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Abstract

Dengue disease is a mosquito-borne infectious tropical disease caused by the dengue viruses of
four serotypes, DEN 1 - DEN 4. It is transmitted between people by the bite of female adult
Aedes mosquitoes. In the present work, we study a vector host epidemic model of dengue disease
by considering control measures of the disease. The aim of the study is to observe the effects
of control measures on the dengue disease development. Explicit formula for the metric, basic
reproduction number R0 is obtained using Next Generation Matrix method. Stability of the
disease free equilibrium and sensitivity analysis of model’s parameters are discussed in terms of
basic reproduction number. It is observed that the disease free equilibrium is locally and globally
stable when R0 < 1 and unstable when R0 > 1. Numerical results are carried out to illustrate
the impact of control measures in the disease transmission.
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1 Introduction

Dengue disease is a vector borne infectious disease which is threatening about 2.5 billion people
of the world’s population especially of tropical and subtropical countries [1]. Four serologically
different viruses DEN 1 - DEN 4 cause dengue disease. These viruses are transmitted to humans
by the bites of Aedes mosquitoes. A person infected by one of the four serotypes of viruses never
get infected by that serotype again but loses immunity to other three serotypes of the viruses [2].

Different mathematical models have been proposed and analyzed to understand the transmission
dynamics of infectious diseases. In recent years, modeling has become a valuable tool in the analysis
of dengue disease transmission dynamics and to determine the factors that influence the spread of
disease to support control measures. Many researchers [3] [4] [5] [6] [7] [8] [9] have proposed SIR
epidemic model [10] to study the transmission dynamics of dengue disease. Incubation periods
in hosts and vectors have a significant influence in transmission dynamics of dengue disease. So,
different mathematical studies [11] [12] [13] of dengue disease have been made to study dengue
disease transmission dynamics with incubation periods.

There is no specific medicine to cure dengue disease. Awareness programs can be helpful in reducing
the prevalence of the disease. Different epidemic models [14] [15] have been proposed to study the
impact of awareness in controlling dengue disease. Prevention of mosquitoes bites is one of the
ways to prevent dengue disease. The mosquitoes bite humans during day and night when lights
are on. So, to get rid of mosquitoes’ bite, people can use mosquito repellents and nets. If infected
hosts feel they have symptoms of the disease and approach the doctor in time for the supportive
treatment, they can recover fast. This type of awareness can help controlling the disease. Another
way of controlling dengue is destroying larval breeding sites of mosquitoes and killing them. Spray
of insecticides may be applied to control larvae or adult mosquitoes which can transmit dengue
viruses.

In the present work, we have considered followings as control measures:

(i) some susceptible hosts use mosquito repellents to avoid mosquitoes’ bite; (ii) some infected
hosts seek for the supportive treatment timely and recover fast; (iii) some infected hosts use
mosquito repellents to avoid mosquitoes’ bite; (iv) spray of insecticides is applied to control mosquito
population.

2 Formulation of the Model

In the model, total host (human) population, Nh is divided into four classes: Sh (susceptible), Eh

(exposed), Ih (infectious), Rh (recovered) and total vector (mosquito) population, Nv is divided
into three classes: Sv (susceptible), Ev (exposed), Iv (infectious). We assume that the fraction u1

of susceptible hosts use mosquito repellents to avoid mosquitoes’ bite. So, the fraction (1 − u1) of
susceptible hosts interact with infectious mosquitoes. The fraction u2 of infectious hosts seek for
the timely supportive treatment and recover fast by the rate rγh (r > 1). The fraction r1u2 (r1 is
the proportionality constant) of infectious hosts use mosquito repellents to avoid mosquitoes’ bite.
u3 is a control variable that represents the eradication effort of insecticide spraying. It follows that
the recruitment rate of mosquito population is reduced by a factor of 1 − u3. Also, it is assumed
that the mortality rate of mosquito population increases at a rate r2u3 (r2 is the proportionality
constant).
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Fig. 1. Flow chart of the model

