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Abstract

There exist several natural language processing systieatsfocus on checking the grammaticaljty
(grammatical correctness or incorrectness) of natungluiage texts. Studies however showed that most
existing systems do not assign specific scores to thengatinality of the analysed text. Such scofes
would for instance prove very useful to second languageées and tutors, for judging the progress
made in the learning process and assigning performances sasgectively. The current study was
embarked upon to address this problem. A grammatiagistgting model which comprised of 6 equatigns
was developed using a vector space approach. The madelimplemented in a natural langudge
processing system. Correlation analysis showed thagréding (in %) performed using the developed
model correlated at a coefficient of determinatiorf) (Ralue of 0.9985 with the percentage |of
grammatical sentences in evaluated texts. The developedl risodberefore deemed suitable fpr
grammaticality grading in natural language texts. Theeld@ed model would readily find use |n
computer aided language learning and automated essaygscori
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1 Introduction

A number of grammar-checkers systems exist that focushecking the grammaticality (grammatical
correctness or incorrectness) of natural language textsSfliflies however showed that most existing
systems do not assign specific scores to the gramatigtiof the analysed text [2]. Such scores would for
instance prove very useful to second language learners amd, tfidr judging the progress made in the
learning process and assigning performance scores ftiggbecThe current study was embarked upon to
address this problem. English (Formal Standard English) wasrttpedge adopted in this study.

2 Vectors and Vector Spaces

Vectors and vector spaces are closely related tasntise latter is dependent on the former. Vector quantities
are generally defined as quantities that have both magnindieieection, unlike scalar quantities which
have only magnitude but no direction [3]. A vector spanehe other hand is a set of vectors along with
operations of addition and multiplication such that theissat commutative group under addition, having a
multiplicative inverse, and including multiplication by scalavhich is both associative and distributive
[4,5,6].

2.1 Vectors

Vectors and points are common data structure considered iy aneas of Mathematics and Computer
Science. They are applied extensively in data compressi@yge processing, computer vision, computer
graphics, and numerical analysis. Two-dimensional vectmsbe defined as directed arrows in the plane.
The position of the arrow is not important. The length (mageit and direction of the arrow are the
important features of the vector, and they determine thmethey can be added, scaled and rotated [7].
Vectors having the same length and direction are said to beatanti[3]. Two vector in the same direction
are said to be parallel. The zero vector has a magnituwkr@find is denoted as €ig. 1(a) shows a vector

a between two points (xy1) and (%, y»). In Fig. 1(b), the vectors ABnd_DCare equivalent, because two-
dimensional vectors are distinguished only by length arettidbn. They are thus treated as equal i.e.=AB
DC.

(X2, ¥2)

a

(X1, Y1)

Xy

(a)
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(b) c

Fig. 1. (a) Vector in the plane (b) Two equivalent angarallel vectors
(Lindeman, 2008; Kambites, 2014)

2.2 Vector space

The concept of vector space has been the central paitidafssion of a number of literatures [4,5,6,8,9,10,
11,12]. A vector spac® can summarily be defined as a set of vectors over #ié Fi (such as real,
complex, and natural numbers) which may be added together angliedlor scaled) by numbers referred
to as scalars, such that for allycz € V, the following eight axioms are satisfied:

i. Associativity of addition.
Xty+z=x+y+z
ii. Commutativity of addition.x +y =y +x;
iii. Identity element of addition. There exists an elen@entV, called the zero vector, such tlyat 0 =

yforally eV;
iv. Inverse element of addition. For everye V, there exists an elemeny € V, called the additive
inverse ofy, such that
y+ (=0
V. Compatibility of scalar multiplication with field multijglation. a(by) = (@b)y;
vi. Identity element of scalar multiplication.
1y =y, where 1 denotes the multiplicative identityAn
Vii. Distributivity of scalar multiplication with respect toater addition.
a(x +y) =ax +ay; and
Viii. Distributivity of scalar multiplication with respect teld addition. & + b)y =ay + by
[5,6,8,9,10].

