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Abstract

In the logistic regression, it is known that multicollinearity affects the variance of Maximum
Likelihood Estimator (MLE). To overcome this issue, several researchers proposed alternative
estimators when exact linear restrictions are available in addition to sample model. In this paper,
we propose a new estimator called Stochastic Restricted Ridge Maximum Likelihood Estimator
(SRRMLE) for the logistic regression model when the linear restrictions are stochastic. Moreover,
the conditions for superiority of SRRMLE over some existing estimators are derived with respect
to Mean Square Error (MSE) criterion. Finally, a Monte Carlo simulation is conducted for
comparing the performances of the MLE, Ridge Type Logistic Estimator (LRE) and Stochastic
Restricted Maximum Likelihood Estimator (SRMLE) for the logistic regression model by using
Scalar Mean Squared Error (SMSE).
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1 Introduction

There are many fields of research where the response variable is binary. For instance, diagnosis of
breast cancer (present, absent), vote in election (Democrat, Republican), or mode of travel to work
(by car/ by bus) and so-on. The logistic regression plays an important role in predicting the binary
outcomes as stated above.

The general form of logistic regression model is given as follow:
Yi=Ti+¢€i, 1=1,..,n (1.1)
which follows Bernoulli distribution with parameter 7; as

exp(ziB)

= Thep(@f)’ (12)

K3

where z; is the i row of X, which is an n x (p+ 1) data matrix with p explanatory variables and
Bisa (p+ 1) x 1 vector of coefficients, ¢; are independent with mean zero and variance 7;(1 — ;)
of the response y;. The Maximum likelihood method is the most common estimation technique to
estimate the parameter 3, and the maximum likelihood estimator (MLE) of 8 can be obtained as
follows:

Bure =C ' X'WZ, (1.3)
where C' = X'WX; Z is the column vector with i*" element equals logit(7;) + % and W =

diag[#;(1 — #;)], which is an unbiased estimate of 5. The covariance matrix of BMLE is
Cov(Bure) = {X' WX}~ (1.4)

There are situations where the explanatory variables have strong inter-relationship called multicolli-
nearity. This causes inaccurate estimation of model parameters. As a result, the estimates have
large variances and large confidence intervals, which produces inefficient estimates. One way to deal
with this problem is called the ridge regression, which was first introduced by [1]. To overcome the
problem of multi-collinearity in the logistic regression, many authors suggested different estimators
alternative to the MLE. First, [2] proposed the Ridge Logistic Regression estimator for logistic
regression model. Later, Principal Component Logistic Estimator (PCLE) by [3], the Modified
Logistic Ridge Regression Estimator (MLRE) by [4], Liu Estimator by [5], Liu-type estimator by
[6] and Almost unbiased ridge logistic estimator (AURLE) by [7] have been proposed. Recently, [8],
proposed some new methods to solve the multicollinearity in logistic regression by introducing the
shrinkage parameter in Liu-type estimators.

An alternative way to solve the multi-collinearity problem is to consider parameter estimation with
priori available linear restrictions on the unknown parameters, which may be exact or stochastic.
That is, in some practical situations there exists different sets of prior information from different
sources like past experience or long association of the experimenter with the experiment and similar
kind of experiments conducted in the past. If the exact linear restrictions are available in addition to
logistic regression model, many authors proposed different estimators for the respective parameter
B. 9] introduced a restricted maximum likelihood estimator (RMLE) by incorporating the exact
linear restriction on the unknown parameters. [10] proposed a new estimator called Restricted
Liu Estimator (RLE) by replacing MLE with RMLE in the logistic Liu estimator. However, RLE
estimator did not satisfy the linear restriction. Consequently, [11] proposed a Modified Restricted
Liu Estimator in logistic regression, which satisfies the linear restrictions. Later, [12] investigated
the theoretical results about the mean squared error properties of the restricted estimator compared
to MLE, RMLE and Liu estimator. When the restriction on the parameters are stochastic, [13]
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recently proposed a new estimator called Stochastic Restricted Maximum Likelihood Estimator
(SRMLE) and derived the superiority conditions of SRMLE over the estimators Logistic Ridge
Estimator (LRE), Logistic Liu Estimator (LLE) and RMLE.

