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Abstract

A definitive positive answer to the so-called proper subspace problem (a.k.a. the atomic space
problem) for quasi-normed spaces is given: every infinite dimensional quasi-normed space has a
proper closed infinite-dimensional subspace.
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1 Introduction and Main Result

Although the first research paper on quasi-normed spaces appeared in the early 1940’s, the systematic
study of these spaces only really started in the late 1950’s and early 1960’s with the work of Klee,
Peck, Rolewitz, and Zezalko. The paper of Duren, Romberg, and Shields [1] opened up many new
directions, leading to a significant increase of activity in the 1970’s and 1980’s. The results arguably
brought about new and important contributions to our appreciation of the Banach space theory.
The most recent comprehensive study of the quasi-normed spaces was given by Kalton [2] in early
2000’s. Unfortunately, the interest had been since somewhat subsided, leaving one of the remaining
long standing structural problems for quasi-normed spaces unresolved; namely, the proper subspace
problem:
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Problem 1.1. Does every quasi-normed space admit a proper infinite-dimensional subspace?

Such a problem was first raised in 1960’s by Pelczynski (cf. [3]). It has since relayed on by several
authors in the intervening years (see e.g. [4, 2, 5, 6, 7] and references therein). For a recent
contribution in the more general context of F -spaces (complete linear metric spaces) see [6]. It is
arguably the most fundamental structure problem for quasi-normed spaces, or more generally for F -
spaces. Despite the fact that many progresses have been carried out in understanding the structure
of subspaces of quasi-normed spaces, the answer to the above Problem 1.1 remains elusive. Unlike
the case of normed space where the Hahn-Banach Theorem ensures the existence of a rich enough
class of continuous linear functionals, which implies the existence of a very rich class of infinite
dimensional closed subspaces, not enough satisfactory results are known for the corresponding
problem for quasi-normed spaces.

The best known classical examples of quasi-normed spaces are Hp, `p, and L(p) 0 < p < 1. It turns
out that all of these spaces happen to have proper infinite dimensional subspaces. Such a property
is less of a surprise for Hp, and `p, 0 < p < 1 as both types of these spaces have separating duals.
On the other hand, for 0 < p < 1, it is also known that although Lp has the highly undesirable
property of having only trivial dual, that is L∗p = 0, Lp does admit proper infinite dimensional
subspaces. Kalton noticed in [2] that such a result, which is due to Day [8], can be extended to
any space that fails to have a separating dual. Kalton (see e.g.[2]) gave an equivalent formulation
of the above problem known as the atomic problem. A quasi-normed space is said to be atomic if
it admits no proper closed infinite dimensional subspaces. Problem 1.1 can be restated as follows:

Problem 1.2. Do atomic quasi-normed spaces exist?

It is clear that if a space has a basic sequence then it has a proper infinite dimensional subspace;
namely, the closed linear span of the basic sequence. Therefore, an atomic space (if it exists)
obviously cannot contain any basic sequence. Kalton [9] proved that if a F -space has strictly
weaker Hausdorff vector topology, then it contains basic sequences. On the other hand, Kalton [10]
also showed how to construct a quasi-Banach space without a basic sequence. Kalton’s results did
not give a definitive answer to the atomic problem. It has not yet been clear whether or not the
example in [9] can be used to construct an atomic space. More recently, Barroso [11] obtained an
improvement to Kalton’s result by showing that a quasi-Banach space contains a basic sequence if
and only if it contains a countably infinite dimensional subspace whose dual is separating. A more
recent study by Botelho et al [12] brought about some partial answers to the problem. Related
results can also be found in [13]. For result related to the existence of basic sequences, the reader
is referred to e.g. [14].

In this short note, we attempt to prove the following theorem which gives a definitive positive
answer to the subspace problem: atomic spaces do not exist.

Theorem 1.3. Every infinite dimensional quasi-Banach space admits proper closed infinite dimensional
subspaces.

2 Proof of the Main Result

For simplicity, we shall only consider real vector spaces. The results carry through to the complex
vector spaces with standard slight alteration.

