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Abstract

A technique is presented for obtaining an asymptotic solutiowesf @amped nonlinear forced vibrating
systems by general Struble’s technique and extended KBMochewith varying coefficients. Th
implementation of the presented method is illustrated byesample. The first order analytical
approximate solutions obtained by the method for differ@tiai conditions show a good agreement with
those obtains by numerical method.
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1 Introduction

The asymptotic method Krylov-Bogoliubov-Mitroplshkii (KBM)1-3] is particularly convenient and
extensively used methods to study nonlinear differentiabeys with small nonlinearities. Originally, the
method was developed by Krylov and Bogoliubov [1] for obtainingopiéri solution of a second order
nonlinear differential equation. Letter, the method was #iegl and justified mathematically by
Bogoliubov and Mitropolishkii [2,3]. Popov [4] extended the method tdamped oscillatory process in
which a strong linear damping force acts. Murty, Dekshedulth Krisna [5] extended the method to over-
damped nonlinear system. Shamsul [6-8] investigated owepe&d nonlinear systems and found
approximate solutions dbuffing's equation when one root of the unperturbed equation wasctasbg
double or triples of the other. Shamsul [9] has presentedifeedi method for solving am-th order
differential equation (autonomous) characterized byllesmiy, damped oscillatory and non-oscillatory
processes with slowly varying coefficient. Pinakeeak [10] has presented extended KBM method for
under-damped, damped and over-damped vibrating systemsich tie coefficients change slowly and
periodically with time. Pinakee et al. [11] extended thénege for damped forced nonlinear system with
varying coefficients. Recently Shamsul [12] has developedgeneral Struble’s techniques for several
damping effect. The aim of this paper is to find a solutioovefr damped nonlinear forced vibrating systems
that vary slowly with time in which a external forcesaahd one of the eigen-values is multiple (more than
one hundred timesj.e, Centuple) of the other eigen-value and measure be¢®ult for strong
nonlinearities.

2 Methods

Let us consider a nonlinear non-autonomous differentgeay governed by
X+ 2k, (1)x+ (kZ +k,cost)x = —¢ f(x,x,7,1t), T=¢t 1)

where the over-dots denote differentiation with resged, € is a small parametek;, K,and k, are
constants, kK, =O(&) =k, , T =&t is the slowly varying timek,(7) 20, f is a given nonlinear

function. We setcw?’ () = (k2 + K, cOST) , where &.(T) is known as internal frequency aptdis the
frequency of the external acting force.

Putting £ =0 and T = 7, = constant, in Eq.(1), we obtain the unperturbed solution dh (e form
X(t,0) = %, +x_ e, @)

Let Eq. (1) has two eigenvalued, (7,) and A,(7,) are constants, but whea# 0, A,(7,) and
A,(7,) vary slowly with time. We may consider th|at‘t2 (T0)| >> |/11(T0)| and A,(7,) C -V . When

EF 0, we seek a solution of Eq. (1) in the form

X(t,€) = X, (t,7) + x_, (t,7) + U, (X, X1, 1, T) + £2U, (X, X, 8, 7) +..., 3)

where X; and X_, satisfy the equations

X, = A (1) X + X (X, Xy, T) + €2 X, (X, X4, 7).,

@)
Xy = A ()X + X (%, X, T) + €2 X (%, X, T) e
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Differentiating X(t,€) two times with respect to substituting for the derivative¥ andx in the original
equation (1) and equating the coefficient&®f we obtain

(/]1X1DX1 + /]ZX—lDX—l)Xl + (/]1X1DX1 +/]2X—1DX—1)X—1 +/]1'X1 + /];X—l _/]le _/]1X—1 +
+ (/11X1Dx1 +A,Xx,Dx - /11)()le1Dxl +A,x,Dx —/]2)ul (5)
=—f O (x,x4,7,1),

where A/ :%,/1; :%, Dx, :i,DX_l :i,f(o) = f(Xy, %, T, 1)
dr dr 0x, 0X

Herein it is assumed thakt @ can be expanded in Taylor's series

fO=3F  [@Oxx3 (6)
0

n,h=

To obtain a special over-damped solution of (1), we imposestiction thatl, --- exclude the terms
Xil Xi_zl,il/]1 +i,A, <(i, +1,)k(7,), 1,1, = 01,2:--. The assumption assures thyt --are free from
secular type termpe ™ . This restriction guarantees that the solution alwaysudrsseculartype terms or
the first harmonic terms, otherwise a sizeable error wootdir [11]. Moreover, we assume th¥t and

X_, respectively contains terms; and X_; .