In this paper, we propose a new estimator called Stochastic Restricted Ridge Maximum likelihood
Estimator (SRRMLE) when the linear stochastic restrictions are available in addition to the logistic
regression model. The rest of the paper is organized as follows, the proposed estimator and its
asymptotic properties are discussed in Section 2. In Section 3, the mean square error matrix
and the scalar mean square error for this new estimator are obtained. Section 4 describes the
theoretical performance of the proposed estimator over some existing estimators. The performance
of the proposed estimator with respect to Scalar Mean Squared Error (SMSE) is investigated by
performing a Monte Carlo simulation study in Section 5 . The conclusions of the study is presented
in Section 6.

2 A Proposed New Estimator

In the presence of multicollinearity in logistic regression model (1.1), [2] proposed the Logistic Ridge
Estimator (LRE), which is defined as

BLRE = (XIWX+]€I)71XIWXBMLE (2.1)
= (C+k1)7chMLE
= ZwBure

where Zj, = (C' 4 kI)7'C and k is a constant, k > 0.

The asymptotic properties of LRE:

ElBLrE) = E[ZkBrure] = Zif3 (2.2)
Var[Bure] = Var(ZwBuwve] (2.3)
= Z,C7'Z,
= (C+kn~'Cc(C+kD)™
= Zy(C+ED!

Suppose that the following linear prior information is given in addition to the general logistic
regression model (1.1).

h=HB+v; E(v)=0, Cov(v)=1¥ (2.4)

where h is an (g x 1) stochastic known vector, H is a (¢ X (p+ 1)) of full rank ¢ < (p + 1) known
elements and v is an (¢ x 1) random vector of disturbances with mean 0 and dispersion matrix VU,
which is assumed to be a known (g X ¢q) positive definite matrix. Further, it is assumed that v is
stochastically independent of ¢, i.e) E(ev’) = 0.

In the presence of exact linear restrictions on regression coefficients (v = 0 in (2.4)) in addition
to the logistic regression model (1.1), [9] proposed the following Restricted Maximum Likelihood
Estimator (RMLE).

Bryvre = Bure +C P H' (HCT'H') " (h — HBwmwr) (2.5)
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The asymptotic variance and bias of Brye,

Var(Braree) = €' = CT H(HCT H) T HC™ (2.6)

Bias(Bryre) = C "H'(HC 'H') ' (h — HBumLE) (2.7)

Following [9], [13] proposed an estimator, the Stochastic Restricted Maximum Likelihood Estimator
(SRMLE), when the linear stochastic restriction (2.4) is available in addition to the logistic regression
model (1.1).

BSR]MLE = BuLe + C_IH/(\I/ + HC’_lHI)_l(h — HBIMLE) (2.8)
The estimator BS rRMLE is asymptotically unbiased.
E(Bsrmre) =B (2.9)
The asymtotic covariance matrix of SRMLE
Var(Bspare) = C ™' —C'H' (U + HCT'H') ' HC ™ (2.10)

Moreover, it was shown in their paper that the estimator SRMLE is always superior to MLE.
However, the estimator SRMLE is superior over RLE, LLE and RMLE under certain conditions.
For further development, in this paper, following [13], we introduce a new biased estimator which
is called Stochastic Restricted Ridge Maximum likelihood Estimator (SRRMLE), and defined as

Bsrrvie = Brre + C H' (W + HC™"H')""(h — HBLrE) (2.11)
Asymptotic Properties of SRRMLE

E(Bsrrvre) = ElBrre)+C 'H' (¥ +HC 'H') "(HB — HE(BLrE)) (2.12)
= ZiB+C 'H' (V+HC 'H') " "(HB — HZB)
= [Zv+C 'H' (Y +HC 'H')""(H - HZ,)|

Var(Bsrrmre) = VarlBire +C "H' (W + HC 'H') "' (h — HBLrE)] (2.13)
= Zy(CH+EkD) "+ CT'H' (W +HCO'H) !
U4+ HZ,(C+ k) "H)(V+ HC'H' )Y "HC™
—2C'"H' (Y + HC™'H') "HZy(C + kI)™*

3 Mean Square Error Matrix Criteria

To compare different estimators with respect to the same parameter vector [ in the regression
model, one can use the well known Mean Square Error (MSE) Matrix and/or Scalar Mean Square
Error (SMSE) criteria.

