

Journal of Advances in Mathematics and Computer Science

36(11): 50-60, 2021; Article no.JAMCS.82586 *ISSN: 2456-9968* (Past name: British Journal of Mathematics & Computer Science, Past ISSN: 2231-0851)

Generalized Exponential Poisson Geometric Distribution using Marshall-Olkin Technique

M. M. E. Abd El-Monsef^{a*}, N. M. Sohsah^a and W. A. Hassanein^a

^{*a*} Faculty of Science, Tanta University, Egypt.

Authors' contributions

This work was carried out in collaboration among all authors. All authors read and approved the final manuscript.

Article Information

DOI: 10.9734/JAMCS/2021/v36i1130418 <u>Editor(s):</u> (1) Dr. Doina Bein, California State University, USA. <u>Reviewers:</u> (1) Gurpreet Singh Bawa, India. (2) Janette C. Lagos, Pamantasan Ng Lungsod Ng Maynila, Philippines. Complete Peer review History, details of the editor(s), Reviewers and additional Reviewers are available here: <u>https://www.sdiarticle5.com/review-history/82586</u>

Original Research Article

Received 22 October 2021 Accepted 24 December 2021 Published 25 December 2021

Abstract

A new continuous distribution is generated by using Marshall Olkin method; it is probability function has been generated also distribution function. Reliability function and hazard function. The proposed called geometric Poisson exponential distribution (GEPGD). some of it is properties are investigated; parameters estimation are obtained using more than one methods such as maximum likelihood method, least square method, weighted least square method and Cramér- Von- Mises. The simulation study for GEPGD parameters. Finally. A real-life application is applied for studying the importance and the flexibility of the proposed distributions comparing with other well-known distributions.

Keywords: Marshall Olkin distribution; generalized exponential power series; exponential distribution; Poisson distribution; geometric distribution.

1 Introduction

The fundamental type of distribution in reliability analysis is a lifetime distribution. This model expressed the lifetime of a component or a system. Many lifetime distributions are related to extreme values, as the system

^{*}Corresponding author: Email: mmezzat@science.tanta.edu.eg;

stops working when the first component breaks, as in a series connection, or the system stops working when the last component breaks, as in a parallel connection. A lot of lifetime distributions were improved by adding parameters to be more flexible in reliability applications. One of its main uses is in reliability theory, where the Marshall–Olkin copula models the dependence between random variables subjected to external shock. There are many methods of adding parameters one of the most important methods of adding parameters was introduced by Marshall and Olkin [1]. There are many distributions were obtained by adding parameter using Marshall-Olkin method as Marshall–Olkin generalized Weibull distribution was introduced by Jose and Alice [2] Ghitany et al. [3] introduced Marshall–Olkin extended Weibull distribution and its application to censored data. Alice and Jose [4] introduced a Marshall-Olkin logistic distribution. Marshall–Olkin extended Lomax distribution and its application to censored data was obtained Ghitany et al. [5]. Jayakumar and Thomas [6] introduced on a generalization to Marshall-Olkin scheme and its application to Burr type XII distribution. The Marshall–Olkin Fréchet distribution was introduced by Krishna et al. [7]. Alzaatreh et al. [8] introduced a method for generating families of continuous distributions namely the T-X family of distributions, which has connection with the hazard functions and each generated distribution is considered as a weighted hazard function of the random variable X.

This paper has been organized as follows: Section 2 introduces model formulation which includes the probability density function for the new distribution also it is distribution function and survival function. the behavior of the density function, in addition to some basic properties and the expressions for moments. some reliability measures represented in survival and hazard rate besides study the behavior of hazard function. Section 3 represented various estimation methods for the parameters. Simulation and application are discussed in section 4 and 5.

2 Generalized Exponential Poisson Geometric Distribution (GEPGD)

If a system contains of *N* units, which they are independently of each other at any time. Assumed that the r.vs X_1, X_2, \ldots, X_N represent the units lifetimes having Generalized exponential Poisson distribution (GEPD) which introduced by Mahmoudi and Jafari [9] as a special case of Generalized exponential–power series. Because of property of the geometric extreme stability as a result of using the geometric property [1]. It motivates us to consider the number of components N having a geometric distribution and using Marshall Olkin technique, on a system contains N components connected on series, the PDF and t of the GEPGD is introduced as:

$$f(x;\beta,\theta,p,\alpha) = \frac{\alpha p \beta \theta \left(e^{\theta}-1\right) \left(1-e^{-\beta x}\right)^{\alpha-1} e^{-\beta x+\theta \left(1-e^{-\beta x}\right)^{\alpha}}}{\left((e^{\theta}-1)-(1-p)(e^{\theta}-e^{\theta}(1-e^{-\beta x})^{\alpha}\right)^{2}}, \ x,\beta,\theta,p,\alpha > 0$$
(2.1)

the CDF of the GEPGD is obtained as

$$F(x;\beta,\theta,p,\alpha) = \frac{e^{\theta\left(1-e^{-\beta x}\right)^{\alpha}}-1}{\left(e^{\theta}-1\right)-\left(1-p\right)\left(e^{\theta}-e^{\theta\left(1-e^{-\beta x}\right)^{\alpha}}\right)}, \ x,\beta,\theta,p,\alpha > 0$$

$$(2.2)$$

The survival and hazard functions can be obtained as following:

$$\bar{F}(x;\beta,\theta,p,\alpha) = S(x) = \frac{p(e^{\theta} - e^{\theta(1 - e^{-\beta x})^{\alpha}})}{(e^{\theta} - 1) - (1 - p)(e^{\theta} - e^{\theta(1 - e^{-\beta x})^{\alpha}})}$$
$$h(x;\beta,\theta,p,\alpha) = \frac{\alpha\beta\theta (e^{\theta} - 1)(1 - e^{-\beta x})^{\alpha - 1} e^{-\beta x + \theta(1 - e^{-\beta x})^{\alpha}}}{\{(e^{\theta} - 1) - (1 - p)(e^{\theta} - e^{\theta(1 - e^{-\beta x})^{\alpha}})\}\{e^{\theta} - e^{\theta(1 - e^{-\beta x})^{\alpha}}\}}$$

The behavior of the PDF and the h(x) of the GEPGD at different values of α , p, β , θ are showed in the below figure.

Fig. 1.

