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Abstract

Our goal here is to discuss the pricing problem of European and American options in discrete
time using elementary calculus so as to be an easy reference for first year undergraduate students.
Using the binomial model we compute the fair price of European and American options. We
explain the notion of Arbitrage and the notion of the fair price of an option using common
sense. We give a criterion that the holder can use to decide when it is appropriate to exercise
the option. We prove the put-call parity formulas for both European and American options and
we discuss the relation between American and European options. We give also the bounds for
European and American options. We also discuss the portfolio optimization problem and the
fair value in the case where the holder can not produce the opposite portfolio.
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1 Introduction

Our starting point was the paper [1] in which the authors introduce the binomial model and explain
how one can use it to evaluate the fair price of a European option. Our goal here is to study the
option pricing problem in discrete time using the binomial method and basic calculus so as to be
an easy reference for first year undergraduate students.
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There are many books that discuss the binomial model in a more advanced setting, see for example
[2], [3], [4], [5], [6], [7], [8], [9], [10], [11], [12], [13], [14], [15], [16], [17], [18], [19], [20]. Our aim here
is to explain the binomial method using elementary calculus but not losing any of the mathematical
accuracy.

We begin our discussion from the beginning, i.e. we describe firstly how one can model the movement
of an asset. Then, we describe how can someone construct portfolios with prescribed final and
intermediate values and we discuss both the European and American type options. We also discuss
the notion of the Arbitrage and prove that the binomial model does not admit Arbitrage under
some suitable condition. We prove the put-call parity formulas for both European and American
options and we discuss the relation between American and European options. We give also the
bounds for European and American options. We also discuss the portfolio optimization problem
and the fair value in the case where the holder can not produce the opposite portfolio.

Suppose that our market consists of one risky asset, say S, and one non-risky, say B, with daily
interest rate r. We consider for simplicity that we have only one period, time zero and time one.

In time zero no one knows the value of the risky asset in time one, i.e. no one knows S1. How can
we model this? We can for example, study the way that the asset behaved the last, say, one month
and denote the average of the percentage of got up as u and the average of percentage of got down
as d. Then we can suppose that the risky asset will follow the same path in the future and thus we
can write schematically

..S0

.

uS0

.

dS0

........

n = 0

.

n = 1

..

2 Constructing a Portfolio with Prescribed Final Values

At time zero, someone can buy a shares of the risky asset and put the amount b in the bank therefore
constructing a portfolio with initial value

V0 = aS0 + b

If our time period is one day then after one day the value of the portfolio will be

V u
1 = a(uS0) + b(1 + r)

if the value of the asset will go up, and

V d
1 = a(dS0) + b(1 + r)
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if the value of the asset will go down. We can write it schematically

..S0

.

uS0

.

dS0

........

n = 0

.

n = 1

.

V0

.

V u
1

.

V d
1

..

Suppose now that we are given specific numbers A,B and we are asked to construct a portfolio
(a, b) such that, under the above hypotheses, will have final values V u

1 = A and V d
1 = B. How

much money b we will have to put in the bank at time zero and how many shares of the risky asset
should we buy at time zero? Schematically we have the following

..S0

.

uS0

.

dS0

........

n = 0

.

n = 1

.

V0 =?

.

V u
1 = A

.

V d
1 = B

. (a =?, b =?)..

We have to solve two equations with two unknowns

a(uS0) + b(1 + r) = A,

a(dS0) + b(1 + r) = B

The determinant of this system will be non zero if S0 ̸= 0, r ̸= −1 and u > d. Under the above
hypotheses we have that the solution of the system will be

a =
A−B

(u− d)S0
,

b =
Bu−Ad

(u− d)(1 + r)
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Therefore the initial value of our portfolio has to be

V0 = aS0 + b =
1

1 + r

(
qA+ (1− q)B

)
where q = 1+r−d

u−d
and this results just if one replaces a, b from above to the

V0 = aS0 + b

If b ≤ 0 then that means that we have to borrow money from the bank and if a ≤ 0 means that we
have to sell a shares of the asset that we do not belong.