Fig. 1 describes the dynamics of dengue disease together with control measures. The system of
differential equations which describes the present SEIR - SEI vector host model is given by

dSh

dt
= µhNh − (1− u1)

bβh

Nh
ShIv − µhSh

dEh

dt
= (1− u1)

bβh

Nh
ShIv − (νh + µh)Eh

dIh
dt

= νhEh − [ru2γh + (1− u2)γh + µh]Ih

dRh

dt
= [ru2γh + (1− u2)γh]Ih − µhRh (2.1)

dSv

dt
= (1− u3)πv − (1− r1u2)

bβv

Nh
SvIh − (r2u3 + µv)Sv

dEv

dt
= (1− r1u2)

bβv

Nh
SvIh − (r2u3 + νv + µv)Ev

dIv
dt

= νvEv − (r2u3 + µv)Iv

Parameters of the model are described in Table 1.

Table 1. Model parameters and their description

Symbols Description

µh death rate of host population

νh host’s incubation rate

γh recovery rate of host population

βh transmission probability from vector to host

πv recruitment rate of vector population

µv death rate of vector population

νv vector’s incubation rate

βv transmission probability from host to vector

b biting rate of vector

Total host population, Nh = Sh + Eh + Ih +Rh, total vector population, Nv = Sv + Ev + Iv.
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dNh

dt
= 0 and

dNv

dt
= (1− u3)πv − (r2u3 + µv)Nv.

So, Nh remains constant and Nv approaches the equilibrium
(1− u3)πv

(r2u3 + µv)
as t → ∞.

Introducing the proportions

sh =
Sh

Nh
, eh =

Eh

Nh
, ih =

Ih
Nh

, rh =
Rh

Nh
, sv =

Sv

(1− u3)πv/(r2u3 + µv)

ev =
Ev

(1− u3)πv/(r2u3 + µv)
, iv =

Iv
(1− u3)πv/(r2u3 + µv)

Since rh = 1 − sh − eh − ih and sv = 1 − ev − iv, the system of equations (2.1) can be written as
the equivalent five dimensional non-linear system of ODEs:

dsh
dt

= µh(1− sh)− αshiv

deh
dt

= αshiv − βeh

dih
dt

= νheh − γih (2.2)

dev
dt

= δsvih − (ϵ+ νv)ev

div
dt

= νvev − ϵiv

Here,

α =
bβhπv(1− u1)(1− u3)

Nh(r2u3 + µv)
, β = νh + µh, γ = ru2γh + (1− u2)γh + µh, δ = (1− r1u2)bβv,

ϵ = r2u3 + µv.

3 Stability Analysis

3.1 Basic reproduction number

Definition 3.1. Basic reproduction number, R0 is the expected number of secondary infections
caused by a single infectious individual during their entire infectious lifetime.

Mathematical expression for the basic reproduction number is obtained using Next Generation
Matrix Method [16] [17]. The basic reproduction number R0 is obtained as

R0 = ρ(FV −1) =

√
αδνhνv

βγϵ(ϵ+ νv)
(3.1)

Here,

F =


0 0 0 α
0 0 δ 0
0 0 0 0
0 0 0 0

 , V =


β 0 0 0
0 ϵ+ νv 0 0

−νh 0 γ 0
0 −νv 0 ϵ

 (3.2)
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3.2 Equilibrium points of the model

Two possible equilibrium points of the model are E0 = (1, 0, 0, 0, 0) and E1 = (s∗h, e
∗
h, i

∗
h, e

∗
v, i

∗
v)

where,

s∗h =
(βγϵ+ δµhνh)(ϵ+ νv)

δνh[ϵµh + (α+ µh)νv]
, e∗h =

µhβγϵ(ϵ+ νv)(R
2
0 − 1)

βδνh[ϵµh + (α+ µh)νv]
, i∗h =

µhβγϵ(ϵ+ νv)(R
2
0 − 1)

βδγ[ϵµh + (α+ µh)νv]
,

e∗v =
µhβγϵ

2(R2
0 − 1)

ανv(βγϵ+ δµhνh)
, i∗v =

µhβγϵ(R
2
0 − 1)

α(βγϵ+ δµhνh)

Here, the first equilibrium point is disease free equilibrium (DFE) point which always exists in the
absence of infective population. The second point if exists is called endemic equilibrium point. This
point exists if R0 > 1.