Table 1. Numerical value of mean and variance at different value of parameters

	• at $\alpha = 0.1$										
Parameters v	alue	θ	= 0 . 1	θ	= 0 . 5	θ	= 1.5				
		μ_1	σ^2	μ_1	σ^2	μ_1	σ^2				
$\beta = 0.1$	p = 0.1	0.1662	2.301	0.1355	1.872	0.0779	1.060				
	p = 0.5	0.7824	10.826	0.6442	8.902	0.3774	5.143				
	p = 1.5	2.084	28.629	1.745	23.993	1.059	14.421				
$\beta = 0.5$	p = 0.1	0.0332	0.0920	0.0271	0.0749	0.0156	0.0424				
	p = 0.5	0.1565	0.4330	0.1288	0.3561	0.0755	0.2058				
	p = 1.5	0.4168	1.145	0.3489	0.9597	0.2117	0.577				
$\beta = 1.5$	p = 0.1	0.0111	0.0102	0.0090	0.0083	0.0052	0.005				
	p = 0.5	0.0522	0.0481	0.0429	0.0396	0.0252	0.0229				
	p = 1.5	0.1389	0.1272	0.1163	0.1066	0.0706	0.0641				
at $\alpha = 0.5$	-										
$\beta = 0.1$	p = 0.1	1.047	11.476	0.8804	9.516	0.5639	5.693				
	p = 0.5	3.728	43.026	3.220	36.856	2.177	23.581				
	p = 1.5	7.621	87.582	6.738	77.514	4.792	53.508				
$\beta = 0.5$	p = 0.1	0.2095	0.4590	0.1761	0.3806	0.1128	0.2277				
	p = 0.5	0.7456	1.721	0.644	1.474	0.4353	0.9432				
	p = 1.5	1.524	3.503	1.348	3.101	0.9584	2.140				
$\beta = 1.5$	p = 0.1	0.0698	0.0510	0.0587	0.0423	0.0376	0.0253				
	p = 0.5	0.2485	0.1912	0.2147	0.1638	0.1451	0.1048				
	p = 1.5	0.5081	0.3893	0.4492	0.3445	0.3195	0.2378				
at $\alpha = 1.5$											
$\beta = 0.1$	p = 0.1	3.941	29.137	3.527	25.108	2.696	16.743				
	p = 0.5	9.129	80.183	8.285	71.432	6.465	50.871				
	p = 1.5	14.897	134.085	13.663	122.752	10.904	93.039				
$\beta = 0.5$	p = 0.1	0.7883	1.165	0.7053	1.004	0.5392	0.6697				
	p = 0.5	1.826	3.207	1.657	2.857	1.293	2.035				
	p = 1.5	2.973	5.363	2.733	4.910	2.181	3.722				
$\beta = 1.5$	p = 0.1	0.2628	0.1295	0.2351	0.1116	0.1797	0.0744				
	p = 0.5	0.6086	0.3564	0.5523	0.3175	0.4309	0.2261				
	p = 1.5	0.9911	0.5959	0.9109	0.5456	0.7269	0.4135				

3 The Estimation Methods

In this section some methods of parameter estimation will be discussed for the new distribution GEPGD.

3.1 Maximum likelihood estimation

One if the most importance methods of estimation is the Maximum Likelihood (MLE). The log-likelihood function is given by

$$ln \ell(x; \beta, \theta, p, \alpha) = n ln[\alpha p\beta \theta] + nLog[e^{\theta} - 1] + (\alpha - 1) \sum_{i=1}^{n} ln[1 - e^{-\beta x_i}] - 2 \sum_{i=1}^{n} ln[e^{\theta(1 - e^{-\beta x_i})^{\alpha}}(e^{\theta} - p) + e^{\theta(p-1)}] + i = 1n(-\beta x_i + \theta + \theta(1 - e^{-\beta x_i})^{\alpha})$$

The partial derivatives of the log-likelihood for the parameters β , θ , p and α can be expressed by the following equations

$$\begin{aligned} \frac{\partial Ln\ell(x;\beta,\theta,p,\alpha)}{\partial \beta} &= \\ \frac{n}{\beta} + (-1+\alpha)\sum_{i=1}^{n} \frac{e^{-\beta x_{i}} x_{i}}{1-e^{-\beta x_{i}}} + \sum_{i=1}^{n} e^{-\beta x_{i}} \left(1-e^{-\beta x_{i}}\right)^{-1+\alpha} \alpha \theta x_{i} - 2\sum_{i=1}^{n} \frac{e^{(1-e^{-\beta x_{i}})^{\alpha}\lambda - \beta x_{i}}(1-e^{-\beta x_{i}})^{-1+\alpha}(e^{\theta}-p)\alpha \lambda x_{i}}{e^{(1-e^{-\beta x_{i}})^{\alpha}\lambda}(e^{\theta}-p)+e^{\theta}(-1+p)} \\ \frac{\partial Ln\ell(x;\beta,\theta,p,\alpha)}{\partial \alpha} &= \\ \frac{n}{\alpha} + \sum_{i=1}^{n} Log[1-e^{-\beta x_{i}}] + \sum_{i=1}^{n} (1-e^{-\beta x_{i}})^{\alpha} \theta Log[1-e^{-\beta x_{i}}] - 2\sum_{i=1}^{n} \frac{e^{(1-e^{-\beta x_{i}})^{\alpha}\lambda}(1-e^{-\beta x_{i}})^{\alpha}(e^{\theta}-p)\lambda Log[1-e^{-\beta x_{i}}]}{e^{(1-e^{-\beta x_{i}})^{\alpha}\lambda}(e^{\theta}-p)+e^{\theta}(-1+p)} \\ \frac{\partial Ln\ell(x;\beta,\theta,p,\alpha)}{\partial \theta} &= n(1+\frac{1}{-1+e^{\theta}}+\frac{1}{\theta}) + \sum_{i=1}^{n} (1+(1-e^{-\beta x_{i}})^{\alpha}) - 2\sum_{i=1}^{n} \frac{e^{\theta+(1-e^{-\beta x_{i}})^{\alpha}\lambda}+e^{\theta}(-1+p)}{e^{(1-e^{-\beta x_{i}})^{\alpha}\lambda}(e^{\theta}-p)+e^{\theta}(-1+p)} \\ \frac{\partial Ln\ell(x;\beta,\theta,p,\alpha)}{\partial p} &= \frac{n}{p} - 2\sum_{i=1}^{n} \frac{e^{\theta}-e^{(1-e^{-\beta x_{i}})^{\alpha}\lambda}}{e^{(1-e^{-\beta x_{i}})^{\alpha}\lambda}(e^{\theta}-p)+e^{\theta}(-1+p)} \end{aligned}$$

The MLEs can be obtained by solving the derivatives of the $ln \ell(x; \beta, \theta, p, \alpha)$ to zero. For the GEPGD the solution of the nonlinear equations has no closed form, also some numerical methods are needed for the solution.

3.2 Method of least square estimation

The LSE and WLSE were proposed by Swain, Venkatraman & Wilson [10] to estimate the parameters of Beta distributions.

The least square estimators can be obtained by

$$\sum_{j=1}^{n} \left[F(X_j) - \frac{j}{n+1} \right]^2$$

Suppose $F(X_i)$ denotes the cdf of the ordered r.v, $X_1 < X_2 < \cdots < X_n$, since $\{X_1, X_2, \dots, X_n\}$ is a random sample of size n from a cdf, the LSE of β , θ , p, α can be expressed by

$$\sum_{j=1}^{n} \left[\frac{e^{\theta}(-1+e^{(1-e^{-x}(j)\beta})^{\alpha}\theta)}{e^{(1+(1-e^{-x}(j)\beta})^{\alpha}\theta) + e^{\theta}(-1+p) - e^{(1-e^{-x}(j)\beta})^{\alpha}\theta}p} - \frac{j}{n+1} \right]^{2}$$