MSE(3,8) = El(B-8)B-p) (8.1)
= E
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where D(f) is the dispersion matrix, and B(3) = E(j3) — 8 denotes the bias vector.

The Scalar Mean Square Error (SMSE) of the estimator 3 can be defined as
SMSE(S, 8) = trace[MSE(j, B)] (3.2)

For two given estimators Bl and Bg, the estimator Bg is said to be superior to 31 under the MSE
criterion if and only if

M(Br, ) = MSE(B1, 8) — MSE(Bs, 8) > 0. (33)

For the proposed estimator SRRMLE:

Bias(Bsrrvre) = E(Bsrrvis) — B (3.4)
= [Zv+C 'H' (Y +HC 'H) "(H-HZ,) - 1|8
04 (say)

The Mean Square Error

MSE(Bsrrvre) = D(Bsrrvie)+ B(Bsrrvie)B (Bsrrvie) (3.5)
= Zy(CH+kN) '+ C'H' (W +HC'H))!
U+ HZ,(C+ kDN "H|(V+HC 'H' Y 'HC™!
—207'H' (U + HC™'H') " HZy(C + kI) ™" + 646

The Scalar Mean Square Error

SMSE(BSRR]\/ILE) :trace{MSE(ﬁSRRMLE)} (3.6)

4 The Performance of the Proposed Estimator

In this section, we describe the theoretical performance of the proposed estimator SRRMLE over
some existing estimators: MLE, LRE, and SRMLE with respect to the mean square error sense.

¢ SRRMLE Versus MLE

MSE(Bure) — MSE(Bsrrvre) = {D(Burr) — D(Bsrrmie)} (4.1)
+{B(BIMLE)B/(BJWLE) - B(BSRRMLE)B/(BSRRMLE)}
= {C'-Zy(C+k) —CT'H'(W+HC'H) !
U+ HZ,(C+ Kk "H|(V+ HC 'H)Y 'HC™!
4207 "H' (W + HC ' H') " HZ(C + k1) ™'} — 64684
= {CT'+2ZuHZK(C + kD)"Y
A Z(CH+ kD) "+ Zu|V + HZ,(C + kI) " H'|Z}y + 0404}
= Mi— Ny
where Zg = CT'H' (W + HC*H)™', M1 = C™' 4+ 2Zg HZ (C+kI)™" and Ny = {Zx(C +

KD 4+ Zy [+ HZy(C+ kD)™ H'|Z} + 6464 }. One can obviously say that Zx(C' +kI)~" +
Zu[V + HZ,(C+kI)"'H'|Z}; and M are positive definite and 648 is non-negative definite
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matrices. Further by Theorem 1 (see Appendix A), it is clear that Ni is positive definite
matrix. By lemma 1 (see Appendix A), if Amax(N1M; ') < 1, then M; — N is a positive
definite matrix, where )\max(N1M1_1) is the largest eigen value of NlMl_l. Based on the
above arguments, the following theorem can be stated.

Theorem 1: The estimator SRRMLE is superior to MLE if and only if Amax(N1 Ml_l) < 1.

¢ SRRMLE Versus LRE

MSE(BLRE) - MSE(BSRRMLE) = {D(BLRE) — D(BSRRMLE)} (4.2)

+{B(Brrr)B (brrr) — B(Bsrrrvre)B (Bsrrvre)}
= {(C+EkD'CCH+kKI)" -

Zy(C+EN "+ CT'H' (W + HOT'H') ™!
(U + HZ,(C+ k) "H'|(Y + HC 'H) " "HC™"
—207'H' (¥ + HCT'H') "HZy(C + k1)~ '}
+{0161 — 6404}

where Zy = C™'H' (W + HC™'H')™! and 6, = E(Brrr) — f; bias vector of B1rs.

