
block – Predictor corrector algorithm with a single 
step length for the numerical solution of third 
order ordinary differential equations. 
 

2. METHODOLOGY 
 

2.1 Derivation of the Continuous   
Coefficients 

 

We take our basis function to be a power series 
of the form: 
 

  
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We obtain the third derivative of (5) as: 
 

  
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0

321)(               (6) 

 
By putting (6) into (1) we have the differential 
system: 
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                  (7) 

 

Where ja are the parameters to be determined, 

while r+s denotes the number of collocation and 
interpolation points. By collocating (7) at the 

mesh points 1)
5
1(0,   jxx jn , and 

interpolating (5) at jnxx  , 5
4)

5
3(

5
2j

yields a system of equations: 
 

sn

sr

j

j
j yxa 


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0

                          (8) 

 

   rn

sr

j

j
j fxajjj 





 
0

321               (9) 

 
By putting these system of equations in matrix 
form and then solved to obtain the values of 

parameters ja ’s , j = 0, 5
1 , .. which when 

substituted in (5), yields, after some 
manipulation, an hybrid linear method with 
continuous coefficients of the form: 
 

 
 

 
1

0

1

0

3 )()()(
j j

jnjjnj xfhxyxy   (10)  

 

The co efficient of )(xj and j  
are: 
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Where 
h

xx
t n


 
 

2.2 Derivation of the Block Method 
 

The general block formula proposed by [14], in 
the Normalized form is given by: 
 

      mnnm ybFhydfheyYA   )0( (11) 

By evaluating (10) at 0,
5
1,1t ; the first, 

second and the third derivative at 

1)
5
1(0,1   ixx n  and substituting into (10) 

gives the coefficients of (11) as: 

T
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15150 A    identity matrix 
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3. ANALYSIS OF THE PROPERTIES OF 

THE BLOCK 
 

3.1 Order of the Method 
 

The linear operator of the block (11) is defined 
as:  

    

 m

mmm

ybFh

ydfheyYhxyL











:
                (12) 

 

By expanding  ihxy n   and  jhxf n  in 

Taylor series, (12) becomes: 

        
  )13(

...:
)(

2
210





xyhC

xyhCxyhCxyChxyL
pp

p  
 
The block (11) and associated linear operator are 
said to have order p if  
 

.0,0... 2110   pp CCCC
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The term 2pC  is called the error constant and 

implies that the local truncation error is given by:  

 
       322

2 0 
  p

n
pp

pkn hxyhCt         (14) 

 
Hence the block (11) has order 7 with error 
constant: 
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3.2 Zero Stability of the Block 
 
The block (11) is said to be Zero stable if the 

roots Nzs ,...,2,1  of the characteristic 

polynomial    ,det EzAz   satisfies 1z

and the root 1z has multiplicity not exceeding 

the order of the differential equation. Moreover 
as  

 

   ,1,0     rzzh
 

 
Where   is the order of the differential equation, 

for the block (11), 3,15  r  

 
   312 1  z

 
 
Hence our method is Zero stable. 

 
3.3 Convergence 

 
According to [15], the necessary and sufficient 
condition for a numerical method to be 
convergent is for it to be Zero stable and has 

order 1p , from the above condition, it could be 

seen that our method is convergent. 

 
 
 

4. NUMERICAL EXPERIMENTS 
 
To test the accuracy, workability and suitability of 
the method, we adopted our method to solving 
some initial value problems of third order 
ordinary differential equations. 
 

4.1 Implementation Strategy 
 
The block formula which is a system of equations 
expressed in compact (block) form Eq. 11 is 
used as simultaneous integrator of initial value 
problems of third order ordinary differential 
equations. In this way, there is no need of 
providing starting values. The procedure is by 
converting it to codes in Matlab environment and 
implement on digital computer.  
 
4.1.1 Test problem 1. 
 
We consider a non homogenous initial value 
problem of third order ordinary differential 
equation: 
 

      1.0;10,000

4





hyyy

xyy

 
 
Whose exact solution is:  
 

  2

18
1)2cos1(

16
3 xxxy 

 
 
Our results are as shown in Table 1. 
 
4.1.2 Test problem 2. 
 
We consider a non - linear third order initial value 
problem: 
 

 ;2 yyxyy 

      1.0;00,
2
10,10  hyyy

 
 
Whose exact solution is: 

 













x

x
xy

2

2
ln
2
11

 
 
This problem was solved by [5] using block 
method. Our results are shown in Table 2. 
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Table 1. Showing results for problem 1 
 

X Exact solution Numerical solution Error 
0.1 0.004987516654 0.004987516647 7.36418E - 12 
0.2 0.019801063624 0.019801063360 2.61394E - 10 
0.3 0.043995722044 0.043995721510 5.28631E - 10 
0.4 0.076867491997 0.076867491765 2.31942E - 09 
0.5 0.117443317649 0.117443313100  4.51684 E - 09 
0.6 0.164557921033 0.164557907500 1.348917E - 08 
0.7 0.216881160706 0.216881072300 2.114963E - 08 
0.8 0.272974910431 0.272974491900 4.184726E - 07 
0.9 0.3313503927549 0.331350249100 1.435985E - 07 
1.0 0.3905275318552 0.390527004600 5.271836E - 07 

 

Table 2. Showing results for test problem 2 
 

X Exact solution Numerical solution Error Error  in [5] 
0.21 1.1053884478385 1.1053884470631 2.41216E - 12 8.169709E  - 11 
0.31 1.1562594977993 1.1562594972185 6.38350E - 11 5.122973E  - 10 
0.41 1.2079463656352 1.2079463650312 3.36475E - 11 2.586994E  - 09 
0.51 1.2607533165937 1.2607533160124 4.54664E - 11 8.166365E  - 09 
0.61 1.3150232370960 1.3150232370340 6.24217E - 11 2.142557E  - 08 
1.71 1.3711532082590 1.3711532071352 5.33622E - 10 4.971783E  - 08 

 

4.2 Numerical Results 
 
We make use of the following Notations in the 
table of results: 
 

X: Value of the independent variable where 
numerical value is taken. 
Exact Solution: Exact result at X value 
Numerical Solution: Our Numerical result at X 
value. 
Error: Error of our result at X value. 
 

5. DISCUSSION OF RESULTS  
 
In this paper, we have proposed a fully Implicit 
Hybrid Block – Predictor Corrector algorithm for 
the numerical solution of initial value problems of 
third order ordinary differential equations. We 
chose step size within the stability interval for 
better performance of the method. The results of 
our new method when compared with the block 
method proposed by [5] showed that our method 
is more accurate. 
 

4. CONCLUSION 
 
In this paper, we have developed a fully implicit 
Hybrid Predictor – Corrector method for the 
numerical integration of the initial value problems 
of third order ordinary differential equations using 
the approach of Collocation – interpolation. The 

approach gave rise to a scheme with continuous 
variables from where additional schemes 
(derivatives) were developed; the implementation 
strategy is by combining the major scheme with 
its derivatives to form a block. The method was 
analyzed for its basic properties and it was found 
to be of high order of accuracy, consistent, zero 
stable and convergent. The method was then 
adopted for the solution of initial value sample 
problems of third order ordinary differential 
equations. Numerical results compete favourably 
with that of existing methods. The major 
contribution to knowledge of this work is that a 
single step method was shown to be effective 
and adequate towards solving higher order 
ODEs directly without the need for the use of 
separate predictors. 
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