So, with the amount V0 we have constructed a portfolio (a, b) with final values A,B. Is there any
chance to construct a portfolio with final values A + ε1 and B + ε2 (with ε1 > and ε2 > 0) and
initial value V0? Let us find first the portfolio (a1, b1) with final values A+ ε1 and B + ε2

a1 = a+
ε1 − ε2

(u− d)S0
,

b1 = b+
ε2u− ε1d

(u− d)(1 + r)

Note that the portfolio (a, b) have initial value V0 and we want also portfolio (a1, b1) to have the
same initial value but bigger final values. Therefore, it must holds

ε1 − ε2
(u− d)

+
ε2u− ε1d

(u− d)(1 + r)
= 0

In other words, it must holds

ε1(1 + r − d) + ε2(u− (1 + r)) = 0 (2.1)

3 Arbitrage and Smallest Initial Value

Is there any portfolio (a, b) with initial value V0 = 0 and final values

V u
1 > 0

V d
1 ≥ 0

or

V u
1 ≥ 0

V d
1 > 0

If someone can construct such portfolios then he can borrow/put b money from/to the bank to
buy/sell a shares of the asset (again and again) and at the end he makes profit with zero initial
capital and without any risk. Of course in real world there are not such portfolios so in our
mathematical model we should exclude such a situation which we call Arbitrage.

Theorem 3.1. The binomial model does not admit Arbitrage iff 0 < d < 1 + r < u

Proof. Let us suppose that 0 < d < 1 + r < u holds. We construct a portfolio (a, b) such that

V0 = aS0 + b = 0
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so that b = −aS0. Suppose now that

V u
1 = a(uS0) + b(1 + r) > 0

V d
1 = a(dS0) + b(1 + r) ≥ 0

We will see now that in fact we have a > 0. We can write

V u
1 = auS0 − aS0(1 + r) > 0

Therefore we arrive at

aS0(u− (1 + r)) > 0

Using the fact that u > 1 + r we obtain that a > 0. Substituting the equality b = −aS0 in the
inequality V d

1 ≥ 0 we conclude that d ≥ 1+r but this is a contradiction. Using the same arguments
one concludes that it can not happen (if d < 1 + r < u)

V u
1 ≥ 0

V d
1 > 0

Conversely, suppose that the binomial model do not admit Arbitrage. Consider all the possible
portfolios with initial value

V0 = aS0 + b = 0

If V u
1 > 0 then V d

1 < 0 otherwise (a, b) is an Arbitrage opportunity.

By summing the inequalities V u
1 > 0 and −V d

1 ≥ 0 we get that a > 0. Using these inequalities and
that a > 0 we get the desired inequality, i.e. d < 1 + r < u.

If V u
1 < 0 then V d

1 > 0 otherwise (−a,−b) is an Arbitrage opportunity. The same arguments drives
us to the same conclusion.

If V u
1 = 0 then also V d

1 = 0 otherwise (a, b) or (−a,−b) is an Arbitrage opportunity. By these two
equalities we conclude that d = 1 + r = u and that mean that asset’s value remain constant.

From now on we will suppose that 0 < d < 1 + r < u in order to avoid Arbitrage in our model.

We have shown that for any A,B one can construct a portfolio (a, b) with final values V u
1 = A

and V d
1 = B under the hypotheses that u > d, r ̸= −1 and S0 ̸= 0. This is called completeness of

the model. What about the smallest initial value of the portfolio with final values A,B? We have
shown that if someone want to construct a portfolio with final values A+ ε1 and B+ ε2 then ε1, ε2
should satisfy equation (1). Assuming that our model do not admit Arbitrage, then equation (1)
holds iff ε1 = ε2 = 0. Therefore, V0 is the smallest initial value for our portfolio with final values
A,B if our model do not admit Arbitrage.

4 Two Period Binomial Model

We can extend our results for a two period binomial model, i.e.
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..S0

.

uS0

.

dS0

.

ddS0

.

duS0

.

udS0

.

uuS0

.............

If we do not have Arbitrage for the one period binomial model then the same holds for the two
period (and so on) binomial model. We can also construct a portfolio and schematically have the
following

..1.

2

.

1
2

.

1
4

.

1

.

1

.

4

........

V uu
2

.

V ud
2

.

V du
2

.

V dd
2

.

V0

.

V u
1

.

V d
1

......

with

V uu
2 = a(uuS0) + b(1 + r)2,

V ud
2 = a(udS0) + b(1 + r)2,

V du
2 = a(duS0) + b(1 + r)2,

V dd
2 = a(ddS0) + b(1 + r)2

Suppose now that we are given specified numbers Auu
2 , Aud

2 , Adu
2 , Add

2 , Au
1 , A

d
1, A0 and we are asked
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to construct the smallest portfolio such that

V uu
2 ≥ Auu

2 ,

V ud
2 ≥ Aud

2 ,

V du
2 ≥ Adu

2 ,

V dd
2 ≥ Add

2 ,

V u
1 ≥ Au

1 ,

V d
1 ≥ Ad

1,

V0 ≥ A0

Schematically we have

..S0

.

uS0

.

dS0

.

ddS0

.

duS0

.

udS0

.

uuS0

........