Now consider,

D(Brre) — D(BsrryLE)

{(C+EkD)'CC+EN" Y —{Zp(CH+ kD! (4.3)
+CT'H' (Y + HC'H') ™!
U+ HZ,(C+ kN "H|(V+HC 'H')Y 'HC™!
—207'H' (W + HC™'H') "HZ,(C + kI)™'}
272y HZ(C + kI)™' — Zy |V + HZy(C + kI) "H'|Z}
My — Ny

= Di(say)
where My = 2Zg HZp(C+kI)™' and No = Zg[V+HZ,(C+kI)"*H'|Z}. One can obviously
say that My and N are positive definite matrices. By lemma 1, if Amax(N2M; ') < 1, then

D7 = Ms— N> is a positive definite matrix, where /\max(NgMgl) is the the largest eigen value
of N2M2_1. Based on the above arguments and lemma 2, the following theorem can be stated.

Theorem 2: When )\max(NzMgl) < 1, the estimator SRRMLE is superior to LRE if
and only if 64(Dj + 6161) 7164 < 1.

¢ SRRMLE Versus SRMLE

MSE(Bsruie) — MSE(Bsrrmre) = {D(Bsrmre)— D(Bsrrmre)} (4.4)
+{B(Bsramrr)B (Bsrrmre) — B(Bsrrvre)B (Bsrrvre)}
= {Zy(CH+ kD) "+ CTTH' (Y + HCT'H)) !
U+ HZ,(C+ k) "H)(V+ HC'H' ) 'HC™
—207'H' (W + HC"'H') "HZ,(C + kI)™"
—C '~ CT'H'(HCT'H) ' HC T} — 6464
= {(C+HV'H) " +2ZyHZ,(C +kI)~"}
—{Z(C+ kD) + Zy [V + HZy(C + kI) " H'|Z}; + 6464}
= Ms;— N3
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where Mz = {(C' + H'V'H) ' + 22y HZ;,(C + kI)™'} and N3 = {Z,(C + kI)™* + Zu[¥ +
HZp(CHEI) " H'|Z} + 6464 }. One can obviously say that Zi,(C +kI) ™+ Zg[¥+ HZy(C+
kI)"'H')Z}; and M3 are positive definite and 6,8} is non-negative definite matrices. Further
by Theorem 1, it is clear that N3 is positive definite matrix. By lemma 1 (see Appendix A),
if Amax(NaMy 1) < 1, then M3 — N3 is a positive definite matrix, where Amax(N3 M3 ') is the
the largest eigen value of N3 My ! Based on the above arguments, the following theorem can
be stated.

Theorem 3: The estimator SRRM LFE is superior to SRM LF if and only if /\max(NgM;I) <
1.

Based on the above results one can say that the new estimator SRRMLE is superior to the other
estimators with respect to the mean squared error matrix sense under certain conditions. To check
the superiority of the estimators numerically, we then consider a simulation study in the next
section.

5 A Simulation Study

In this section, we provide the numerical results of the Monte Carlo simulation which is conducted
to illustrate the performance of the estimators MLE, LRE, SRMLE and SRRMLE by means of
Scalar Mean Square Error (SMSE). Following [14] and [15], we generate the explanatory variables
using the following equation.

p2)1 /2

Tij = (1 — zij + pzipr1,t=1,2,...,n, 3=1,2,...,p (51)

where z;; are pseudo- random numbers from standardized normal distribution and p? represents the
correlation between any two explanatory variables. Four explanatory variables are generated using
(5.1). Four different values of p corresponding to 0.70, 0.80, 0.90 and 0.99 are considered. Further
for the sample size n, four different values 25, 50, 75, and 100 are considered. The dependent

variable y; in (1.1) is obtained from the Bernoulli(w;) distribution where m; = %. The

parameter values of 1, (2, ..., Bp are chosen so that Z?zl ﬂf and 1 = B2 = ... = fBp.

Moreover, we choose the following restrictions.

1 -1 0 0 1 1 00
H=|0 1 -1 0 |, h=| -2 Jand ¥=[ 0 1 0 (5.2)
0 0 1 -1 1 00 1

Further for the ridge parameter k, some selected values are chosen so that 0 < k£ < 1.
The simulation is repeated 2000 times by generating new pseudo- random numbers and the simulated
SMSE values of the estimators are obtained using the following equation.