$$\frac{\partial LSE(x;\beta,\theta,p,\alpha)}{\partial \beta} = \sum_{j=1}^{n} \left(-\frac{j}{1+n} + \frac{e^{\theta}(-1+e^{(1-e^{-x}j\beta})^{\alpha}\theta)}{e^{(1+(1-e^{-x}j\beta})^{\alpha}\theta) + e^{\theta}(-1+p) - e^{(1-e^{-x}j\beta})^{\alpha}\theta}p} \right) \left(\frac{e^{(1+(1-e^{-\beta x}j)\alpha)\theta}(-1+e^{\theta})(1-e^{-\beta x}j)^{\alpha}p\alpha\theta x_{j}}{(-1+e^{\beta x}j)(e^{(1+(1-e^{-\beta x}j)\alpha)\theta} + e^{\theta}(-1+p) - e^{(1-e^{-x}j\beta)\alpha}\theta}p)} \right)$$

$$\sum_{j=1}^{n} \left(-\frac{j}{1+n} + \frac{e^{\theta}(-1+e^{(1-e^{-x_j}\beta)^{\alpha}\theta})}{(1+e^{-x_j}\beta)^{\alpha}\theta} \right) \left(-\frac{e^{(1+(1-e^{-j})^{\alpha}\beta)^{\alpha}\theta}}{(1+e^{-j})^{\alpha}\theta} \right) \left(-\frac{e^{(1+(1-e^{-j})^{\alpha}\beta)^{\alpha}\theta}}{(1+e^{-j})^{\alpha}\theta} \right) \left(-\frac{e^{(1+(1-e^{-j})^{\alpha}\beta)^{\alpha}\theta}}{(1+e^{-j})^{\alpha}\theta} \right) \left(-\frac{e^{(1+e^{-j})^{\alpha}\theta}}{(1+e^{-j})^{\alpha}\theta} \right) \right) \left(-\frac{e^{(1+e^{-j})^{\alpha}\theta}}{(1+e^{-j})^{\alpha}\theta} \right) \left(-\frac{e^{(1+e^{-j})^{\alpha}\theta}}{(1+e^{-j})^{\alpha}\theta} \right) \left(-\frac{e^{(1+e^{-j})^{\alpha}\theta}}{(1+e^{-j})^{\alpha}\theta} \right) \right) \left(-\frac{e^{(1+e^{-j})^{\alpha}\theta}}{(1+e^{-j})^{\alpha}\theta} \right) \left(-\frac{e^{(1+e^{-j})^{\alpha}\theta}}{(1+e^{-j})^{\alpha}\theta} \right) \right) \left(-\frac{e^{(1+e^{-j})^{\alpha}\theta}}{(1+e^{-j})^{\alpha}\theta} \right) \left(-\frac{e^{(1+e^{-j})^{\alpha}\theta}}{(1+e^{-j})^{\alpha}\theta} \right) \right) \left(-\frac{e^{(1+e^{-j})^{\alpha}\theta}}{(1+e^{-j})^{\alpha}\theta} \right) \right) \left(-\frac{e^{(1+e^{-j})^{\alpha}\theta}}{(1+e^{-j})^{\alpha}\theta} \right) \right) \left(-\frac{e^{(1+e^{-j})^{\alpha}\theta}}{(1+e^{-j})^{\alpha}\theta}} \right) \right) \left(-\frac{e^{(1+e^{-j})^{\alpha}\theta}}{(1+e^{-j})^{\alpha}\theta}} \right) \right) \left(-\frac{e^{(1+e^{-j})^{\alpha}}$$

$$\sum_{j=1}^{n} \left(-\frac{j}{1+n} + \frac{e^{\theta}(-1+e^{(1-e^{-x_j\beta})\alpha}\theta)}{e^{(1+(1-e^{-x_j\beta})\alpha})\theta + e^{\theta}(-1+p) - e^{(1-e^{-x_j\beta})\alpha}\theta}p} \right) \left(-\frac{e^{(1+(1-e^{-\beta x_j})\alpha)\theta}(-1+e^{(1-e^{-\beta x_j})\alpha}\theta + (1-e^{-\beta x_j})\alpha - e^{\theta}(1-e^{-\beta x_j})\alpha)p}{(e^{(1+(1-e^{-\beta x_j})\alpha})\theta + e^{\theta}(-1+p) - e^{(1-e^{-\beta x_j})\alpha}\theta}p)^2} \right)$$

$$\frac{\partial LSE(x;\beta,\theta,p,\alpha)}{\partial \alpha} = \sum_{j=1}^{n} \left(-\frac{j}{1+n} + \frac{e^{\theta}(-1+e^{(1-e^{-x_j\beta})\alpha}\theta)}{e^{(1+(1-e^{-x_j\beta})\alpha})\theta + e^{\theta}(-1+p) - e^{(1-e^{-x_j\beta})\alpha}\theta}p} \right) \left(\frac{e^{(1+(1-e^{-\beta x_j})\alpha})\theta - e^{(1-e^{-\beta x_j})\alpha}\theta}p}{(e^{(1+(1-e^{-\beta x_j})\alpha})\theta + e^{\theta}(-1+p) - e^{(1-e^{-\beta x_j})\alpha}\theta}p)} \right)$$

$$\frac{\partial LSE(x;\beta,\theta,p,\alpha)}{\partial P} = \sum_{j=1}^{n} \left(-\frac{j}{1+n} + \frac{e^{\theta}(-1+e^{(1-e^{-x_j\beta})\alpha_{\theta}})}{e^{(1+(1-e^{-x_j\beta})\alpha)\theta} + e^{\theta}(-1+p) - e^{(1-e^{-x_j\beta})\alpha_{\theta}}p} \right) \left(-\frac{e^{\theta}(e^{\theta} - e^{(1-e^{-\beta x_j})\alpha_{\theta}})(-1+e^{(1-e^{-\beta x_j})\alpha_{\theta}})}{(e^{(1+(1-e^{-\beta x_j})\alpha)\theta} + e^{\theta}(-1+p) - e^{(1-e^{-\beta x_j})\alpha_{\theta}}p)} \right) \left(-\frac{e^{\theta}(e^{\theta} - e^{(1-e^{-\beta x_j})\alpha_{\theta}})(-1+e^{(1-e^{-\beta x_j})\alpha_{\theta}})}{(e^{(1+(1-e^{-\beta x_j})\alpha)\theta} + e^{\theta}(-1+p) - e^{(1-e^{-\beta x_j})\alpha_{\theta}}p)} \right) \left(-\frac{e^{\theta}(e^{\theta} - e^{(1-e^{-\beta x_j})\alpha_{\theta}})(-1+e^{(1-e^{-\beta x_j})\alpha_{\theta}})}{(e^{(1+(1-e^{-\beta x_j})\alpha)\theta} + e^{\theta}(-1+p) - e^{(1-e^{-\beta x_j})\alpha_{\theta}}p)} \right) \left(-\frac{e^{\theta}(e^{\theta} - e^{(1-e^{-\beta x_j})\alpha_{\theta}})(-1+e^{(1-e^{-\beta x_j})\alpha_{\theta}})}{(e^{(1+(1-e^{-\beta x_j})\alpha_{\theta}} + e^{\theta}(-1+p) - e^{(1-e^{-\beta x_j})\alpha_{\theta}}p)} \right) \left(-\frac{e^{\theta}(e^{\theta} - e^{(1-e^{-\beta x_j})\alpha_{\theta}})(-1+e^{(1-e^{-\beta x_j})\alpha_{\theta}})}{(e^{(1+(1-e^{-\beta x_j})\alpha_{\theta}} + e^{\theta}(-1+p) - e^{(1-e^{-\beta x_j})\alpha_{\theta}}p)} \right) \left(-\frac{e^{\theta}(e^{\theta} - e^{(1-e^{-\beta x_j})\alpha_{\theta}})(-1+e^{(1-e^{-\beta x_j})\alpha_{\theta}}p)}{(e^{(1+(1-e^{-\beta x_j})\alpha_{\theta}} + e^{\theta}(-1+p) - e^{(1-e^{-\beta x_j})\alpha_{\theta}}p)} \right) \right)$$