Let us recall that a vector space X is a quasi-normed space if it is equipped with a functional
q : X → [0,∞] satisfying

1. q(x) > 0 if x 6= 0,
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2. q(αx) = |α|q(x) for every scalar α and for every x ∈ X,

3. There exists a constant k ≥ 1 such that q(x+ y) ≤ k(q(x) + q(y)) for all x, y ∈ X.

The smallest constant k satisfying condition (3) is referred to as the modulus of concavity of the
quasi-norm of U . Sets of the form

B(y, r) = {x ∈ X : q(x− y) < r}

shall be termed as q-balls centered at y with radius r. It is known that if a quasi-normed space
(X, q) has a separating dual, then one can associate a norm on X by the formula

||x||c = sup {|f(x)| : f ∈ X∗}

where X∗ denote the space of all bounded linear functionals on X. This is the largest norm on X
dominated by q. Hence, ‖·‖c induces a weaker Hausdorff norm-topology on X. The completion Xc
of X with this norm is known as the Banach envelop of X (see e.g. [2]).

On the other hand, a quasi-normed space X that admits trivial dual (i.e. X∗ = 0) cannot
be normable: if it were, the Hahn-Banach Theorem (HBT) would hold, contradicting X∗ = 0.
Nonetheless, as we shall see below, it is always possible to naturally associate to any quasi-normed
space a locally convex Hausdorff topology that is weaker than the original q-topology.

Recall that a seminorm on a vector space X is a functional p : X → [0,∞] satisfying:

1. p(x+ y) ≤ p(x) + p(y) for all x, y ∈ X,

2. q(αx) = |α|q(x) for every scalar α and for every x ∈ X.

A family P of seminorms on X is said to be separating if for every x 6= 0 in X, there exists p ∈ P
such that p(x) 6= 0. It is a well-known fact that every locally convex topological vector space X
possesses a family of separating semi-norms. Namely, if B is a local base of convex, balanced and
absorbing neighborhoods of X, then the family of Minkowski functionals {pB : B ∈ B} forms a
separating family of continuous seminorms on X Recall that the Minkowski functional associated
to an absorbing convex set B is defined on X by pB(x) = inf {t > 0 : x ∈ tB}.

In what follows, given a subset B of X, we shall denote by B̂ the convex hull of B, i.e. the set of
all convex combinations of elements of B.

Proposition 2.1. Let (X, q) be a quasi-normed space with modulus of concavity k. Let pB̂ denote

the Minkowski functional associated to the convex hull B̂ of the balanced and absorbing set B =
{x ∈ X : q(x) < r}, where r ∈ (0,∞), that is pB̂(x) = inf {s > 0 : s−1x ∈ B̂}. Then pB̂ ≤ q ≤ kpB̂.

Proof. Clearly, if q(x) < s then pB̂(x) < s, i.e. pB̂ ≤ q. On the other hand, if pB̂(x) < ∞ then

there exists 0 < s < pB̂(x) such that s−1x ∈ B̂. That is, x = s(ty + (1 − t)z) where y, z ∈ B and
t ∈ [0, 1]. It follows that

q(x) ≤ sq(ty + (1− t)z) ≤ sk(tq(y) + (1− t)q(z)) ≤ kpB̂(x),

i.e. q ≤ kpB̂ . The proof is complete.

Theorem 2.1. Let (X, q) be a quasi-normed space with modulus of concavity k. Let B be the set

of all q-balls of X. For every B ∈ B, let B̂ the convex hull of B. Then B̂ = {x ∈ X : pB̂(x) < 1}
and pB̂B ∈ B is a family of continuous separating seminorms.

Proof. Continuity follows from the above proposition. Let us show that {pB̂ : B ∈ B} is separating.

If x 6= 0, then there exists n > 0 such that q(x) > 1/n. Since ̂B(0, 1/n) is convex, the set of 0 ≤ λ

such that λx ∈ ̂B(0, 1/n) is an interval containing 0. Since it does not contain 1, it must be bounded.

Hence, pB̂(x) = inf {t > 0 : x ∈ t ̂B(0, 1/n)} is strictly positive.
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Completeness is crucial for our next result.

Theorem 2.2. Let (X, q) be a quasi-Banach space. Let {pα : α ∈ A} be a family of continuous
semi-norms on X. Then the set

E =

{
x ∈ X : sup

α∈A
pα(x) <∞

}
is of second category if and only if E = X.