3 Example

As example of the above procedure, let us consider aneanlnon-autonomous system with slowly varying
coefficients

%+ 2k, (1)x + (K2 +k, cosr)x = —&x® + eEe (%" @)
Here over dots denote differentiation with respedt.tX, = X, + X_; and the functionf © becomes,

fO =—(x%+3xx, +3xx% +x%) + Ee". ®)

Following the assumption (discussed in section 2) excludesubstitute in (5) and separate it into two parts
as

(Alxlel + /]2X—1DX—1) Xy + (/]1X1DX1 + AZX—lDX—l) Xy AX + A% = A X = A X

9
=- (¢ + 3K, + X)) + E O o
and  (A,%,Dx, +A,x,Dx, = A )(A,xDx, + A,x,Dx, = A, )u, = —~(3Bxx%) (10)
The particular solution of (10) is
U, =C X X3 (11)
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Where ¢, = =3/2A,(A, + A,)

Now we have to solve (9) for two functioer and X_1 (discussed in section 2)

The particular solutions are

(A, x,Dx, + A, x DX ) X, + Ax = A, X, == (¢ +3xx,) + Ee %" (12)
and (A xDx +A,x,Dx )X, +Aix, A X, ==X} (13)
The particular solution of (12)-(13) is

X, = Axn +n,xd +nx2x, + En,, and X = Apx |, +1,x5, (14)
where

n, = -1/(A, = A,), n, ==1/(3A, - A,), n, = =3/24,,n, =1/(- 04~ A,)
L, =1/, - A,), 1,=-1/(34,-A)

Substituting the functional values of;, X_; into (4) and rearranging, we obtain

% = A +e(ixm, +n,¢ +nogx, )+ eBn, (15)
and X, = A, +e(Anxl +1,x) (16)
Therefore, the first order solution of (7) is

X(t, &) =x +x, +éau,, 17)
4 Resultsand Discussion

Asymptotic solution of over damped forced nonlinear vibratingesysis obtained based on the general
Struble’s technique and extended KBM method with slowly varyioefficients. The solution has been
determined under the technique which gives better résulong time. In order to test the accuracy of an
approximate solutions obtain by a perturbation method, we comparepproximate solution to the
numerical solution (consider to be exact). With regard to sucbnaparison concerning the presented
general Struble’s technique and extended KBM method of this pamerefer to the works of Murty,
Dekshatulu and Krishna [5] Shamsul [6-9] and Pinadteal. [10-11]. In this paper we have compared the
perturbation solution (17) to those obtained by Runge-K&tarth order) method.

First of all, X is calculated by (17) with initial conditiopg()=1.0000 %=0.0000] or x =1.0000Q

X, =-.000128for ¢ =1, w=a,(k? +k,cost) s A, =-04, A, =-6. The solutions are various valuestof

are presented in the second column of Table 1. Theesmonding numerical solutions is computed by
Runge-Kutta fourth-order method and are given in the thindnoolof the Table 1. All the results are shown
in Table 1. Percentage errors have also been calculadegiven in the fourth column of the Table 1.
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Secondly, we have computed by (17) for another sets of intiaiditions (i) [x(0) =1.0000

%x=00000] or % =1000Q X, =-.000075 for &=.9, w= g (k> +k,COST),
A=-04 A,=-6 and (i) [x(0)=10000 %=00000 ] or x =1.000Q

X_, = —.000336 for £ =10, w=wy/(k: +k,cosr), A, =—04, A, =—6. The solutions

are various values df are presented in the second column of Tables 2 and Zoftesponding numerical
solutions are also computed by Runge-Kutta fourth-ordehadeand are given in the third column of the
Tables 2 and 3. Percentage errors have also been cadcatad given in the fourth column of the Tables 2
and 3.

Table 1.
t Xog Xoa E(%)
0.0 1 1 0
1.0 .9999056 .998789 026732
2.0 .996139 .995594 054741
3.0 99145 .990667 .079038
5.0 97765 976499 11787
7.0 .959208 957806 146376
9.0 937342 935778 167134
10.0 1925431 923811 175361
20.0 789022 787384 208031
30.0 649285 647974 202323
40.0 522599 521626 .186532

Initial conditions X(0) =1.0000 x = 0,00000r X, =1.000Q x_ =-.000128f0r A, =04

A, =6, w=wy/(K; +k,cosr), £=01

Table 2.
t Xnu Xva E(%)
0.0 1 1 0
1.0 .998714 .996695 .202569
2.0 1992102 .988839 .329983
3.0 .98217 .978387 .386657
5.0 957753 .95378 416553
7.0 931237 927391 414712
9.0 .90445 900771 408428
10.0 .89116 .88756 405606
20.0 .765808 .76286 .386441
30.0 654577 52165 .369845
40.0 .555996 .554052 .35087