The unknown parameters estimators of the WLSE can be written as:

$$\sum_{j=1}^{n} \omega_j \left[F(X_j) - \frac{j}{n+1} \right]^2$$

The weights ω_j are equal to $\frac{1}{V(x_j)} = \frac{(n+1)^2(n+2)}{j(n-j+1)}$, also the weighted least square estimators of β , θ , p, α can be obtained by:

$$\begin{split} \sum_{j=1}^{n} \frac{(n+1)^{2}(n+2)}{j(n-j+1)} \left[\frac{e^{\theta}(-1+e^{(1-e^{-x}(j)\beta})^{\alpha}\theta)}{e^{(1+(1-e^{-x}(j)\beta})^{\alpha}\theta)\theta + e^{\theta}(-1+p) - e^{(1-e^{-x}(j)\beta})^{\alpha}\theta}p} - \frac{j}{n+1} \right]^{2} \\ \frac{\partial W_{LSE}(x;\beta,\theta,p,\alpha)}{\partial \beta} &= \sum_{j=1}^{2} \frac{(n+1)^{2} + (n+2)}{j(n-j+1)} \left(-\frac{j}{1+n} + \frac{e^{\theta}(-1+e^{(1-e^{-x}j\beta})^{\alpha}\theta)}{e^{(1+(1-e^{-x}j\beta})^{\alpha}\theta) + e^{\theta}(-1+p) - e^{(1-e^{-x}j\beta})^{\alpha}\theta}p} \right) \left(\frac{e^{(1+(1-e^{-\beta}x_{j})\alpha})(-1+e^{\theta})(1-e^{-\beta}x_{j})^{\alpha}\theta}{(-1+e^{\theta}(-1+p) - e^{(1-e^{-x}j\beta})^{\alpha}\theta) + e^{\theta}(-1+p) - e^{(1-e^{-x}j\beta})^{\alpha}\theta}p)^{2}} \right) \\ \frac{\partial W_{LSE}(x;\beta,\theta,p,\alpha)}{\partial \alpha} &= \\ \sum_{j=1}^{2} \frac{(n+1)^{2} + (n+2)}{j(n-j+1)} \left(-\frac{j}{1+n} + \frac{e^{\theta}(-1+e^{(1-e^{-x}j\beta})^{\alpha}\theta)}{e^{(1+(1-e^{-x}j\beta})^{\alpha}\theta) + e^{\theta}(-1+p) - e^{(1-e^{-x}j\beta})^{\alpha}\theta}p} \right) \left(-\frac{e^{(1+(1-e^{-\beta}x_{j})\alpha})(-1+e^{(1-e^{-\beta}x_{j})\alpha}\theta + (-1+p) - e^{(1-e^{-\beta}x_{j})\alpha}\theta)}{(e^{(1+(1-e^{-\beta}x_{j})\alpha})\theta + e^{\theta}(-1+p) - e^{(1-e^{-x}j\beta})^{\alpha}\theta}p)} \right) \\ \frac{\partial W_{LSE}(x;\beta,\theta,p,\alpha)}{\partial \alpha} &= \\ \sum_{j=1}^{2} \frac{(n+1)^{2} + (n+2)}{j(n-j+1)} \left(-\frac{j}{1+n} + \frac{e^{\theta}(-1+e^{(1-e^{-x}j\beta})^{\alpha}\theta)}{e^{(1+(1-e^{-x}j\beta})^{\alpha}\theta)} + e^{\theta}(-1+p) - e^{(1-e^{-x}j\beta})^{\alpha}\theta}p} \right) \left(\frac{e^{(1+(1-e^{-\beta}x_{j})\alpha})(-1+e^{\theta})(1-e^{-\beta}x_{j})\alpha}\theta_{j}e_{j}e_{j}(-1+e^{-\beta}x_{j})\alpha}}{(e^{(1+(1-e^{-\beta}x_{j})\alpha})\theta + e^{\theta}(-1+p) - e^{(1-e^{-x}j\beta})^{\alpha}\theta}p)} \right) \\ \frac{\partial W_{LSE}(x;\beta,\theta,p,\alpha)}{\partial p} &= \\ \sum_{j=1}^{2} \frac{(n+1)^{2} + (n+2)}{j(n-j+1)} \left(-\frac{j}{1+n} + \frac{e^{\theta}(-1+e^{(1-e^{-x}j\beta})^{\alpha}\theta}}{e^{(1+(1-e^{-x}j\beta)^{\alpha}\theta)} + e^{\theta}(-1+p) - e^{(1-e^{-x}j\beta)^{\alpha}\theta}p}} \right) \left(-\frac{e^{\theta}(e^{\theta} - e^{(1-e^{-\beta}x_{j})\alpha}\theta)(-1+e^{(1-e^{-\beta}x_{j})\alpha}\theta)}{(e^{(1+(1-e^{-\beta}x_{j})\alpha}) + e^{\theta}(-1+p) - e^{(1-e^{-\beta}x_{j})\alpha}\theta}p)} \right) \\ \frac{\partial W_{LSE}(x;\beta,\theta,p,\alpha)}{\partial p} &= \\ \sum_{j=1}^{2} \frac{(n+1)^{2} + (n+2)}{(j(n-j+1)} \left(-\frac{j}{1+n} + \frac{e^{\theta}(-1+e^{(1-e^{-x}j\beta)^{\alpha}\theta}\theta)}{e^{(1+(1-e^{-x}j\beta)^{\alpha}\theta)} + e^{\theta}(-1+p) - e^{(1-e^{-x}j\beta)^{\alpha}\theta}p}} \right) \left(-\frac{e^{\theta}(e^{\theta} - e^{(1-e^{-\beta}x_{j})\alpha}\theta)(-1+e^{(1-e^{-\beta}x_{j})\alpha}\theta)}{(e^{(1+(1-e^{-\beta}x_{j})\alpha}) + e^{\theta}(-1+p) - e^{(1-e^{-\beta}x_{j})\alpha}\theta}p)} \right) \\ \frac{\partial W_{LSE}(x;\theta,\theta,p,\alpha)}{\partial p} = \\ \sum_{j=1}^{2} \frac{e^{\theta}(1+e^{-x})(-e^{-x}j\beta)^{\alpha}\theta}}{(e^{\theta}(1+e^{-x})(-e^{-x}j\beta)^$$