V uu
2 ≥ Auu

2

.

V ud
2 ≥ Aud

2

.

V du
2 ≥ Adu

2

.

V dd
2 ≥ Add

2

.

V u
1 ≥ Au

1

.

V d
1 ≥ Ad

1

.

(a2 =?, b2 =?)

.

(a1 =?, b1 =?)

.

V0 ≥ A0

. (a =?, b =?)......

How can we construct such a portfolio? We want V u
1 ≥ Au

1 and also be such that at time 2 has the
values Auu

2 , Aud
2 . Choosing,

V u
1 = max{Au

1 ,
1

1 + r

(
qAuu

2 + (1− q)Aud
2

)
}

we obtain the desired result. The same holds for V d
1 , i.e.

V d
1 = max{Ad

1,
1

1 + r

(
qAdu

2 + (1− q)Add
2

)
}

Then, we choose V0 = max{A0,
1

1+r

(
qV u

1 +(1−q)V d
1

)
}. Next, we construct portfolios (a, b), (a2, b2)

and (a1, b1).

It is clear that the initial value V0 is the smallest value to construct a portfolio with the specified
requirements.

7



Halidias; ARJOM, 1(1), 1-18, 2016; Article no.ARJOM.26251

5 European and American Options

A contract called European call option gives its holder the right but not the obligation to purchase
from the writer a prescribed asset S for a prescribed price K at a prescribed time T in the future.

So, at time T the holder of the option has the profit (if any) (ST − K)+ and that is the amount
of money that the writer of the option has to pay at the expiration of the contract. It is obvious
that this kind of contract should have an initial cost for the holder. What is the fair value V0 of
this contract? The writer, at time T , using the amount V0 should construct the profit of the holder
(ST −K)+. Therefore, if we consider our model (one period model for example) the problem is to
find V0, a, b to construct a portfolio with specified final values. Schematically we have the following,

..1.

2

.

1/2

........

V u
1 = (uS0 −K)+ = 4/3

.

V d
1 = (dS0 −K)+ = 0

. (a =?, b =?).

V0 =?

..

with S0 = 1, u = 2 and d = 1/2, K = 2/3 for example. Therefore the problem can be solved as we
have described before. We have seen that if d < 1 + r < u then V0, computed in this way, is the
smallest amount of money that the writer needs for this contract in order to construct a portfolio
that eliminates the risk. Note that there is no path in which the writer loses or earn money selling
this contract. Moreover, the holder can lose money but also can earn money from this contract.
Any price above V0 will make sure profit (without risk) to the writer. What about the case where
the holder of the option do not exercise it even in the case he has positive profit? Then this profit
remain to the writer. Is this an Arbitrage? In order to decide if it is an Arbitrage or not we count
only all the possible paths of the asset. If for all possible paths of the asset the holder can exercise
in a way that the writer will have no sure profit then we do not have Arbitrage. All these results
can be extended to two period models and in general to n period models.

A contract called American call option gives its holder the right but not the obligation to purchase
from the writer a prescribed asset for a prescribed price at any time until the expiration date T .
Therefore, the profit (if any) of the holder is (St − K)+ where t ≤ T is the exercise time. The
problem again is what is the fair price V0 of this contract. The writer should have enough money
for all the circumstances. Considering a two period model the holder can exercise the option at
times 0,1 as well at time 2. Therefore, the writer should construct a portfolio which has value at
any time at least (St −K)+ i.e. the holder’s profit (in order to eliminate the risk). So, the problem
is to specify the numbers Auu

2 , Aud
2 , Adu

2 , Add
2 , Au

1 , A
d
1, A0 and construct a portfolio such that
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..S0

.

uS0

.

dS0

.

ddS0

.

duS0

.

udS0

.

uuS0

........

V uu
2 ≥ Auu

2

.

V ud
2 ≥ Aud

2

.

V du
2 ≥ Adu

2

.

V dd
2 ≥ Add

2

.

V u
1 ≥ Au

1

.

