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Abstract 
 

A technique is presented for obtaining an asymptotic solution of over damped nonlinear forced vibrating 
systems by general Struble’s technique and extended KBM method with varying coefficients. The 
implementation of the presented method is illustrated by an example. The first order analytical 
approximate solutions obtained by the method for different initial conditions show a good agreement with 
those obtains by numerical method. 
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1 Introduction 
 
The asymptotic method Krylov-Bogoliubov-Mitroplshkii (KBM) [1-3] is particularly convenient and 
extensively used methods to study nonlinear differential systems with small nonlinearities. Originally, the 
method was developed by Krylov and Bogoliubov [1] for obtaining periodic solution of a second order 
nonlinear differential equation. Letter, the method was amplified and justified mathematically by 
Bogoliubov and Mitropolishkii [2,3]. Popov [4] extended the method to a damped oscillatory process in 
which a strong linear damping force acts. Murty, Dekshatulu and Krisna [5] extended the method to over-
damped nonlinear system. Shamsul [6-8] investigated over-damped nonlinear systems and found 
approximate solutions of Duffing’s equation when one root of the unperturbed equation was respectively 
double or triples of the other. Shamsul [9] has presented a unified method for solving an n-th order 
differential equation (autonomous) characterized by oscillatory, damped oscillatory and non-oscillatory 
processes with slowly varying coefficient. Pinakee et al. [10] has presented extended KBM method for 
under-damped, damped and over-damped vibrating systems in which the coefficients change slowly and 
periodically with time. Pinakee et al. [11] extended the technique for damped forced nonlinear system with 
varying coefficients. Recently Shamsul [12] has developed the general Struble’s techniques for several 
damping effect. The aim of this paper is to find a solution of over damped nonlinear forced vibrating systems 
that vary slowly with time in which a external force acts and one of the eigen-values is multiple (more than 
one hundred times; i.e., Centuple) of the other eigen-value and measure better result for strong 
nonlinearities. 
 

2 Methods 
  
Let us consider a nonlinear non-autonomous differential system governed by   
 

),,,,()cos()(2 3
2
21 txxfxkkxkx ντεττ &&&& −=+++ tετ =                                               (1) 

 

where the over-dots denote differentiation with respect to t, ε  is a small parameter, 21, kk and 3k  are 

constants, 32 )( kk =Ο= ε , tετ =  is the slowly varying time, ,0)(1 ≥τk  f  is a given nonlinear 

function. We set )cos()( 3
2
2

2 ττω kk += , where )(τω  is known as internal frequency and ν  is the 

frequency of the external acting force.  
 

Putting 0=ε  and 0ττ = = constant, in Eq.(1), we obtain the unperturbed solution of (1) in the form  
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Let Eq. (1) has two eigenvalues, )( 01 τλ  and )( 02 τλ  are constants, but when ,0≠ε  )( 01 τλ  and 

)( 02 τλ  vary slowly with time. We may consider that )( 02 τλ >> )( 01 τλ  and ντλ −≅)( 01 . When 

0≠ε , we seek a solution of Eq. (1) in the form     
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where 1x  and 1−x satisfy the equations 
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Differentiating ),( εtx  two times with respect to t, substituting for the derivatives x&&  and x in the original 

equation (1) and equating the coefficient of ε , we obtain  
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Herein it is assumed that )0(f  can be expanded in Taylor’s series  
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To obtain a special over-damped solution of (1), we impose a restriction that L1u  exclude the terms 

),()(, 021221111
21 τλλ kiiiixx ii +<+−  L2,1,0, 21 =ii . The assumption assures that L1u are free from 

secular type terms tte 1λ− . This restriction guarantees that the solution always excludes secular-type terms or 

the first harmonic terms, otherwise a sizeable error would occur [11]. Moreover, we assume that 1X  and  

1−X  respectively contains terms 1x  and 1−x . 
 

3 Example   
 
As example of the above procedure, let us consider a nonlinear non-autonomous system with slowly varying 
coefficients 
 

,)cos()(2 )04(.3
3

2
21

tEexxkkxkx −+−=+++ εεττ &&&                                                           (7) 

 

Here over dots denote differentiation with respect to t . 110 −+= xxx  and the function )0(f  becomes, 
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Following the assumption (discussed in section 2) excludes we substitute in (5) and separate it into two parts 
as 
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and     ( )( ) )3( 2
11121121111112111 −−−−− −=−+−+ xxuDxxDxxDxxDxx λλλλλλ                 (10) 

 
The particular solution of (10) is  
 

2
1111 −= xxcu                                                                               (11)    
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Where )(2/3 2111 λλλ +−=c  
 