Proof. We only need to show the necessity. Fix ε > 0. Consider the closed set

F =
⋂
α∈A

{x ∈ X : pα(x) ≤ ε/2} .

If x ∈ E, one can choose n large enough so that supα∈A {p(x)} < n/2. It follows that E ⊂
⋃
n∈N nF .

Since E is of second category, at least one of the nF is of second category. It follows that F has an
interior point, say x. Thus there exists a q-neighborhood V of zero such that x+ V ⊂ F . Then for
every α ∈ A, and for every v ∈ V we have

pα(v) = pα(x+ v − x) ≤ pα(x+ v) + pα(x) ≤ ε/2 + ε/2 = ε.

Now, let x ∈ X. Choose r > 0 so that r−1x ∈ V . Then for every α ∈ A we have

r−1pα(x) = pα(r−1x),

from which it follows that x ∈ E. Hence, E = X. The proof is complete.

It follows that if (X, q) is a quasi-Banach space, then the one can associate a family of continuous
seminorms given by the Minkowski’s functional of the convex hull of the q -balls of X. Such a family
then generates a topology on X that is weaker than the original q-topology of X. More formally,
we have

Theorem 2.3. Let (X, q) be a quasi-Banach space. Then we can associate a weaker locally convex
topology on X defined by the norm

‖x‖q = sup
B∈B

pB̂(x),

where B is the set of all the q-balls of X, and B̂ is the convex hull of B, for every B ∈ B.

It is no longer difficult to indicate a proof for our main result Theorem 1.3.

Proof. Assume to the contrary that X is atomic. Then X must be minimal in the sense that it
cannot have a strictly weaker Hausdorff vector topology. Thus the ‖·‖q-topology must coincide with
the original quasi-norm topology. Hence (X, q) is locally convex, that is, (X, q) is a Banach space.
Contradiction! The proof is complete.

3 Remarks on Hahn-Banach Theorem

The classical Hahn-Banach Theorem assures us that the dual space of a non-trivial normed linear
space is itself non-trivial.

Theorem 3.1. (Hahn-Banach) If f is a bounded linear functional on a subspace of a normed linear
space, then f extends to the whole space with preservation of norm.
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Note that virtually no hypotheses are required beyond linearity and the existence of a norm.
Extension properties can also be stated for dominated linear functionals on a subspace of a quasi-
normed space but without preservation of the quasi-norm. For a quasi-normed space (X, q), and a
subspace U of X, let us agree to say that a linear functional f : U → R is q-dominated, if there
exists c > 0 such that ‖f(x)‖ ≤ cq(x) for all xU . The set of all q-dominated functionals on U shall
be denoted by U (q) and the norm of f ∈ U (q) is defined to be

‖f‖U(q) = inf {c > 0 : |f(x)| ≤ cq(x), x ∈ U} .

A straightforward adaptation of the proof of the elementary classical Hahn-Banach Theorem yields
the following.

Theorem 3.2. Let (X, q) be a quasi-normed space with modulus of concavity k. Let U be a subspace
of X, and let f ∈ X(q). Assume that x0 ∈ X\U . Then there exists a linear functional f̄ : U+Rx0 →
R such that f̄(u) = f(u) for all u ∈ U and

∥∥f̄∥∥
(U+Rx0)(q)

≤ k ‖f‖U(q) .

Proof. We observe that for u, u′ ∈ U ,

f(u)− f(u′) ≤ f(u− u′) ≤ q(u− u′) ≤ k(q(x0 + u) + q(x0 + u′)).

Such an inequality can be written as

−f(u′)− kq(u′ + x0) ≤ f(u) + kq(u+ x0).

We can choose a number θ such that

sup {−f(u′)− kq(u′ + x0) : u ∈ U} ≤ θ ≤ inf {f(u) + kq(u+ x0) : u ∈ U}.

We then define f̄ : U +Rx0 → R by f̄(u+ tx0) = f(u) + tθ. Clearly, f̄(u) = f(u) for all u ∈ U . We
claim that f̄(u+ tx0) ≤ kq(u+ tx0) for all u ∈ U and for all t ∈ R. Note that the inequality is true
for t = 0. For t 6= 0, we have

f̄(u+ tx0)| = |f(u) + tθ| = |t||f(u) + θ| ≤ k|t|q(u/t+ x0) = kq(u+ tx0)

Hence, our claim. The proof is complete.