2000

SMSE(E) = 05 33— 5 (B — §) (53)

where BS is any estimator considered in the s® simulation. The results of the simulation are reported
in Tables 5.1 - 5.16 (Appendix C) and also displayed in Figures 5.1 - 5.4 (Appendix B). According
to Figures 5.1 - 5.4, it can be observed that in general, increase in degree of correlation between two
explanatory variables p inflates the estimated SMSE of all the estimators and increase in sample
size n declines the estimated SMSE of all the estimators. The performance of MLE is poor for
all situations considered in the simulation. Especially, increasing the degree of correlation poorly
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affects the performance of MLE. Further, when 0 < k£ < 1 and p = 0.7, 0.8 the new estimator
SRRMLE has smaller SMSE compared to all the other estimators MLE, LRE, and SRMLE with
respect to all samples of size n= 25, 50, 75 and 100. Further, it was noted from the simulation
results, the estimator SRRMLE dominates the other estimators with respect to the mean square
error sense when p = 0.9 and p = 0.99 except the following conditions; k > 0.4784 with p = 0.99 &
n =100, k > 0.4125 with p =0.99 & n = 75, k > 0.3361 with p = 0.99 & n = 50, k£ > 0.2383 with
p=0.99 & n =25 and k > 0.6966 with p = 0.90 & n = 25. In these circumstances LRE is superior
to all other estimators.

6 Concluding Remarks

In this paper, we introduced the Stochastic Restricted Ridge Maximum Likelihood Estimator
(SRRMLE) for logistic regression model when the linear stochastic restriction is available. The
performances of the estimators SRRMLE over MLE, LRE, and SRMLE were investigated by
performing a Monte Carlo simulation study. It is noted that, increasing degree of correlation makes
an increase in the SMSE values of all estimators. Results show, when 0 < k <1 and p = 0.7, 0.8,
the proposed estimator SRRMLE is superior over the other estimators for all samples of size n=
25, 50, 75 and 100. It was also noted that the estimator LRE has smaller SMSE compared to the
other estimators for some k values related to different p and n.
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Appendix A
Theorem 1: Let A: n xn and B : n X n such that A > 0 and B > 0. Then A+ B > 0. ([16])

Lemma 1: Let the two n xn matrices M > 0 ,N > 0, then M > N if and only if Amax(NM 1) < 1.

([17))

Lemma 2: Let B‘j = Ajy, j = 1,2 be two competing homogeneous linear estimators of 5. Suppose
that D = Cov(B1) — Cov(B2) > 0, where Cou(B;), j = 1,2 denotes the covariance matrix of 5;.
Then A(B1,B2) = MSEM(B1) — MSEM(B2) > 0 if and only if db(D + didi)"'d2 < 1, where
MSEM (,5’]-)7 dj; j = 1,2 denote the Mean Square Error Matrix and bias vector of Bj, respectively.

([18])

10
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Appendix B
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Fig. 5.1.

Estimated SMSE values for MLE, LRE, SRMLE and SRRMLE for n = 25
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Fig. 5.2. Estimated SMSE values for MLE, LRE, SRMLE and SRRMLE for n = 50
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Fig. 5.3.

Estimated SMSE values for MLE, LRE, SRMLE and SRRMLE for n = 75
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Fig. 5.4.

Estimated SMSE values for MLE, LRE, SRMLE and SRRMLE for n = 100
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Appendix C

Table 5.1. The estimated MSE values for different £ when n = 25 and p = 0.70

k =0.0 k=01 k=02 k=103 k=04 k=105 k=056 k=07 k=08 k=08 k=1.0
MLE 1.9464 1.9464 1.9464 1.9464 1.9464 1.9464 1.9464 1.9464 1.9464 1.9464 1.9464
LRE 1.9464 1.7115 1.5261 1.3760 1.2519 1.1480 1.0597 0.9841 0.9187 0.8618 0.8120
SRMLE 1.0449 1.0449 1.0449 1.0449 1.0449 1.0449 1.0449 1.0449 1.0449 1.0449 1.0449
SRREMLE 1.0449 0.9855 0.93866 0.8958 0.8614 0.8321 0.8069 0.7852 0.7664 0.7500 0.7359