V d
1 ≥ Ad

1

.

(a2 =?, b2 =?)

.

(a1 =?, b1 =?)

.

V0 ≥ A0

. (a =?, b =?)......

Therefore we calculate V0 as we have described and also (a, b), (a1, b1) and (a2, b2). Using this
amount of money the writer will be sure that he will have enough money for all possible paths of
the asset (i.e. he can construct a portfolio that eliminates the risk). There is no path that the
writer will make sure profit, because in each path the holder can exercise in that a way that his
profit equals portfolio’s value.

Denoting by Xn holder’s profit at time n when is the best time to exercise the option? If the
holder exercise at time n then the profit will be in fact (considering the amount V0 that he had
paid for this option) Xn − V0(1 + r)n. Therefore, a criterion is that the holder will exercise when
Xn > V0(1 + r)n, i.e. in this case the holder will earn more money than the case where he puts
V0 at time zero to a bank. If the holder of the option choose to exercise it when Xn < Vn then
the writer has a profit. Is this an Arbitrage? No, it is not an Arbitrage, because the notion of the
Arbitrage is independent of the choices of the holder. It depends only on all the possible paths of
the asset.

As an example consider an American call option with strike price K = 5/2, N = 3, u = 2, d = 1/2
and r = 1/2. Suppose that the asset moves in the path uu for the first two periods. The holder
should decide if he exercise at time n = 2 the option or not. Making the calculations the holder
should choose to exercise at n = 2 because his profit is

(Suu
2 −K)− V0(1 + r)2 = 3/2− 0.48(1 + 1/2)2 > 0

Note also that the value of the option at that time is Huu
2 = V uu

2 = 2.44 > Xuu
2 = 3/2 and therefore

the writer has a positive profit as well. Of course the holder can choose to wait and if the asset go
up again he will make a larger profit but if the asset go down then he loses all the money. If the
holder of the option can sell the option or he is able to sell a number of assets that he do not own
at time n = 2 then he should decide (at this time) what is preferable for him. In any case, at time
n = 2 he should take a decision about his next move.

We should point out that if for some n we have V A
n = Xn and suppose further that the holder does

not exercise at that time then the writer has more money than he really needs to go to the next step.
Therefore, he can consume this extra amount of money and invest the rest of them appropriately
in order to eliminate the risk. In this case let us denote the value of the portfolio as V AC

n . He also
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can put this amount of money to the bank or invest it on shares. In this case we denote the value
of the portfolio as V A

n and therefore it holds that

V AC
n ≤ V A

n

Denote by Hn the following sequence

Hn =

{
XN , for n = N,

max{Xn,
1

1+r

(
qHu

n+1 + (1− q)Hd
n+1

)
}, for n = N − 1, ..., 0

We say that Hn is the fair value of the American option at time n. Note that V A
n ≥ Hn.

..1.

2

.

1
2

.

1
4

. 1.

4

.

8

.

2

.

1
2

.

1
8

...........

X3 = 11/2

.

X3 = 0

.

X3 = 0

.

X 3 = 0

.

Huu
2 = 2.44

.

Xuu
2 = 3/2

............

6 Put-Call Parity Formulas, Relations between European
and American Options and Bounds for Options

6.1 European put - call parity

Consider a European call option with strike price K and the corresponding European put option.
Let us denote by V E,call

n and V E,put
n the prices of the options working on an N -period binomial

model. The following formula holds,

V E,call
n − V E,put

n = Sn −K
1

(1 + r)N−n
, n = 0, ..., N

Indeed, for n = N we have

V E,call
N − V E,put

N = (SN −K)+ − (K − SN )+ = (SN −K)+ − (SN −K)− = SN −K.
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Suppose that the formula holds for some n. We will show that it holds also for n− 1,

V E,call
n−1 − V E,put

n−1 =
1

1 + r

(
q(V u,E,call

n − V u,E,put
n ) + (1− q)(V d,E,call

n − V d,E,put
n )

)
=

1

1 + r

(
q(uSn−1 −K

1

(1 + r)N−n
) + (1− q)(dSn−1 −K

1

(1 + r)N−n
)

)
= Sn−1 −K

1

(1 + r)N−n+1

6.2 Relation between European and American options

In general, it is easy to see that

V E
n ≤ Hn, n = 0, ...N

Indeed, for n = N we have

V E
N = XN = HN

where XN is the holder’s profit at time N . Suppose that it holds for some n, that is