Depending on the literature, these expressions are snegetiompressed to give fewer axioms or expanded
to give more axioms, expressing the exact same concepts

2.3 NLP applications of vectors and vector spaces

The concept of vector space is considered in most linguisticNLP literatures from the perspective of
lexical and semantic distribution. Semantic vector space Isiofilanguage make use of real-valued vectors
to denote each word that are typically associated withtacplar word. Words that typically occur together
are assigned values that often depict their probabilincofiring together in a sentence. They are used for a
wide range of NLP operations including grammaticalitylesthion and error detection. Detailed semantic
and syntatic regularity have been successfully captured wsomr space representations and vector
arithmetic. The study of Pennington, Socher and Manning ¢a8je up with global vectors for word
representation (GloVe). The study focused on highlighting theepiiep that made the emergence of such
captured regularities possible in word vectors. Schmid [14]elewfocused onfficient parsing of highly
ambiguous context-free grammars using bit vectors.
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The study of Stolcke [15] represented a formalism dubbectov Space Grammars (VSG) for deriving
phrase structure categories that made use of structaregles of a context-free language. Using the
connectionist approach, the entire training process mad®fuadaptation, competition and error back-
propagation, all occurring in a continuous vector spa@bcates the use of vectors instead of symbols for
the purpose of linguistic category labeling.

Vector Space Semantic Parsing (VSSP) presented imnvdnke of Krishnamurthy and Mitchell [16] is a
framework for learning compositional models of vector spsemantics. It applies combinatory categoria
grammar (CCG) to define the relationship between syntaati&gories and semantic represenatations, taken
as vectors and functions on vectors. Using CCG based semarger, texts are parsed into lambda calculus
formulae that compute to equivalent vector space represgrstat

In general, vector space models make use of vectors aratiope on vectors to represent the semantics of
natural language expressions [17]. A number of other studiduding Coecke, Grefenstette and Sadrzadeh
[18], Socher, Pennington, Huang, Andrew and Manning [183h&r, Huval, Manning and Ng [20], Turney
[21] and Rapp [22] focused on similar concepts. The studie®wach significant performances that
corresponded well with human judgment.

Grammaticality is considered a vector concept within liteésature, having both magnitude and direction.
This is in contrast with scalar quantities that have onlgmitade but no direction. The direction of
grammaticality is either towards grammatical correst; or away from grammatical correctness.
Grammatical correctness is a state described as GracamEquilibrium (GE) within this study, and is
ascribed a gradience value of zero (0).

On a general note, grammars are usually designed tossxfire state of grammatical equilibrium. For
constraint based grammars [23,24], each appropriatdraorswithin the grammar enforces the grammar
towards being able express or determine sentences¢hgitaanmatically correct.

Furthermore, although grammaticality [25] is generally useexpress the state of grammatical correctness
or otherwise of a sentence, it is sometimes usedlgtas a measure of grammatical correctness, especial

when used alongside ‘ungrammaticality’. From this perspecgrammaticality is used as a measure of
grammatical correctness while ungrammaticality is useadlrasasure of grammatical incorrectness.

3 Formulation of a Vector Space Model for Grammatiality Grading

The formulation of a vector space model for grammaticgtading is presented in this paper. The approach
employed in the current study is similar to that of Aregleest al. [26] but with enhancements made to the
developed model to account for situations with no ungramalasentence in the evaluated texts. The
current study further went ahead to implement and validegefdrmulated model. The formulation is in
three phases: (i) The vector spatef grammaticality vectors defined; (ii) The resultants of these vectors
are shown to lie within the vector space; and (iii) A afegrammaticality gradience equations are derived
using the formulated vector space for grammaticality gadi

3.1 Definition of the vector space\() of grammaticality

Let x, vy, z be weighted entities associated with grammaticalichss possible error categories. Such error
categories include missing-word, extra-word, real-wordligge verb-form, punctuation and agreement
errors, which are uniquely identifiable within a sentenceoAét {X v, z, ...} € V. Like any other standard
vector spacey is a set of vectors over the fidkd(which in this case is the set of real numb®rshich may

be added together and multiplied (scaled) by numbers refer@idcalars, such that the eight axioms listed
in Section 2.2 are satisfied.
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As depicted in Figs. 2, 3 and 4, these grammaticalityovedorthwith dubbed Mosesean vectors are linear
(one-dimensional) in nature. Therefore, addition operationghese vectors are by simple arithmetic

summation. Furthermore, ungrammatical elements within inpoteaces are assigned negative values;
while counter measures to correct such ungrammaticalityssigned positive values. Thus, the magnitude
of grammaticality the Mosesean vectors introduce int@jséem at any point in time is totally dependent on
the magnitude of existing ungrammaticality. Figs. 2, 3 ailid<trate these concepts.

3.2 Resolving the resultants of Mosesean vectors

The default value of zero (0) is assigned as gradieakee\to any sentence introduced into the system of
Mosesean vectors. At this default value, the sentenaedquilibrium, and is completely grammatical. This
equilibrium is toppled when ungrammatical elements are filhtivithin the sentence. When a sentence is
ungrammatical by a certain magnitude, the systermatteto find complementary grammaticality measures
to pull the sentence back into equilibrium as depicted indriGrammaticality (+jis generated in response
to Ungrammaticality (-g +g can only be as large as to cancel outegulting in equilibrium.