Initial conditions x(0) =1.0000 x = 0.0000 or x, =1.000Q x_, =-.000075for A, =—-04, A, =-6,

W= w,+/(k? +k,cosr), €=09
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Finally, we have computed by (16) for another sets of irgtaditions (i)[ x(0) = 1.0000 x = 0.000Q
or X, =1.000Q x_, =-.00247:for £ =12, W=, (k? +k,cosr), A, =-04 A, =-6
and (i) [x(0)=1.0000 x=00000 ] or Xx =1000Q x,=-.001525 for
£=13 w=wy/(k; +kycosT), A =-04, A, =-6 (i) [x(0) =1.0000 x=0.0000] or
X, =1.000Q x, =—.003236for £ =14, w=wy/(K; +k;cosr), A, =-04, A, =-6.

The solutions are various values fofare presented in the second column of Tables 4, 5 ande&5. Th
corresponding numerical solutions are also computed by Runge-#utth-order method and are given in
the third column of the Tables 4, 5 and 6. Percentagesdrawe also been calculated and given in the fourth
column of the Tables 4, 5 and 6.

Table 3.
t Xnu Xva E(%)
0.0 1 1 0
1.0 .998451 .996268 .219118
2.0 .991337 .9879 34791
3.0 .980932 977026 .399785
5.0 .955964 .951949 421766
7.0 .929323 .925463 417089
9.0 .902635 .898944 410593
10.0 .884438 .885824 407982
20.0 .765372 762391 391007
30.0 .655416 .652963 .375672
40.0 557977 .555989 357561

Initial conditions x(0) = 1.0000 x = 0.00000r x, =1.000Q x_, =-.000336for A, =-04, A, =-6,

W= w,+/(k? +k,cosr), £€=10

Table 4.
t Xnu Xva E(%)
0.0 1 1 0
1.0 996698 .994302 .240973
2.0 .988093 .984475 .367506
3.0 .976649 .972652 .410938
5.0 .950764 .946752 423765
7.0 .924066 .920215 .418489
9.0 .897667 .893969 413661
10.0 .884669 .881042 411672
20.0 .762939 75991 .3986
30.0 .655212 .6527 .384863
40.0 .559789 557734 .368455

Initial conditions x(0) =1.0000 x = 0.00000r x, =1.000Q x_, =-.002471for ), =-04, A, = -6,
w=y+(kZ +k,cosr), £=12
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Tableb.
t Xau Xua E(%)
0.C 1 1 0
1.0 .997394 .994798 .260958
2.0 .988831 .985024 .386488
3.C 97726’ .97314¢ .42316:
5.0 .951233 947181 427796
7.C .92455! .92067¢ 42077¢
9.0 .898248 .894529 41575
10.0 .88531 .88166 1413992
20.C 7642« .76118: .40187¢
30.0 .657153 .654607 .388936
40.C .56232: .56023: .37323¢

Initial conditions X(0) =1.0000 X = 0.00000r X, =1.000Q x_ =-.001525f0r A, =—-04,

A, ==6, w=w,/(k? +k,cosr), £€=13

Table6.
t Xnu Xva E(%)
0.0 1 1 0
1.0 .996061 .993422 .265647
2.0 .98667 .982855 .388155
3.C .97466: .97056! 42212!
5.0 .948367 .944339 426542
7.C .92175¢ .91789: .42096!
9.0 .895614 .891894 41709
10.0 .882767 .879114 415532
20.C .76264: .75956° .40470:
30.0 .656433 .653868 .392281
40.C .56240¢ .56029: .37730:

Initial conditions X(0) =1.0000 x = 0.00000r X, =1.000Q x_, =-.00326:for A, = — 04,
A, =6, w=w,+/(k? +k,cosr), £=14

From Tables 1, 2, 3, 4, 5 and 6, it is clear that percergagrs are smaller than 1% and thus (17) show a
good coincidence with the numerical solution.

5 Conclusion

In this article a technique is developed for obtaining tiat®n of nonlinear non autonomous vibrating
systems based on the general Struble’s technique and edtdtBM method with slowly varying
coefficients under the action of external forces. Tdiat®ns agree nicely with the numerical solutions when
one of the eigen-values is multiple (more than one huahntinees;i.e., Centuple) of the other eigen-value
and measure better result for strong nonlinearities.
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