V E
n ≤ Hn

We will show that it holds also for n− 1. We can write

Hn−1 = max{Xn−1,
1

1 + r

(
qHu

n + (1− q)Hd
n

)
}

≥ max{Xn−1,
1

1 + r

(
qV u,E

n + (1− q)V d,E
n

)
}

= max{Xn−1, V
E
n−1}

≥ V E
n−1

Consider now the case where we have a European option with strike price K and the corresponding
American option in a N -period model. If we speak about call options and r ≥ 0 then we will prove
that

V E,call
n = Hcall

n (when r ≥ 0), n = 0, ..., N

We need first to prove that

Xn ≤ V E,call
n , n = 0, ..., N

We will prove this by induction. For n = N it is obvious, we suppose that it holds for some n and
we will prove that it also holds for n− 1. To do so we work as follows

Sn−1 −K =
(qu+ (1− q)d)

1 + r
(Sn−1 −K)

=
1

1 + r
(q(uSn−1 −K) + (1− q)(dSn−1 −K))

+
1

1 + r
(qK(1− u) + (1− q)K(1− d))

≤ 1

1 + r
(q(uSn−1 −K)+ + (1− q)(dSn−1 −K)+)

+
1

1 + r
(qK(1− u) + (1− q)K(1− d))

≤ 1

1 + r
(qV u,E,call

n + (1− q)V d,E,call
n )

= V E,call
n−1

11
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where we have used the fact that 1 + r = qu+ (1− q)d and that

qK(1− u) + (1− q)K(1− d) = K −K(1 + r) ≤ 0

Because V E,call
n−1 ≥ 0 we have also that

Xn−1 ≤ V E,call
n−1 , n = 1, ..., N

Now we are ready to prove that V E,call
n = Hcall

n by induction. For n = N is obvious so we suppose
that it holds for some n and we will prove that it holds also for n− 1.

Indeed,

Hcall
n−1 = max{Xn−1,

1

1 + r

(
qHu,call

n + (1− q)Hd,call
n

)
}

= max{Xn−1,
1

1 + r

(
qV u,E,call

n + (1− q)V d,E,call
n

)
}

= max{Xn−1, V
E,call
n−1 }

= V E,call
n−1

Therefore, at any time n there are no extra money for the writer to consume and thus

V A,call
n = V AC,call

n

Furthermore, if we speak about put options and r = 0 then we also have that

V E,put
n = Hput

n (when r = 0), n = 0, ..., N

We will first prove that V E,put
n ≥ Xn for n = 0, ..., N . For n = N it is obvious so we assume that

it holds for some n and we will prove it also for n− 1. We work as follows

K − Sn−1 = K − dSn−1 + Sn−1(d− 1)

= (1− q)(K − dSn−1) + q(K − dSn−1) + Sn−1(d− 1)

= (1− q)(K − dSn−1) + q(K − uSn−1)

+qSn−1(u− d) + Sn−1(d− 1)

≤ (1− q)(K − dSn−1)
+ + q(K − uSn−1)

+

+qSn−1(u− d) + Sn−1(d− 1)

≤ V E,put
n−1

where we have used the fact that q = 1−d
u−d

so that

Sn−1(d− 1) = −qSn−1(u− d)

Note that, V E,put
n−1 ≥ 0 therefore we also have

Xn−1 ≤ V E,put
n−1 , n = 1, ..., N − 1.

Now, by induction it is easy to prove that Hput
n = V E,put

n . Indeed, for n = N it is obvious and if it
holds for some n then we will prove that it also holds for n− 1. Therefore

Hput
n−1 = max{Xn−1,

(
qHu,put

n + (1− q)Hd,put
n

)
}

= max{Xn−1,
(
qV u,E,put

n + (1− q)V d,E,put
n

)
}

= max{Xn−1, V
E,put
n−1 }

= V E,put
n−1

12
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Finally, since there are no extra money at any time n then

V AC,put
n = V A,put

n , (when r = 0).