Ungrammaticality

< L
| | | | | | |
| | | — T
0 Grammaticality
-ve Completely +ve
Grammatical

Fig. 2. Mosesean vectors on a real number line showinge-Grammaticality = Ungrammaticality

—i
5g Ungrammaticality ¢ e
<+—
«—
1
P Resultant grammaticality
< ® (59+29=-30)
1 1 1 1 1 1 1
1 1 1 1 1 —>
-3 -2 -1 0 1 Grammaticality
-ve Completely +ve
Grammatical

Fig. 3. Resultants of Mosesean vectors not yet at egbiium
3.3 Computing grammaticality gradience using Mosesa vectors

The default value of zero (0) is assigned as gradienaee tal any sentence introduced into the system
of Mosesean vectors. If the sentence is grammaticalisecty the gradience remains unchanged at zero
and requires no further computation. However, if ungranualdty (-g) is found within the sentence,
the cumulative ungrammaticality (s6) is the arithmetic sum of the individual ungrammatigali
values.
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Thus:
Let g be the default case (for a grammatical sentence) withrnoo, therefore g= 0.

If the values assigned to ungrammaticality items inntesee are ¢-o, -G, -.. -G,
where n is the number of ungrammaticality items in the seate
then

Gaum= @+ (-@) + (@) + (-G) +...% (-q)

n
-G — -0i + o
sum = ;

@
If only the magnitudes are considered, ignoring the siges, ¢3.1) becomes
n
Geum = Z lgil
=0
Therefore, the cumulative grammaticalitys( required to bring the sentence into equilibrium is:
n
Gsum = Z)lgll
i= &)
<«
I D >
5g Ungrammaticality
1
—
>
e Resultant grammaticality
(-5g +5g = 0)
1 1 1 1 1 1 1
| | | | | | —>
-3 -2 -1 0 1 2 3 Gram
-ve Completely +ve
Grammatical

Fig. 4. Resultant of Mosesean vectors at equilibrium

Furthermore in the system, the grammaticality gradi€pes) of an ungrammatical sentence is computed by

dividing the cumulative grammaticality () by the total number of leaf nodes in the sentence paase
Since the number of leaf nodes in a sentence parse tadwdygs equal to the number of words in the
sentence, it therefore follows that grammaticalitgdignce (LG) for a sentence of length mis:

n
|ail
m (3)

Assigning a value of magnitude one (1) to each ungrammigtidtaim in an input sentence, it follows that
the cumulative grammaticality (G,) can at most be as large as the number (m) of wortig iseintence.
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Thus from equation (3.3):

when n— 0:
m=m

and puG—0

when n— oo:
m — oo

and pG-1

Hence, the grammaticality gradience pG is such that:

0=puG=1
(4)

As grammaticality evaluation extends beyond the evanatif a single sentence to the evaluation of
multiple sentences, the gradience for each sentenceniguted in the same manner, applying (3.3) to each
of them. The arithmetic mean of the gradience(s) of thferdift sentences is then computed to give the
gradience of the entire text (all the sentences putheget

Thus:

If there are q sentences with gradience values pG, pG;, ... pG,

then

HGum=HG + UG+ UG+ ...+ UG

q
G = HGi
HSsum i =Zl )

and by extension, the mean grammaticality gradienceop @diltiple sentences is:

d

G = =
q (6)

HG;

Finally, since grammaticality gradience (uG) is a mea%f deviation from grammaticality, the actual
Grammaticality Score (GS) of a text would be evaludigdsubtracting the gradience value from 1 and
multiplying by 100 percent.

Thus:

= - 0,
GS (1- pHG) x 100% @)

3.4 lllustrations

This section illustrates how the formulated vector spaodeifor grammaticality grading woks. Three
different cases are considered. The first case illestreomputation for a grammatical sentence. The second
case illustrates computation for an ungrammatical seatefbe third case illustrates computation for
multiple sentences comprising of grammatical and ungratical sentences.
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3.4.1 Case 1: Grammatical sentence

Consider the grammatical sentence “The fat pony sleepheinbarn”. To evaluate this sentence for

grammaticality, HPSG is employed in a bottom-up fast@srshown in the parse tree in Fig. 5. As each
lexical token in the sentence is parsed upward in the peseit is replaced by its corresponding feature
structure. For reasons of convenience, the parse tre@.irbFonly shows the POS components of the

respective feature structures for each lexical eMince the sentence was successfully parsed all theovay t
the topmost root node (S in Fig. 5), and no error (n=0) wandifidel during the parse process. The sentence
is therefore considered grammatical. The grammaticgliaglience for this particular sentence is therefore
computed as follows:

Using equation (3.3)

where n=0 and m=7

HG =

ol o

HG =
Therefore, the Grammaticality Score (GS) from equme8.7 is given as

GS = (1 —0) x 100%
GS = 100%

which is the value expected for a grammatical sentence.