3.3 Method of Cramér- Von- Mises

Another method of estimation parameter is Cramér-von-Mises estimators of β , θ , p and α can be obtained by:

$$C(x;\beta,\theta,p,\alpha) = \frac{1}{12n} + \sum_{i=1}^{n} \left[F(x_{i:n}/\beta,\theta,p,\alpha) - \frac{2i-1}{2n} \right]^2$$

the Cramér-von-Mises estimators of β , θ , p, α can be obtained by:

$$\begin{split} \mathcal{C}(x;\beta,\theta,p,\alpha) &= \frac{1}{12n} + \sum_{i=1}^{n} \left[\frac{e^{\theta}(-1+e^{(1-e^{-x}(j)\beta})^{\alpha}\theta)}{e^{(1+(1-e^{-x}(j)\beta})^{\alpha}\theta) + e^{\theta}(-1+p) - e^{(1-e^{-x}(j)\beta})^{\alpha}\theta}_{p}} - \frac{2i-1}{2n} \right]^{2} \\ \frac{\partial \mathcal{C}(x;\beta,\theta,p,\alpha)}{\partial \beta} &= \sum_{j=1}^{n} \left(-\frac{-1+2i}{2n} + \frac{e^{\theta}(-1+e^{(1-e^{-x}j\beta})^{\alpha}\theta)}{e^{(1+(1-e^{-x}j\beta})^{\alpha}\theta) + e^{\theta}(-1+p) - e^{(1-e^{-x}j\beta})^{\alpha}\theta}_{p}} \right) \left(\frac{e^{(1+(1-e^{-\beta x}j)^{\alpha})\theta}(-1+e^{\theta})(1-e^{-\beta x}j)^{\alpha}p\alpha\theta x_{j}}{(-1+e^{\beta x}j)(e^{(1+(1-e^{-\beta x}j)^{\alpha})\theta + e^{\theta}(-1+p) - e^{(1-e^{-\beta x}j)^{\alpha}\theta}p)^{2}}} \right) \\ \frac{\partial \mathcal{C}(x;\beta,\theta,p,\alpha)}{\partial \theta} &= \sum_{j=1}^{n} \left(-\frac{-1+2i}{2n} + \frac{e^{\theta}(-1+e^{(1-e^{-x}j\beta)^{\alpha}\theta})}{e^{(1+(1-e^{-x}j\beta)^{\alpha}\theta)}} \right) \left(-\frac{e^{(1+(1-e^{-\beta x}j)^{\alpha})\theta}(-1+e^{(1-e^{-\beta x}j)^{\alpha}\theta + (1-e^{-\beta x}j)^{\alpha}\theta)}(e^{(1+(1-e^{-\beta x}j)^{\alpha}\theta)} + e^{\theta}(-1+p) - e^{(1-e^{-\beta x}j)^{\alpha}\theta}p)} \right) \\ \frac{\partial \mathcal{C}(x;\beta,\theta,p,\alpha)}{\partial \alpha} &= \sum_{j=1}^{n} \left(-\frac{-1+2i}{2n} + \frac{e^{\theta}(-1+e^{(1-e^{-x}j\beta)^{\alpha}\theta})}{e^{(1+(1-e^{-x}j\beta)^{\alpha}\theta)\theta + e^{\theta}(-1+p) - e^{(1-e^{-x}j\beta)^{\alpha}\theta}p}} \right) \left(\frac{e^{(1+(1-e^{-\beta x}j)^{\alpha})\theta}(-1+e^{\theta})(1-e^{-\beta x}j)^{\alpha}p\theta \log[1-e^{-\beta x}j]}}{(e^{(1+(1-e^{-\beta x}j)^{\alpha}\theta)\theta + e^{\theta}(-1+p) - e^{(1-e^{-\beta x}j)^{\alpha}\theta}p)^{2}}} \right) \\ \frac{\partial \mathcal{C}(x;\beta,\theta,p,\alpha)}{\partial p} &= \sum_{j=1}^{n} \left(-\frac{-1+2i}{2n} + \frac{e^{\theta}(-1+e^{(1-e^{-x}j\beta)^{\alpha}\theta})}{e^{(1+(1-e^{-x}j\beta)^{\alpha}\theta)\theta + e^{\theta}(-1+p) - e^{(1-e^{-x}j\beta)^{\alpha}\theta}p)}} \right) \left(-\frac{e^{\theta}(e^{\theta}-e^{(1-e^{-\beta x}j)^{\alpha}\theta)(-1+e^{(1-e^{-\beta x}j)^{\alpha}\theta})}{(e^{(1+(1-e^{-\beta x}j)^{\alpha}\theta)\theta + e^{\theta}(-1+p) - e^{(1-e^{-\beta x}j)^{\alpha}\theta}p)^{2}}} \right) \\ \frac{\partial \mathcal{C}(x;\beta,\theta,p,\alpha)}{\partial p} &= \sum_{j=1}^{n} \left(-\frac{-1+2i}{2n} + \frac{e^{\theta}(-1+e^{(1-e^{-x}j\beta)^{\alpha}\theta})}{e^{(1+(1-e^{-x}j\beta)^{\alpha}\theta)\theta}} \right) \left(-\frac{e^{\theta}(e^{\theta}-e^{(1-e^{-\beta x}j)^{\alpha}\theta)}(-1+e^{(1-e^{-\beta x}j)^{\alpha}\theta)}}{(e^{(1+(1-e^{-\beta x}j)^{\alpha}\theta)\theta + e^{\theta}(-1+p) - e^{(1-e^{-\beta x}j\beta)^{\alpha}\theta}p)}} \right) \\ \frac{\partial \mathcal{C}(x;\beta,\theta,p,\alpha)}{\partial p} &= \sum_{j=1}^{n} \left(-\frac{-1+2i}{2n} + \frac{e^{\theta}(-1+e^{(1-e^{-x}j\beta)^{\alpha}\theta})}{e^{(1+(1-e^{-x}j\beta)^{\alpha}\theta)\theta}}} \right) \\ \frac{\partial \mathcal{C}(x;\beta,\theta,p,\alpha)}{\partial p} &= \sum_{j=1}^{n} \left(-\frac{-1+2i}{2n} + \frac{e^{\theta}(-1+e^{(1-e^{-x}j\beta)^{\alpha}\theta}}{e^{(1+(1-e^{-x}j\beta)^{\alpha}\theta)\theta}} \right) \\ \frac{\partial \mathcal{C}(x;\beta,\theta,p,\alpha)}{\partial p} &= \sum_{j=1}^{n} \left(-\frac{-1+2i}{2n} + \frac{e^{\theta}(-1+e^{(1-e^{-x}j\beta)$$

4 Simulation Study

A simulation Scheme for the GEPGD will be made by generating 5000 samples for the parameters β , θ , p and α at different sample sizes. The simulation nodes were chosen at different values at β , θ , p and α .