6.3 American put - call parity

Consider now an American call option with strike price K and the corresponding put option. The
following inequality holds, for a N -period binomial model, when r ≥ 0,

Hcall
n −Hput

n ≤ Sn −K
1

(1 + r)N−n
, n = 0, ..., N

To show this we note that Hcall
n = V E,call

n and V E,put
n ≤ Hput

n and therefore

Hcall
n −Hput

n ≤ V E,call
n − V E,put

n = Sn −K
1

(1 + r)N−n

The following inequality also holds,

Sn −K ≤ Hcall
n −Hput

n , n = 0, ..., N

We will show this inequality by induction. For n = N we have

Hcall
N −Xput

N = SN −K

Suppose that we have

Hcall
n −Hput

n ≥ Sn −K

and we will show that

Hcall
n−1 −Hput

n−1 ≥ Sn−1 −K

Recall that

Hput
n−1 = max{(K − Sn−1)

+,
1

1 + r

(
qHu,put

n + (1− q)Hd,put
n

)
}

Hcall
n−1 = max{(Sn−1 −K)+,

1

1 + r

(
qHu,call

n + (1− q)Hd,call
n

)
}

Therefore

Hcall
n−1 −Hput

n−1

= Hcall
n−1 +min

{
− (Sn−1 −K)−,

−1

1 + r

(
qHu,put

n + (1− q)Hd,put
n

)}
= min

{
Hcall

n−1 − (Sn−1 −K)−, Hcall
n−1 −

1

1 + r

(
qHu,put

n + (1− q)Hd,put
n

)}
≥ min

{
(Sn−1 −K),

(
q(Hu,call

n −Hu,put
n ) + (1− q)(Hd,call

n −Hd,put
n )

)
1 + r

}
≥ min

{
(Sn−1 −K),

(q(uSn−1 −K) + (1− q)(dSn−1 −K))

1 + r

}
≥ Sn−1 −K

We have used the obvious inequalities

Hcall
n−1 ≥ (Sn−1 −K)+ and Hcall

n−1 ≥ 1

1 + r

(
qHu,call

n + (1− q)Hd,call
n

)
To sum up we have proved the following inequalities,

Sn −K ≤ Hcall
n −Hput

n ≤ Sn −K
1

(1 + r)N−n
, n = 0, ..., N

13
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6.4 Bounds for options

We will show that

V E,call
n = Hcall

n ≤ Sn

For n = N we have

V E,call
N = (SN −K)+ ≤ SN

We suppose that

V E,call
n ≤ Sn

and we will show that

V E,call
n−1 ≤ Sn−1

We have that

V E,call
n−1 =

1

1 + r

(
qV u,E,call

n + (1− q)V d,E,call
n

)
≤ 1

1 + r
(quSn−1 + (1− q)dSn−1)

= Sn−1

Next we will show that

V E,call
n ≥ Sn −K

1

(1 + r)N−n

For n = N we have that

V E,call
N = (SN −K)+ ≥ SN −K

Suppose that we have

V E,call
n ≥ Sn −K

1

(1 + r)N−n

We will show that

V E,call
n−1 ≥ Sn−1 −K

1

(1 + r)N−n+1

We have that

V E,call
n−1 =

1

1 + r

(
qV u,E,call

n + (1− q)V d,E,call
n

)
≥ 1

1 + r

(
q(uSn−1 −K

1

(1 + r)N−n
) + (1− q)(dSn−1 −K

1

(1 + r)N−n
)

)
= Sn−1 −K

1

(1 + r)N−n+1

Therefore we have proved so far that

Sn −K
1

(1 + r)N−n
≤ V E,call

n = Hcall
n ≤ Sn

Next we will show that

K
1

(1 + r)N−n
− Sn ≤ V E,put

n ≤ K
1

(1 + r)N−n

14
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For n = N obviously we have that

K − SN ≤ V E,put
N ≤ K

Suppose that it holds for some n, namely,

K
1

(1 + r)N−n
− Sn ≤ V E,put

n ≤ K
1

(1 + r)N−n

We will show that is also holds for n− 1 that is

K
1

(1 + r)N−n+1
− Sn−1 ≤ V E,put

n−1 ≤ K
1

(1 + r)N−n+1

We have that

V E,put
n−1 =

1

1 + r

(
qV u,E,put

n + (1− q)V d,E,put
n

)
≤ K

1

(1 + r)N−n+1

while

V E,put
n−1 =

1

1 + r

(
qV u,E,put

n + (1− q)V d,E,put
n

)
≥ 1

1 + r

(
q(K

1

(1 + r)N−n
− uSn−1) + (1− q)(K

1

(1 + r)N−n
− dSn−1)

)
= K

1

(1 + r)N−n+1
− Sn−1

Finally for American puts we have obviously that

(K − Sn)
+ ≤ Hput

n

We will also show that

Hput
n ≤ K

For n = N it is obvious. We suppose that it holds for some n and we will show that

Hput
n−1 ≤ K

Indeed,

Hput
n−1 = max{(K − Sn−1)

+,
1

1 + r

(
qHu,put

n + (1− q)Hd,put
n

)
}

≤ max{(K − Sn−1)
+,

1

1 + r
K}

≤ K

All the above relations and inequalities holds also in the continuous case i.e. as n → ∞, in the spirit
of [21] (see also a more detailed discussion of the continuous case in [10]). One can also prove, using
first year calculus, that the prices for European options converges to the solution of the famous
Black-Scholes-Merton formula, see for example [15], prop. 2.50.