S
° P
D NOM v PP
1 1
: P o PN
! A N 1 ) NP
the 1 : sleeps | /\
: : 1 l_r) NOM
in !
fat pony :
the N
i
1
!
bar

Fig. 5. A phrase structure tree for “The fat pony sleps in the barn” [27]

3.4.2 Case 2: Ungrammatical sentence

Consider the ungrammatical sentence “I loves Sandy” sirhplified feature structure for each lexical entry
is shown in Fig. 6. Fig. 7 shows the agreements expaifteide lexical entries. The numbers in square
bracket (e.g. [1]) show what attributes should agree. Compthe agreement between “I” and “loves”, a
subject-verb error was observed (n = 1). “I” is first fErson singular (sg) and therefore expects a first
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person singular verb, but rather it gets a third (3) pesgwgular verb “likes” and vice versa. The ARG-ST
feature for the verb “loves”, < loves, [ARG-ST < [NP [AGR]38IP >] > shows that the third lexical entry
“Sandy” is in agreement with the object expected by the verb.

Thus, to compute the grammaticality gradience for thisquéar sentence:

Using equation (3.2)

where n=1 and g=1

Gum = 1
Using equation (3.3)

where n=1 and m=3

Therefore, the Grammaticality Score (GS) from eque8.7 is given as

GS = (1 —0.3333) x 100%
GS = 66.67%

which is within the range of values expected. It should bedrbizt the feature structures shown in Fig. 6
and Fig. 7: are highly simplified.

POS pronoun
NUM  sg
AGR PERS 1
(a) L |
[ POS verb ]
NUM  sg
AGR PERS 3
(b) L ]
_POS noun ]
NUM  sg
AGR PERS 3
(c) L |

Fig. 6. (a) AVM for the word “I” (b) AVM for the word “lov es” (c) AVM for the word “Sandy”



Aregbesola et al.; JAMCS, 23(3): 1-15, 2017; Adiob.JAMCS.32927

V [SUBJ < >,
COMPS < >]

V [SUBJ <[1]>,
[1INP [nom] COMPS < >]

/\

V [SUBJ <[1]>, {-1}
COMPS <[2]>] [2]NP[acc]

| loves Sandy
Fig. 7. Parse tree for the sentence “I loves Sandy” higlglhting the ungrammaticality weight

3.4.3 Case 3: Multiple sentences

Finally, consider a text that consists of both sentenci#lsistration 1 and 2. That is, “The fat pony sleeps in
the barn. | loves Sandy”. To compute the overall grammadtiagiadience for the text, the gradience for the
individual sentences is computed as has already been dolhesiraiions 1 and 2. Equation (3.6) is then
used to compute the overall grammaticality of the texokmws:

Using equation (3.6)

where q =2 and pGi = {0, 0.3333}

o 0+ 0.3333
- 2
HG = 0.1667

Therefore, the Grammaticality Score (GS) from equi8.7 is given as
GS = (1 —-0.1667) x 100%
GS = 83.33%

which is also within the range of values expected for & t®nsisting of both grammatical and
ungrammatical sentences.

4 Implementing the Model

The model was implemented in a natural language processtensdescribed in the work of Aregbesola,

Ganiyu, Olabiyisi and Omidiora [28]. The Grammaticakiyaluation Systems (GES) which is a computer-
based natural language processing system is used toyclasifal language texts as either grammatical or
ungrammatical. The GES was developed using the constbeisest approach of Handcrafted Grammar
(HG).

Sample texts of grammatical sentences used in the st@dyacquired from different sources including the
British National Corpus, language experts and print medigrammatical sentences were generated from

10
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the grammatical texts via word substitution, insertion andtidel. The grammaticality evaluation system
architecture was designed based on the HG formalism.system architecture was implemented using
Visual Studio .NET and OpenNLP statistical lexical par3ée performance of the implemented system
was evaluated with sets of grammatical and ungraimalatexts containing 1780 sentences each. The
performance metrics employed in the study include RoecifRecall, Accuracy, F1-Score, False Positive
Rate and Execution Time. The relationship between Averageuion Time (AET) and Number of Words
(NW) per sentence was equally investigated.