4.1 Simulation study for GEPGD using MLE

Ν	β	= 0.1	θ	= 1.5	<i>p</i> =	= 0.15	α	= 3.5
	MSE	Bias	MSE	Bias	MSE	Bias	MSE	Bias
20	0.00021	0.0065	1.216	0.5922	0.2073	0.0579	0.1375	0.0688
40	0.00014	0.0064	0.8201	0.5813	0.0096	0.0330	0.0806	0.0276
60	0.00013	0.0062	0.7254	0.5410	0.0062	0.0286	0.0657	0.0133
80	0.00009	0.0059	0.5379	0.5350	0.0037	0.0252	0.0484	0.0131
100	0.00008	0.0050	0.4710	0.5331	0.0010	0.0245	0.0415	0.0122
Ν	β	s = 2	θ	= 1.5	p :	= 0 . 5	C	$\alpha = 1$
	MSE	Bias	MSE	Bias	MSE	Bias	MSE	Bias
20	1.709	0.5229	1.928	0.2353	1.378	0.3987	0.0513	0.0219
40	0.7893	0.2558	1.841	0.2004	1.251	0.3534	0.0263	0.0159
60	0.4601	0.1092	1.778	0.1927	1.045	0.3113	0.0202	0.0149
80	0.4355	0.1079	1.583	0.1412	1.023	0.2975	0.0166	0.0050
100	0.3781	0.0589	1.330	0.1144	0.9164	0.2838	0.0145	0.0029
Ν	β	= 2.5	θ =	= 0.75	p :	= 0 .7	α	= 1.5
	MSE	Bias	MSE	Bias	MSE	Bias	MSE	Bias
20	0.6813	0.1009	1.958	0.5184	1.813	0.3781	0.1847	0.0706
40	0.3264	0.0507	1.841	0.4972	1.402	0.3491	0.0793	0.0084
60	0.3003	0.0443	1.474	0.4198	1.139	0.3195	0.0557	0.0021
80	0.2564	0.0056	1.300	0.3451	1.051	0.3075	0.0417	0.0015
100	0.2461	0.0009	1.244	0.2996	1.004	0.3049	0.0378	0.0002

Table 2. The MSE and the Bias of the estimates using MLE

4.2 Simulation study for GEPGD using least square method

Ν	β	r = 0.1	θ	= 1.5	p =	$p = 0.15$ $\alpha = 3.5$		
	MSE	Bias	MSE	Bias	MSE	Bias	MSE	Bias
20	0.003	0.027	0.097	0.092	0.086	0.073	0.890	0.408
40	0.003	0.018	0.081	0.062	0.076	0.068	0.886	0.389
60	0.002	0.013	0.058	0.058	0.068	0.060	0.681	0.357
80	0.001	0.011	0.036	0.028	0.051	0.052	0.505	0.308
100	0.0001	0.009	0.027	0.013	0.013	0.045	0.416	0.289
Ν		$\beta = 2$	θ	= 1.5	р	= 0 . 5	α	= 1
	MSE	Bias	MSE	Bias	MSE	Bias	MSE	Bias
20	0.072	0.3207	5.251	0.8472	8.975	0.9367	0.1233	0.0515
40	0.069	0.3301	5.013	0.8707	7.127	0.7568	0.0607	0.0372
60	0.062	0.3831	4.613	0.8669	5.810	0.6354	0.0490	0.0201
80	0.045	0.3623	3.875	0.7816	5.118	0.5611	0.0413	0.0179
100	0.015	0.3892	3.849	0.7934	4.774	0.5352	0.0379	0.0019
Ν	ļ l	8 = 2.5	θ =	= 0.75	p	p = 0.7		= 1.5
	MSE	Bias	MSE	Bias	MSE	Bias	MSE	Bias
20	1.870	0.611	4.553	0.771	5.838	0.456	0.279	0.029
40	1.483	0.578	4.061	0.717	4.258	0.315	0.119	0.019
60	1.304	0.573	4.332	0.712	3.691	0.287	0.086	0.002
80	1.116	0.537	4.392	0.704	3.342	0.256	0.073	0.001
100	0.997	0.524	4.427	0.617	4.305	0.237	0.070	0.001

Table 3. The MSE and the Bias of the estimates using LSE

4.3 S	imulation	study	for (GEPGD	using	weight	least so	uare method	Ĺ

Ν	β	= 0 . 1	θ	= 1.5	<i>p</i> =	= 0.15	α =	= 3.5
	MSE	Bias	MSE	Bias	MSE	Bias	MSE	Bias
20	0.003	0.031	5.979	0.9561	5.056	0.640	1.788	0.377
40	0.003	0.021	5.371	0.8011	4.932	0.610	0.755	0341
60	0.002	0.015	4.708	0.7067	3.207	0.470	0.532	0.307
80	0.002	0.016	3.891	0.6165	2.527	0.366	0.402	0.279
100	0.001	0.013	3.854	0.6145	2.145	0.284	0.345	0.251
Ν	1	3 = 2	θ	= 1.5	p :	= 0.5	α	= 1
	MSE	Bias	MSE	Bias	MSE	Bias	MSE	Bias
20	2.528	0.4514	6.499	0.9885	7.141	0.9026	0.1139	0.0276
40	1.784	0.3991	5.637	0.9260	6.709	0.7117	0.0602	0.0214
60	1.364	0.3613	5.370	0.8808	5.259	0.5897	0.0468	0.0176
80	1.101	0.3570	4.126	0.8236	4.025	0.4579	0.0358	0.0154
100	0.9049	0.3504	4.291	0.7890	3.015	0.3664	0.0302	0.0135
Ν	β	= 2.5	θ :	= 0.75	p :	= 0 .7	α =	= 1.5
	MSE	Bias	MSE	Bias	MSE	Bias	MSE	Bias
20	1.873	0.655	5.452	0.918	6.293	0.614	0.871	0.430
40	0.003	0.020	5.371	0.800	4.932	0.610	0.755	0.343
60	0.002	0.015	4.707	0.406	3.206	0.470	0.532	0.307
80	0.002	0.014	3.891	0.161	2.527	0.366	0.402	0.279
100	0.001	0.013	3.261	0.036	2.221	0.312	0.384	0.234

Table 4. The MSE and the Bias of the estimates using WLSE

4.4 Simulation study for GEPGD using Cramér- Von- Mises method

|--|

Ν	β	= 0 . 1	θ	= 1.5	<i>p</i> =	= 0.15	α =	= 3.5
	MSE	Bias	MSE	Bias	MSE	Bias	MSE	Bias
20	0.0029	0.0120	8.498	0.871	3.688	0.5546	0.9399	0.0674
40	0.0284	0.0088	7.639	0.703	3.356	0.5398	0.8491	0.0528
60	0.0026	0.0038	7.175	0.619	3.039	0.5142	0.6357	0.0203
80	0.0023	0.0032	6.287	0.337	2.838	0.4678	0.4745	0.0189
100	0.0023	0.0031	5.791	0.243	2.551	0.4215	0.3967	0.0185
Ν	þ	3 = 2	θ	= 1.5	p :	= 0 .5	α	= 1
	MSE	Bias	MSE	Bias	MSE	Bias	MSE	Bias
20	3.345	0.2275	7.196	0.9307	7.542	0.8327	0.1507	0.0764
40	2.226	0.2187	5.505	0.7598	5.408	0.6149	0.0640	0.0279
60	1.6799	0.2184	4.061	0.6720	4.994	0.5475	0.0496	0.0101
80	1.417	0.1296	3.517	0.5895	3.585	0.4209	0.0401	0.0056
100	1.160	0.0508	3.374	0.5700	3.930	0.3422	0.0360	0.0008
Ν	$\beta = 2.5$		θ =	= 0.75	p :	= 0 .7	α =	= 1.5
	MSE	Bias	MSE	Bias	MSE	Bias	MSE	Bias
20	1.767	0.4484	3.934	0.6282	3.912	0.3040	0.4164	0.1910
40	1.327	0.4271	3.775	0.5567	3.782	0.2694	0.1385	0.1053
60	1.118	0.4231	3.763	0.5565	3.569	0.2581	0.0940	0.0525
80	0.9535	0.3855	3.402	0.4103	3.128	0.2293	0.0752	0.0430
100	0.8547	0.3381	3.149	0.3835	2.328	0.1341	0.0694	0.0185

As a result, the MSE and the Bias values decrease while the sample size increases which satisfies the unbiased and efficiency properties of the GEPGD parameters using different estimation methods.