Obviously, the above extension can be iterated on any finite dimensional extension of the subspace
U to obtain the following:

Theorem 3.3. Let (X, q) be a quasi-normed space with modulus of concavity k. Let U be a subspace
of X, and F a subspace of X such that dimF = n and U ∩ F = 0. Then every f ∈ U (q) admits a
linear extension f̄ : U ⊕ F → R satisfying

∥∥f̄∥∥
(U⊕F )(q)

≤ kn ‖f‖U(q) .

On the other hand, due to the lack of norm-preservation, nothing guarantees that an infinite iteration
of the extension method in Theorem 3.2 will yield a q-dominated linear functional on the whole
space. To obtain a q-dominated extension on the whole space, an infinite iteration of the above
method would require that the sequence n 7→ kn be bounded. That can only happen if the modulus
of concavity k of the quasi-norm is equal to 1, that is to say, if X is in fact already a normed space.

Duren et al [1] defined a quasi-normed space (or more generally F -space) X to have the Hahn-
Banach Extension Property (HBEP) if whenever f is a linear functional quasi-bounded on a closed
subspace of X, then f has a q-dominated linear extension on X. After noticing that all the classical
examples of F -spaces lack the HBEP, they asked whether or not it is true that an F -space has the
HBEP if and only if it is locally convex. Kalton [10] showed that a quasi-Banach space has HBEP
if and only if it is a Banach space.

On the other hand, it is now clear from our result that the existence of proper closed infinite
dimensional subspaces is not related to the HBT. The above results and discussion lead us to
formulate the following definition:
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Definition 3.1. Let (X, q) be a quasi-normed space. A closed linear subspace U of X is said to
be a HB-subspace if every f ∈ U (q) can be extended to an element of X(q).

It is clear that a quasi-normed space (X, q) has the HBEP, if and only if every closed subspace of
X is an HB-subspace. Hence, if (X, q) is a quasi-Banach space which is not locally convex, then it
must admit a non-HB-subspace. Day’s result [8] shows that it is possible to find a non-HB-subspace
in Lp, 0 < p < 1. As already noticed by Kalton (see for example [2]) , Day’s construction will work
on any space which fails to have a separating dual. It is clear that a quasi-normed space with trivial
dual cannot have any HB-subspace. Hence, any proper closed infinite dimensional subspace of a
quasi-normed space with trivial dual is a non-HB-subspace.

On the other hand, even in quasi-normed spaces with separating dual such as the sequence spaces
`p, 0 < p < 1, it is possible to find non-HB-subspaces (see for example [7]).

Theorem 3.4. If a quasi-normed space (X, q) admits an infinite dimensional HB-subspace, then it
admits an infinite dimensional subspace with separating family of functionals in X(q).

Proof. Assume that U is an infinite dimensional HB-subspace of X. Let u1 ∈ U , u1 6= 0, and let
f1 ∈ X(q) such that f1(u1) 6= 0. Then ker f1 cannot have a trivial dual. Fix u2 ∈ ker f1 and let
f2 ∈ X(q) such that f2(u2) 6= 0. Continuing in this way, we obtain a sequence of vectors {un : n ∈ N}
in X and a sequence of functionals {fn : n ∈ N} ∈ X(q). It is clear that the later sequence is a
separating family for the span of the former sequence.

Finally, Duren et al [1] also defined the notion of a proper closed weakly dense (PCWD) subspace
as a proper closed subset F of X such that the quotient X/F has trivial dual. It is easily seen that
if X has PCWD, then it must have a non-HB subspace.

4 Conclusions

This note is entirely devoted to the study of infinite dimensional subspaces of (non-locally convex)
topological vector spaces. We gave a definitive answer to the long standing problem of existence of
infinite dimensional subspaces for quasi-Banach spaces. Altough our proofs was done for the special
case of quasi-Banach spaces, they can easily be extended to the more general case of F -spaces
(complete linear metric spaces).
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