The evaluation results in Table 1 showed that the systieided Execution Time, Precision, Recall,
Accuracy, F1-Score and False Positive Rate valugs02f09 second, 0.9091, 0.9831, 0.9424, 0.9447 and
0.0983, respectively. The investigation of the relatignslsitween AET and NW revealed that the AET per
sentence was directly proportional to the NW in the sentéifte study resulted in a system that evaluated
the grammaticality of English language texts and also assigpedific percentage score values to the
grammar of the evaluated text.

Table 1. Overview of the systems’ performance [28]

Measures Value

Precision 0.9091
Recall 0.9831
Accuracy 0.942¢
F1 score 0.9447
Falsepositive rat 0.098:
Execution time (seconds) 0.0409

5 Validating the Model

The validity of the developed model was tested using Hr&8hmatical sentences and 1780 ungrammatical
sentences, making a total of 3560 sentences. These sentereesolected from the British National
Corpus [29,30], language experts, as well as from othereomlimd print media sources. The BNC was
chosen because it was designed to represent a wide cetissr&é British English, both spoken and written,
from the late twentieth century. The corpus of ungranvahtiexts was generated from the corpus of
grammatical texts by word substitution, insertion andtagiean approach similar to that of Foster [31,32].

Using the formulated Mosesean Vector Space Model in a natumglidge processing system, the average
Grammaticality Scores (GS) for the considered gramumdagiecd ungrammatical sentences were determined.
Texts which consist of 0 - 50%, 50 - 75%, and 75 - 100% gramshagatences were classified as Poor (P),
Average (A) and Good (G), respectively. The ranges of l&8acterising P, A and G sentences were then
computed. The Coefficient of Determinatiorf{Bescribing the fitness of the formulated vector space mode
was also computed.

The average GS for the considered grammatical and ungrticainsentences were 99.64 and 73.34%,
respectively. The GS characterising P, A and G sentenaesimvéhe ranges (8 GS < 87%), (8K GS<
94%) and (94 < GS 100%), respectively. This information is shown in Table 1.

The regression chart of Fig. 8 shows the analysis onataepbints extracted from the data ranges in Table
1. The analysis yielded a Coefficient of Determinat{Bfj value of 0.9985. The relationship between the
systems assigned score (y) and the percentage (x) of graminggntences in the texts is shown in the
regression equation (4.1).

y = 0.2656x + 73.551 (8)

11
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Table 2. Analysis of grammar scores

Data ranges Data points
% Range of grammatical % Range of scores Grammatical sentences Scores assigned b
sentences in text assigned by the modt in text (%) the model (%)
0 < x<50 73.34<y<8 0 73.34
50 < x< 75 87<y<94 50 87
75 <x < 10 95<y < 99.6- 75 94
100 99.64
120
100
M;o;’:& +72.551
o R®- 0.0085

co
o

|

N
o

Grammar Score Assigned to Texts by
the System (%)
A o)
c S

0 T T T T T 1
0 20 40 60 80 100 120

Percentage of Grammatical Sentencesin Texts

Fig. 8. Regression chart of syste-assigned grammar scores (in %) against percentageagnmatical
sentences in texts

6 Conclusion

This research was embarked upon to meet the need for angtaality grading model thatt make it ploles
for systems to provide gilad grammaticality evaluation feedback to users and leash&rmnglish languac
In order to be able to provide the required graded feedback, was the need for a gradiding meahanris
vector space model for grammaticality grading was develomet sailsequently implemented as t
grammaticality grading mechanism for an existing grar-checker system.

The developed model for grammaticality grading which wascessfully integrated into an exis
grammarehecker system effectively assigned speqercentage grammar scores to texts entered int
system. The average execution time (0.0409 secondsisehtef the system implementiing the model
not noticeably altered. Hence, the developed grar-grading model is very fast and does not cone an
overhead with respect execution tii

Regression analysis between the gran-score assigned by the system and the percentagramimatica
sentences in input texts showed a Coefficient of metetion (F?) value of 0.9985, meaning that the da
very close to the fitted regression line. Hence, theeldped Mosesean Vector Space Moudel is a gofudt
the concept of grammaticality grading which it modelled. Tegeloped model is thercefore suitable
grammaticality grading in natural languatexts. This developed model would readily find useomputet
aided language learning and automated essay st

12
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Although English language was adopted in the ctirserdy, the developed Mosesean Vector Space Model
is not language dependent. Future work shouldrgetad at applying the developed model in evalgetie
grammaticality of texts in other natural languages.
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