From the simulation, the MLE gives the best results of biases and MSEs. LSE places second as good estimator and, the Weighted Least Square estimators places the last. This shows that MLE, least squares estimators and the WLSE are among the best performing estimators for GEPGD.

5 Real Lifetime Applications

Three different engineering and medical applications were applied to test the goodness of fit and the flexibility of GEPGD compared with other well-known lifetime distributions. The MLE was used to estimate the parameters. The goodness of fit criteria (AIC, BIC, AICC, HQIC, and CVM), besides AD and K-S with p-value (K-S) were calculated for the fitted distributions. The results are discussed as follows.

(a) Application 1: Stress-rupture Lifetime Data

The stress-rupture life of Kevlar 49/ epoxy strands was measured to 101 points since were exposure to constant sustained pressure at the 90% stress level until all, had failed, so that the following data with exact times of failure had been collected by Andrews and Herzberg, [11,12], the failure time in hours are.

 $\begin{array}{l} 0.01, 0.01, 0.02, 0.02, 0.02, 0.03, 0.03, 0.004, 0.05, 0.06, 0.07, 0.07, 0.08, 0.09, 0.09, 0.10, 0.10, 0.11, 0.11, 0.12, 0.13, 0.18, 0.19, 0.2, 0.23, 0.24, 0.24, 0.29, 0.34, 0.35, 0.36, 0.38, 0.40, 0.42, 0.52, 0.54, 0.56, 0.60, 0.6, 0.63, 0.65, 0.67, 0.68, 0.72, 0.72, 0.72, 0.73, 0.79, 0.8, 0.83, 0.85, 0.9, 0.92, 0.99, 1, 1.01, 1.02, 1.03, 1.05, 1.1, 1.11, 1.15, 1.18, 1.2, 1.29, 1.31, 1.33, 1.34, 1.4, 1.45, 1.51, 1.51, 1.53, 1.54, 1.55, 1.58, 1.6, 1.63, 1.64, 1.8, 1.81, 2.02, 2.05, 2.14, 2.17, 2.33, 3.03, 3.03, 3.34, 4.20, 4.69, 7.8. \end{array}$

Distribution	MLEs	-log	K-S	P-value
GEPGD	$\hat{eta} = 0.049$ $\hat{ heta} = 16.117$ $\hat{p} = 3.595$ $\hat{lpha} = 0.695$	94.9216	0.0743	0.6704
Weibull	$\hat{lpha} = 0.818 \ \hat{lpha} = 0.904 \ \hat{\gamma} = 0.004$	95.4474	0.1196	0.1318
Gamma (2P)	$\hat{\alpha} = 0.79$ $\hat{\alpha} = 1.29$	95.6855	0.09252	0.3676
Generalized Gamma (4p)	$\hat{k} = 1.160 \\ \hat{k} = 0.575 \\ \hat{\alpha} = 0.768 \\ \hat{\gamma} = 0.004$	95.9233	0.1021	0.2750
Burr (4P)	$\hat{k} = 9.616$ $\hat{\alpha} = 0.904$ $\hat{\alpha} = 10.867$ $\hat{\gamma} = 0.004$	96.4289	0.0997	0.3009
Pearson (4p)	$\widehat{\alpha_{1}} = 0.791$ $\widehat{\alpha_{2}} = 10.892$ $\widehat{\alpha} = 11.752$ $\widehat{\gamma} = 0.004$	96.2907	0.1344	0.0645

Table 6. The parameter estimates, - log and K-S for application 1

The GEPGD is found to be more flexible and more fitting compared to other distributions, since has the smallest statistic criteria and the smallest log likelihood. Hence the above values of measures will lead to the pdf of the GEPGD, which has its own shape and may be difficult to replace by any other known distribution.

(b) Application 2: Device Operational Lifetime Data

Studying the performance of a component over time can help to estimate the device's operational lifetime. Changes in voltage and temperature will influence on the lifetime of individual components [13,14]. The following data represents the failure in time for 83 commercial grade ceramic capacitors. A capacitor is a two-terminal electrical component that stores potential energy in an electric field, which is widely used as parts of electrical circuits in many common electrical devices [15,16]. The failure times of capacitors are:

Distribution	AIC	BIC	AICC	HQIC	AD	CVM
GEPGD	197.843	208.059	198.288	201.971	0.7042	0.1107
Weibull	198.636	208.732	198.900	201.733	1.2891	0.2755
Gamma (2P)	204.315	209.423	204.445	206.379	0.8405	0.1532
Generalized Gamma (4p)	199.847	210.062	200.294	203.291	0.9661	0.1901
Burr (4P)	200.858	209.917	200.146	203.819	1.1794	0.2087
Pearson (4p)	200.581	210.797	201.026	204.709	1.7109	0.3837

Table 7. Goodness of fit criteria for Application 1

		-	TT C	
Distribution	MLEs	-log	K-S	P-value
GEPGD	$\hat{eta} = 0.573$ $\hat{ heta} = 0.0001$ $\hat{p} = 2.836$ $\hat{lpha} = 0.461$	127.529	0.0670	0.8501
Weibull	$\hat{\alpha} = 0.767$ $\hat{\alpha} = 1.630$ $\hat{\gamma} = 0.005$	129.133	0.1222	0.1670
MOGE	$ \hat{\alpha} = 1.119 \hat{\theta} = 0.356 \hat{\beta} = 0.595 \hat{\beta} = 0.595 $	129.683	0.0821	0.6293
Burr (4P)	$ k = 6.435 \hat{\alpha} = 0.829 \hat{\alpha} = 12.043 \hat{\gamma} = 0.005 $	131.872	0.1639	0.0231
Pearson (4p)	$\widehat{\alpha_{1}} = 0.608$ $\widehat{\alpha_{2}} = 4.916$ $\widehat{\alpha} = 12.295$ $\widehat{\gamma} = 0.005$	132.132	0.15609	0.0350
MOEED	$\hat{lpha} = 0.468$ $\hat{ heta} = 0.738$	133.425	0.1175	0.1866
Gamma (2P)	$\hat{\alpha} = 1.016 \\ \hat{\alpha} = 1.812$	134.121	0.1313	0.1045

Table 8. The parameter estimates, - log and K-S for application 2

The GEPGD is found to be more flexible and more fitting compared to other distributions, since has the smallest statistic criteria and the smallest log likelihood. Hence the above values of measures will lead to the pdf of the GEPGD, which has its own shape and may be difficult to replace by any other known distribution.