We have proved all the above relations for the prices that the binomial model produces, but using
Arbitrage arguments one can show that the same relations hold for the true prices, see for example
[8].
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7 Portfolio Optimization

Suppose that we are given the amount of V0 and we are able to construct a portfolio putting money
in the bank and buying a number of assets. At time zero, our portfolio is

V0 = aS0 + b (7.1)

Suppose that we are working in an one period binomial model and our problem is how much money
we will put in the bank and how many assets we should buy in order to maximize our portfolio at
time 1.

Given a number p ∈ (0, 1) we want to maximize the quantity

pV u
1 + (1− p)V d

1

where

V u
1 = auS0 + b(1 + r),

V d
1 = adS0 + b(1 + r)

Of course we want the following inequalities to hold

V u
1 ≥ 0

V d
1 ≥ 0

and using also (2) we arrive at the following constraint on a

− V0(1 + r)

S0(u− (1 + r))
≤ a ≤ V0(1 + r)

S0(1 + r − d)

Note that

pV u
1 + (1− p)V d

1 = aS0

(
pu+ (1− p)d− (1 + r)

)
+ V0(1 + r)

and therefore if pu+ qd > 1+ r then we optimize our quantity if we choose a = V0(1+r)
S0(1+r−d)

otherwise

a = − V0(1+r)
S0(u−(1+r))

.

8 Fair Value

In section 5 we have estimated the smallest value of a European option in order the writer to have
enough money in any case. Is that value a fair price? If the holder of the option can construct the
opposite portfolio (i.e. (−a,−b)) then indeed this is the fair price because both the writer and the
holder can construct such a portfolios to eliminate the risk.

What about the case where the holder can not construct the opposite portfolio? Then, only the
writer has eliminate the risk while the holder can lose or earn money buying this contract. Intuitively
speaking this value does not seem to be fair.

For a European option the expected profit of the holder is

EP (X) = pXu
1 + (1− p)Xd

1

where Xu
1 is the profit if the asset goes up and Xd

1 is the profit if the asset goes down while p is the
probability the asset goes up. Therefore a fair price could be the following

V0 =
1

1 + r
min

{
pXu

1 + (1− p)Xd
1 , qXu

1 + (1− q)Xd
1

}

16
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where q = 1+r−d
u−d

.

If for a specific case V0 = 1
1+r

(qXu
1 +(1−q)Xd

1 ) then the writer can construct a portfolio to eliminate

the risk and if V0 = 1
1+r

(pXu
1 + (1 − p)Xd

1 ) then the writer can put this amount of money in the
bank and so at time 1 this will be equal to the holder’s expected profit or can construct a portfolio
as we have described in Section 7.

For American type options a fair value could be

min{V q
0 , V

p
0 }

where V q
0 is the amount of money that one needs to construct a portfolio that eliminates the risk

while

V p
0 = max

n

1

(1 + r)n
EP (Xn)

where Xn is holder’s profit at time n.

9 Conclusion

We described the European and American type options in discrete time using basic calculus. We
explain the notion of the Arbitrage and we have seen that the fair price (when the writer and
the holder can construct opposite portfolios) of an option is in fact the smallest price that the
constructed portfolio should have as initial value in order the writer eliminate the risk and this
smallest price is closely connected with the no Arbitrage criterion which is d < 1 + r < u.
Furthermore we have proposed a criterion that the holder can have in mind to decide if he will
exercise the option at some specific time. We show the put-call parity formulas for both European
and American options and also that the values of American and European call options coincides
when r ≥ 0 while the put options coincides when r = 0. We also give bounds for European and
American call and put options. We have discussed the portfolio’s optimization problem and finally
we discussed the notion of the fair value of an option when the holder can not construct an opposite
portfolio to eliminate the risk.
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