Table 5.2. The estimated MSE values for different & when n =25 and p = 0.80

k = 0.0 k=10.1 k = 0.2 k = 0.3 k=104 k = 0.5 k = 0.6 k=0.7 k = 0.8 k=109 k=1.0
MLE 2.7913 2.7913 2.7913 2.7913 2.7913 2.7913 2.7913 2.7913 2.7913 2.7913 2.7913
LRE 2.7913 2.3075 1.9612 1.7006 1.4975 1.3351 1.2027 1.0031 1.0010 0.9230 0.8563
SRMLE 1.2325 1.2325 1.2325 1.2325 1.2325 1.2325 1.2325 1.2325 1.2325 1.2325 1.2325
SRRMLE 1.2325 1.1483 1.0837 1.0325 0.9910 0.9569 0.9284 0.9045 0.8843 0.8670 0.8524

Table 5.3. The estimated MSE values for different ¥ when n = 25 and p = 0.90

k =10.0 k=101 k=02 k=03 k=04 k=10.5 k=106 k=107 k=08 k=09 k=1.0

MLE 5.3804 5.3804 5.3804 5.3804 5.3804 5.3804 5.3804 5.3804 5.3804 5.3804 5.3804
LRE 5.3804 3.7380 2.8255 2.2437 1.8431 1.5527 1.3340 1.1646 1.0304 0.9221 0.8335
SRMLE 1.5015 1.5015 1.5915 1.5815 1.5915 1.5015 1.5015 1.59015 1.5915 1.5815 1.5915

SREMLE 1.5915 1.4518 1.3622 1.2996 1.2535 1.2183 1.1909 1.1690 1.1515 1.1373 1.1256

Table 5.4. The estimated MSE values for different £ when n = 25 and p = 0.99

k= 0.0 k—=10.1 k=02 k—0.3 k=04 k=105 k=106 k= 0.7 k= 0.8 k=00 k=1.0
MLE 52.3601 52,3691 52.3691 52.3691 52.3691 52.3691 52.3601 52.3691 52,3691 52.3691 52.3691
LRE 52.3601 6.9933 2.9006 1.6371 1.0809 0.7863 0.6114 0.4980 0.4227 0.3685 0.3289
SRMLE 2.4583 2.4583 2.4583 2.4583 2.4583 2.4583 2.4583 2.4583 2.4583 2.4583 2.4583
SRRMLE 2.4583 2.3057 2.2795 2.2682 2.2616 2.2572 2.2541 2.2519 2.2504 2.2494 2.2490

Table 5.5. The estimated MSE values for different £ when n =50 and p = 0.70

k = 0.0 k=101 k=102 k=103 k=104 k=10.5 k = 0.6 k=07 k=08 k=09 k=1.0

MLE 0.8628 0.8628 0.8628 0.8628 0.8628 0.8628 0.8628 0.8628 0.8628 0.8628 0.8628
LRE 0.8628 0.8191 0.7794 0.7431 0.7008 0.6793 0.6512 0.6253 0.6014 0.5792 0.5587
SRMLE 0.6129 0.6129 0.6129 0.6129 0.6129 0.6129 0.6129 0.6129 0.6129 0.6129 0.6129

SREMLE 0.6129 0.5922 0.5733 0.5560 0.5402 0.5256 0.5123 0.4999 0.4836 0.4781 0.4685

Table 5.6. The estimated MSE values for different £ when n =50 and p = 0.80

k = 0.0 k=0.1 k = 0.2 k = 0.3 k=04 k =0.5 k = 0.6 k=0.7 k = 0.8 k=09 k=1.0
MLE 1.2201 1.2201 1.2201 1.2201 1.2201 1.2201 1.2201 1.2201 1.2201 1.2201 1.2201
LRE 1.2201 1.1373 1.0569 0.9861 0.9232 0.867 0.8170 0.7718 0.7310 0.6940 0.6604
SRMLE 0.7660 0.7660 0.7660 0.7660 0.7660 0.7660 0.7660 0.7660 0.7660 0.7660 0.7660
SREMLE 0.7660 0.7323 0.7026 0.6762 0.6526 0.6315 0.6126 0.5955 0.5800 0.5660 0.5533