(c) Application 3: Bladder Cancer Data

The following data represented the remission times (in months) for cancer Patients, a random sample of 128 bladder cancer patients were collected by Lee and Wang [17]. The data are:

0.08, 2.09, 3.48, 4.87, 6.94, 8.66, 13.11, 23.63, 0.20, 2.23, 3.52, 4.98, 6.97, 9.02, 3.29, 0.40, 2.26, 3.57, 5.06, 7.09, 9.22, 13.80, 25.74, 0.50, 2.46, 3.64, 5.09, 7.26, 9.47, 14.24, 25.82, 0.51, 2.54, 3.70, 5.17, 7.28, 9.74, 14.76, 26.31, 0.81, 2.62, 3.82, 5.32, 7.32, 10.06, 14.77, 32.15, 2.64, 3.88, 5.32, 7.39, 10.34, 14.83, 34.26, 0.90, 2.69, 4.18, 5.34, 7.59, 10.66, 15.96, 36.66, 1.05, 2.69, 4.23, 5.41, 7.62, 10.75, 16.62, 43.01, 1.19, 2.75, 4.26, 5.41,

7.63, 17.12, 46.12, 1.26, 2.83, 4.33, 5.49, 7.66, 1.25, 17.14, 79.05, 1.35, 2.87, 5.62, 7.87, 11.64, 17.36, 1.4, 3.02, 4.34, 5.71, 7.93, 11.79, 18.10, 1.46, 4.40, 5.85, 8.26, 11.98, 19.13, 1.76, 3.25, 4.50, 6.25, 8.37, 12.02, 2.02, 3.31, 4.51, 6.54, 8.53, 12.03, 20.28, 2.02, 3.36, 6.76, 12.07, 21.73, 2.07, 3.36, 6.93, 8.65, 12.63, 22.69.

Distribution	WT	AIC	BIC	AICC	HQIC	AD	CVM
GEPGD	0.0555	263.057	272.732	263.569	266.944	0.3917	0.0556
Weibull	0.2084	264.266	271.523	264.570	267.128	1.462	0.2442
MOGE	0.1039	265.366	272.623	265.670	268.282	0.7435	0.1039
Burr (4P)/'	0.3467	271.744	281.419	272.256	275.631	2.6692	0.5153
Pearson (4p)	0.2500	272.265	281.94	272.778	276.152	1.1031	0.1699
MOEED	0.2263	270.850	275.687	270.999	272.793	2.2713	0.2263
Gamma (2P)	0.1539	272.240	277.078	272.391	274.184	1.0023	0.1841

Table 9. Goodness of fit criteria for Application 2

Table 10. The	parameter	estimates.	– log and	K-S	for an	plication	3
							_

Distribution	MLEs	-log	K-S	P-value
GEPGD	$\hat{eta} = 0.067$ $\hat{ heta} = 0.0002$ $\hat{p} = 0.1881$ $\hat{lpha} = 1.655$	407.795	0.0340	0.9984
Pearson (4p)	$\widehat{\alpha_1} = 2.7857$ $\widehat{\alpha_2} = 2.2819$ $\widehat{\alpha} = 4.9677$ $\widehat{\gamma} = 0.3492$	408.557	0.0360	0.9963
Burr (4P)	$\hat{k} = 1.1489$ $\hat{a} = 1.622$ $\hat{a} = 6.7468$ $\hat{\gamma} = 0.0755$	410.008	0.0322	0.9953
MOEED	$\hat{\alpha} = 0.1066$ $\hat{\theta} = 0.9668$	412.182	0.0819	0.3776
Weibull	$\hat{\alpha} = 0.767$ $\hat{\alpha} = 1.630$ $\hat{\gamma} = 0.005$	419.769	0.1187	0.0525

Table 11. Goodness of fit criteria for Application 3

Distribution	AIC	BIC	AICC	HQIC	AD
GEPGD	823.589	834.997	823.914	828.224	0.1909
Pearson (4p)	825.114	836.522	825.439	829.749	0.2191
Burr (4P)	828.016	839.425	828.342	832.562	0.2781
MOEED	828.461	834.069	828.461	830.682	1.1922
Weibull	845.537	854.093	845.731	849.014	3.8194

6 Conclusion

The GEPGD is found to be more flexible and more fitting compared to other distributions, since has the smallest statistic criteria and the smallest log likelihood. Hence the above values of measures will lead to the pdf of the GEPGD, which has its own shape and may be difficult to replace by any other known distribution.

Competing Interests

Authors have declared that no competing interests exist.

References

- [1] Marshall W, Olkin I. A new method for adding a parameter to a family of distributions with application to the exponential and Weibull families. Biometrika. 1997;84(3):641-652.
- [2] Jose KK, Alice T. Marshall-Olkin generalized Weibull distributions and applications. STARS Int. Journal. 2001;2:1–8.
- [3] Ghitany ME, Al-Hussaini EK, Al-Jarallah RA. Marshall–Olkin extended Weibull distribution and its application to censored data, Journal of Applied Statistics. 2005;32:1025–1034.
- [4] Alice T, Jose KK. Marshall-Olkin logistic processes. STARS Int. Journal. 2005;6:1–11.
- [5] Ghitany ME, Al-Awadhi FA, Alkhalfan LA. Marshall–Olkin extended Lomax distribution and its application to censored data, Communications in Statistics Theory and Methods. 2007;36:1855–1866.
- [6] Jayakumar K, Thomas M. On a generalization to Marshall-Olkin scheme and Its application to Burr type XII distribution. Statistical Papers. 2008;49:421 -439.
- [7] Krishna E, Jose KK, Alice T, Ristić. Miroslav M. The Marshall-Olkin Fréchet Distribution, Communications in Statistics Theory and Methods. 2013;42(22):4091-4107.
- [8] Alzaatreh A, Lee C, Famoye F. A new method for generating families of continuous distributions. METRON. 2013;71:63-79.
- [9] Mahmoudi, Eisa, Jafari, Ali Akbar. Generalized exponential–power series distributions. Computational Statistics and Data Analysis. 2012;56:4047–4066.
- [10] Swain. James. J, Venkatraman, Sekhar, Wilson, James R. Least-squares estimation of distribution functions in johnson's translation system. Journal of Statistical Computation. 1988;29(4):271-297.
- [11] Andrews DF, Herzberg AM. Data: A Collection of Problems from Many Fields for the Student and Research Worker. New York: Springer Series in Statistics; 1985.
- [12] Barlow RE, Toland RH, Freeman T. A Bayesian analysis of stress-rupture life of kevlar 49/epoxy spherical pressure vessels, In: Proc. Canad. Conf. Appl. Statist. New York: Marcel Dekker; 1984.
- [13] Cancho, Vicente G, Louzadab Neto F, Barrigac Gladys DC The Poisson-exponential lifetime distribution. Computational Statistics and Data Analysis. 2011;55:677-686.
- [14] Dey S, Raheem E, Mukherjee S. Statistical Properties and Different Methods of Estimation of Transmuted Rayleigh Distribution. Revista Colombiana de Estadística. 2017;40(1):165-203.
- [15] Singh R, Yadav A, Singh S, Singh U. Marshall-Olkin Extended Exponential Distribution. Columbia International Publishing Journal of advanced computing. 2016;5(1):12-28.
- [16] Tahir MH, Zubair M, Cordeiro, Gauss M, Alzaatreh, Ayman, Mansoor M. The Poisson-X family of distributions. Journal of Statistical Computation and Simulation. 2016;86 (14):2901–2921.
- [17] Lee E, Wang J. Statistical Methods for Survival Data Analysis. New York: Wiley &Sons; 2013.

^{© 2021} El-Monsef et al.; This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.