Now we have to solve (9) for two functions 1X  and 1−X (discussed in section 2)  
 
The particular solutions are 
 

( ) tEexxxXxXDxxDxx )04(.
1

2
1

3
112111112111 )3( −

−−− ++−=−′++ λλλλ                            (12) 
 

and        ( ) 3
111121112111 −−−−−− −=−′++ xXxXDxxDxx λλλλ                                               (13) 

 
The particular solution of (12)-(13) is  
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Substituting the functional values of 1X , 1−X  into (4) and rearranging, we obtain 
 

( ) 41
2
13

3
12111111 Enxxnxnnxxx ελελ +++′+= −&                                     (15) 

 

and       ( )3
12112121 −−−− +′+= xllxxx λελ&                                      (16)                                      

 
Therefore, the first order solution of (7) is 
 

111),( uxxtx εε ++= − ,                                                                                                     (17) 

 

4 Results and Discussion 
 
Asymptotic solution of over damped forced nonlinear vibrating system is obtained based on the general 
Struble’s technique and extended KBM method with slowly varying coefficients. The solution has been 
determined under the technique which gives better result for long time. In order to test the accuracy of an 
approximate solutions obtain by a perturbation method, we compare the approximate solution to the 
numerical solution (consider to be exact). With regard to such a comparison concerning the presented 
general Struble’s technique and extended KBM method of this paper, we refer to the works of Murty, 
Dekshatulu and Krishna [5] Shamsul [6-9] and Pinakee et al. [10-11]. In this paper we have compared the 
perturbation solution (17) to those obtained by Runge-Kutta (Fourth order) method.  
 
First of all, x  is calculated by (17) with initial conditions 0000.1)0([ =x  0000.0=x& ] or ,0000.11 =x  

000128.1 −=−x  for )cos(,1. 3
2
20 τωωε kk +== , ,04.1 −=λ 62 −=λ . The solutions are various values of t  

are presented in the second column of Table 1. The corresponding numerical solutions is computed by 
Runge-Kutta fourth-order method and are given in the third column of the Table 1. All the results are shown 
in Table 1. Percentage errors have also been calculated and given in the fourth column of the Table 1.  
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Secondly, we have computed by (17) for another sets of initial conditions (i) 0000.1)0([ =x  

0000.0=x& ] or ,0000.11 =x  000075..1 −=−x  for ,)cos(,9. 3
2
20 τωωε kk +==  

,04.1 −=λ 62 −=λ  and (ii) 0000.1)0([ =x  0000.0=x& ] or ,0000.11 =x  

000336.1 −=−x  for ,)cos(,0.1 3
2
20 τωωε kk +==  ,04.1 −=λ 62 −=λ . The solutions 

are various values of t  are presented in the second column of Tables 2 and 3. The corresponding numerical 
solutions are also computed by Runge-Kutta fourth-order method and are given in the third column of the 
Tables 2 and 3. Percentage errors have also been calculated and given in the fourth column of the Tables 2 
and 3. 
 

Table 1. 
 

t  
nux  vax  (%)E  

0.0 1 1 0 
1.0 .9999056 .998789 .026732 
2.0 .996139 .995594 .054741 
3.0 .99145 .990667 .079038 
5.0 .97765 .976499 .11787 
7.0 .959208 .957806 .146376 
9.0 .937342 .935778 .167134 
10.0 .925431 .923811 .175361 
20.0 .789022 .787384 .208031 
30.0 .649285 .647974 .202323 
40.0 .522599 .521626 .186532 

Initial conditions 0000.1)0( =x  0000,0=x&  or ,0000.11 =x  000128.1 −=−x  for ,04.1 −=λ
62 −=λ , ,)cos( 3

2
20 τωω kk += 1.0=ε  

 
Table 2. 

 
t  

nux  vax  (%)E  

0.0 1 1 0 
1.0 .998714 .996695 .202569 
2.0 .992102 .988839 .329983 
3.0 .98217 .978387 .386657 
5.0 .957753 .95378 .416553 
7.0 .931237 .927391 .414712 
9.0 .90445 .900771 .408428 
10.0 .89116 .88756 .405606 
20.0 .765808 .76286 .386441 
30.0 .654577 .52165 .369845 
40.0 .555996 .554052 .35087 

Initial conditions 0000.1)0( =x  0000.0=x&  or ,0000.11 =x  000075.1 −=−x  for ,04.1 −=λ 62 −=λ ,

,)cos( 3
2
20 τωω kk += 9.0=ε  

 
 
 



 
 
 

Dey et al.; BJMCS, 15(3): 1-8, 2016; Article no.BJMCS.24531 
 
 
 

6 
 
 