Table 5.7. The estimated MSE values for different £ when n = 50 and p = 0.90

k — 0.0 k— 0.1 k— 0.2 k — 0.9 k— 0.4 k — 0.5 k — 0.6 k= 0.7 k= 0.8 k— 0.9 k=1.0
MLE 2.3496 2.3496 2.3496 2.3496 2.3496 2.3496 2.3496 2.3496 2.3496 2.3496 2.3496
LRE 2.3496 2.0133 1.7515 1.5427 1.3727 1.2321 1.1142 1.0143 0.9288 0.8550 0.7908
SEMLE 1.0940 1.0940 1.0940 1.0940 1.0940 1.0940 1.0940 1.0940 1.0940 1.0940 1.0940
SREMLE 1.0940 1.0216 0.9640 0.9170 0.8782 0.8457 0.8181 0.7945 0.7742 0.7565 0.7412

Table 5.8. The estimated MSE values for different ¥ when n = 50 and p = 0.99

k = 0.0 k=10.1 k = 0.2 k=103 k=04 k= 0.5 k — 0.6 k= 0.7 k= 0.8 k = 0.9 k=1.0

MLE 22.6486 22.6486 22.6486 22.6486 22.6486 22,6486 22.6486 22.6486 22.6486 22.6486 22.6486
LRE 22.6486 7.1840 3.6202 2.2183 1.5111 1.1053 0.8506 0.6802 0.5605 0.4733 0.4078
SRMLE 2.1961 2.1961 2.1961 2.1961 2.1961 2.1961 2.1961 2.1961 2.1961 2.1961 2.1961

SRERMLE 2.1961 1.9973 1.9421 1.9181 1.9052 1.8974 1.8924 1.8889 1.8864 1.8846 1.8834

Table 5.9. The estimated MSE values for different £ when n =75 and p = 0.70

k =0.0 k=10.1 k =02 k =03 k=04 k = 0.5 k =0.6 k=107 k = 0.8 k=09 k=110

MLE 0.5536 0.5536 0.5536 0.5536 0.5536 0.5536 0.5536 0.5536 0.5536 0.5536 0.5536
LRE 0.5536 0.5360 0.5195 0.5039 0.4892 0.4753 0.4621 0.4496 0.4378 0.4266 0.4160
SRMLE 0.4366 0.4366 0.4366 0.4366 0.4366 0.4366 0.4366 0.4366 0.4366 0.4366 0.4366
SREMLE 0.4366 0.4261 0.4162 0.4069 0.3982 0.3899 0.3821 0.3747 0.3677 0.3611 0.3549
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Table 5.10. The estimated MSE values for different ¥ when n =75 and p = 0.80
F=00 k=01 k=02 k=03 k=04 k=05 k=06 k=07 k=08 k=00 k=10
MLE 07871 07871 07871 07871 07871 0787l 0787l 07871 0781 0781 07871
LRE 07871 07501  0.7160  0.6845  0.6553  0.6282  0.6031 05797  0.557 0.5375  0.5185
SRMLE 0.5618  0.5618  0.5618  0.5618  0.5618  (.3618  0.5618  0.5618 05618  0.5618  0.5618
SRRMLE 05618  0.5436 05260  0.5114 04071  0.4837  0.4714  0.4509 04491 04301  0.4208
Table 5.11. The estimated MSE values for different £ when n =75 and p = 0.90
=00 k=01 k=02 k=03 k=04 k=05 k=06 k=07 E=08 k=00 k=10
MLE TB0I8 15018 15018 L5018  T5018 15018  T5018 15018 15018 15018  I.5018
LRE 15018 13632  1.2446 11421 1.0529  0.9747  0.9057  0.8445  0.7809  0.7410  0.6970
SRMLE 0.8478  0.8478  0.8478  0.8478  0.8478  0.8478  0.8478  0.8478  0.8478  0.8478  0.8478
SRRMLE _ 0.8478  0.8038  0.7660  0.7330  0.7041  0.6787  0.6562  0.6361  0.6181  0.6020  0.5875
Table 5.12. The estimated MSE values for different £k when n =75 and p = 0.99
=00 k=01 k=02 k=03 k=04 k=05 k=06 k=07 k=08 k=00 k=10
MLE 11,4586 144586 14.1586  14.4586 14,4586  14.4586  11.4586  14.4586  14.4586  14.4586  14.1586
LRE 14.4586 64706 37324 2.4484 17395 13058 10207 0.8231  0.6805  0.5743 04920
SRMLE 2.0210  2.0210 20210  2.0210  2.0210  2.0210 20210  2.0210 20210 20210  2.0210
SRRMLE 20210  1.8140 17363 16080  1.6761  1.6624  1.6532  1.6467 16420  1.6385  1.8350

Table 5.13. The estimated MSE values for different £k when n = 100 and p = 0.70

k=10.0 k=101 k=102 k=103 k=04 k=05 k=105 k=107 k=108 k=008 k=10
MLE 0.4091 0.4091 0.4001 0.4001 0.4001 0.4001 0.4091 0.4001 0.4001 0.4001 0.4001
LRE 0.4091 0.3996 0.3905 0.3819 0.3736 0.3856 0.3580 0.3506 0.3436 0.3269 0.3304
SRMLE 0.3405 0.3405 0.3405 0.3405 0.3405 0.3405 0.3405 0.3405 0.3405 0.3405 0.3405
SRRMLE 0.3405 0.3341 0.3281 0.3222 0.3167 0.3114 0.3063 0.3014 0.2967 0.2023 0.2880

Table 5.14. The estimated MSE values for different k¥ when n = 100 and p = 0.80

k =10.0 k=101 k=02 k=03 k=04 k=10.5 k=106 k=107 k=08 k=09 k=1.0
MLE 0.5813 0.5813 0.5813 0.5813 0.5813 0.5813 0.5813 0.5813 0.5813 0.5813 0.5813
LRE 0.5813 0.5613 0.5424 0.5246 0.5078 0.4919 0.4768 0.4626 0.4491 0.4363 0.4241
SRMLE 0.4461 0.4461 0.4461 0.4461 0.4461 0.4461 0.4461 0.4461 0.4461 0.4461 0.4461
SRRMLE 0.4461 0.4347 0.4239 0.4137 0.4041 0.3950 0.3864 0.3783 0.3706 0.3633 0.3564

Table 5.15. The estimated MSE values for different k¥ when n = 100 and p = 0.90

k—=10.0

k=101 k=02 k=03 k=04 k=0.5 k=106 k=107 k — 0.8 k=09 k= 1.0
MLE 1.1084 1.1084 1.1084 1.1084 1.1084 1.1084 1.1084 1.1084 1.1084 1.1084 1.1084
LRE 1.1084 1.0327 0.9651 0.9044 0.8498 0.8003 0.7554 0.7146 0.6772 0.6430 0.6116
SRMLE 0.6980 0.6980 0.6980 0.6980 0.6980 0.6980 0.6980 0.6980 0.6980 0.6980 0.6980
SRRMLE 0.6980 0.6681 0.6414 0.6173 0.5956 0.5759 0.5579 0.5416 0.5266 0.5129 0.5002

Table 5.16. The estimated MSE values for different £ when n = 100 and p = 0.99

k= 0.0 k—=10.1 k=02 k—0.3 k=04 k=105 k=106 k= 0.7 k= 0.8 k=00 k=1.0
MLE 10.6602 10.6602 10.6602 10.6602 10.6602 10.6602 10.6602 10.6602 10.6602 10.6602 10.6602
LRE 10.6602 5.7340 3.6198 2.5067 1.8456 1.4200 1.1295 0.9223 0.7692 0.6528 0.5623
SRMLE 1.8841 1.8841 1.8841 1.8841 1.8841 1.8841 1.8841 1.8841 1.8841 1.8841 1.8841
SRRMLE 1.8841 1.6839 1.5034 1.5442 1.5143 1.4947 1.4812 1.4715 1.4642 1.4587 1.4544
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