Finally, we have computed by (16) for another sets of initial conditions (i) 0000.1)0([ =x  0000.0=x& ] 

or ,0000.11 =x  002471.1 −=−x  for ,)cos(,2.1 3
2
20 τωωε kk +==  ,04.1 −=λ 62 −=λ  

and (ii) 0000.1)0([ =x 0000.0=x& ] or ,0000.11 =x 001525.1 −=−x  for 

,)cos(,3.1 3
2
20 τωωε kk +== ,04.1 −=λ 62 −=λ  (iii) 0000.1)0([ =x  0000.0=x& ] or 

,0000.11 =x  003236.1 −=−x  for ,)cos(,4.1 3
2
20 τωωε kk +== ,04.1 −=λ 62 −=λ . 

The solutions are various values of t  are presented in the second column of Tables 4, 5 and 6. The 
corresponding numerical solutions are also computed by Runge-Kutta fourth-order method and are given in 
the third column of the Tables 4, 5 and 6. Percentage errors have also been calculated and given in the fourth 
column of the Tables 4, 5 and 6.  
 

Table 3. 
 

t  
nux  vax  (%)E  

0.0 1 1 0 
1.0 .998451 .996268 .219118 
2.0 .991337 .9879 .34791 
3.0 .980932 .977026 .399785 
5.0 .955964 .951949 .421766 
7.0 .929323 .925463 .417089 
9.0 .902635 .898944 .410593 
10.0 .884438 .885824 .407982 
20.0 .765372 .762391 391007 
30.0 .655416 .652963 .375672 
40.0 .557977 .555989 .357561 

Initial conditions 0000.1)0( =x  0000.0=x&  or ,0000.11 =x  000336.1 −=−x  for ,04.1 −=λ 62 −=λ , 

,)cos( 3
2
20 τωω kk += 0.1=ε  

 
Table 4. 

 
t  

nux  vax  (%)E  

0.0 1 1 0 
1.0 .996698 .994302 .240973 
2.0 .988093 .984475 .367506 
3.0 .976649 .972652 .410938 
5.0 .950764 .946752 .423765 
7.0 .924066 .920215 .418489 
9.0 .897667 .893969 .413661 
10.0 .884669 .881042 .411672 
20.0 .762939 .75991 .3986 
30.0 .655212 .6527 .384863 
40.0 .559789 .557734 .368455 

Initial conditions 0000.1)0( =x  0000.0=x&  or ,0000.11 =x  002471.1 −=−x  for ,04.1 −=λ 62 −=λ , 

,)cos( 3
2
20 τωω kk += 2.1=ε  
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Table 5. 
 

t  
nux  vax  (%)E  

0.0 1 1 0 
1.0 .997394 .994798 .260958 
2.0 .988831 .985024 .386488 
3.0 .977267 .973149 .423162 
5.0 .951233 .947181 .427796 
7.0 .924553 .920679 .420776 
9.0 .898248 .894529 .41575 
10.0 .88531 .88166 .413992 
20.0 .76424 .761181 .401876 
30.0 .657153 .654607 .388936 
40.0 .562324 .560233 .373238 

Initial conditions 0000.1)0( =x  0000.0=x&  or ,0000.11 =x  001525.1 −=−x  for ,04.1 −=λ

62 −=λ , ,)cos( 3
2
20 τωω kk += 3.1=ε  
 

Table 6. 
 

t  
nux  vax  (%)E  

0.0 1 1 0 
1.0 .996061 .993422 .265647 
2.0 .98667 .982855 .388155 
3.0 .974662 .970565 .422125 
5.0 .948367 .944339 .426542 
7.0 .921756 .917892 .420965 
9.0 .895614 .891894 .41709 
10.0 .882767 .879114 .415532 
20.0 .762641 .759567 .404704 
30.0 .656433 .653868 .392281 
40.0 .562408 .560294 .377302 

Initial conditions 0000.1)0( =x  0000.0=x&  or ,0000.11 =x  003263.1 −=−x  for ,04.1 −=λ
62 −=λ , ,)cos( 3

2
20 τωω kk += 4.1=ε  

 
From Tables 1, 2, 3, 4, 5 and 6, it is clear that percentage errors are smaller than 1% and thus (17) show a 
good coincidence with the numerical solution.  
 

5 Conclusion 
  
In this article a technique is developed for obtaining the solution of nonlinear non autonomous vibrating 
systems based on the general Struble’s technique and extended KBM method with slowly varying 
coefficients under the action of external forces. The solutions agree nicely with the numerical solutions when 
one of the eigen-values is multiple (more than one hundred times; i.e., Centuple) of the other eigen-value 
and measure better result for strong nonlinearities. 
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