Thus, we have Theorem 3.1:

Theorem 3.1 (Existence of Equilibrium Points). System of equations (2.2) always has a disease
free equilibrium point. If R0 > 1, the system of equations (2.2) has a unique endemic equilibrium
point.

Theorem 3.2 (Local Stability of DFE). The DFE of the system of equations (2.2) is locally
asymptotically stable if R0 < 1 and unstable if R0 > 1.

Proof. The Jacobian matrix of the system of equation (2.2) about DFE is obtained as the block
structure

J =

[
A B
0 F − V

]
Matrix J is triangular matrix. So, the stability of the system of equations (2.2) depends on the
matrices on diagonal, A = [−µh] and F − V . Matrix A has the eigenvalue −µh < 0. Matrix F
is non-negative matrix, V is non-singular M− matrix [18]. Spectral abscissa of the matrix F − V ,
s(F − V ) < 0 ⇔ ρ(FV −1) < 1 [17]. But, R0 = ρ(FV −1). Therefore, all the eigenvalues lie in the
left half plane if R0 < 1. Hence, DFE of the system of equations (2.2) is locally asymptotically
stable if R0 < 1.

If R0 > 1 then s(F − V ) > 0 showing that at least one eigenvalue lies in the right half plane. So,
DFE of the system of equations (2.2) is unstable if R0 > 1.

Theorem 3.3 (Global Stability of DFE). The DFE of the system of equations (2.2) is globally
asymptotically stable if R0 < 1.

Proof. In the present model, sh ≤ 1 and sv ≤ 1. So, from the system of equations (2.2), for the
dynamics of infective population

deh
dt

≤ αiv − βeh

dev
dt

≤ δih − (ϵ+ νv)ev

dih
dt

= νheh − γih (3.3)

div
dt

= νvev − ϵiv
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Corresponding linear system of equations of (3.3) is

deh
dt

= αiv − βeh

dev
dt

= δih − (ϵ+ νv)ev

dih
dt

= νheh − γih (3.4)

div
dt

= νvev − ϵiv

The system of linear equations (3.4) can be written as

du⃗

dt
= Ku⃗ (3.5)

where K = F − V and u⃗ = [eh, ev, ih, iv]
T .

If R0 = ρ(FV −1) < 1, then s(F − V ) < 0 [17], thus each positive solution of (3.4) satisfies
lim
t→∞

eh = 0, lim
t→∞

ev = 0, lim
t→∞

ih = 0 and lim
t→∞

iv = 0. DFE of the system of equations (3.4) is

globally asymptotically stable since the system is linear. Since all the variables in the system of
equations (2.2) are nonnegative, the use of a comparison theorem [19] [20] leads to lim

t→∞
eh = 0,

lim
t→∞

ev = 0, lim
t→∞

ih = 0, lim
t→∞

iv = 0 and lim
t→∞

sh = 1. Hence, the DFE, (1, 0, 0, 0, 0) is globally

asymptotically stable if R0 < 1.

4 Sensitivity Analysis

Sensitivity analysis is performed to determine the importance of each parameter to the transmission
dynamics of dengue disease. The analysis helps to measure the relative change in a variable when
a parameter changes. Such information is very important to study transmission dynamics of the
disease and to optimize control measures of the disease. In order to decide the most influential
parameter among the control measures in the present model, we have taken the base line values
displayed in Table 2.

We use the normalized sensitivity index following [21].

Definition 4.1. The normalized forward sensitivity index of a variable u that depends on a

parameter p is defined as Υp
u =

∂p

∂u
× u

p
. In the present work, we take p = R0 and u = u1,

u2, u3, r, r1, r2.

Negatives signs of sensitivity indices in Table 2 shows that values of basic reproduction number, R0

get decreased with the increase in the level of control measures u1, u2, u3, r, r1, r2. The table shows
that more influential control measures are u1 (use of mosquito repellents to avoid mosquitoes’ bite),
u3 (control variable that represents the eradication effort of insecticide spraying) and r (recovery
rate improving factor). The greatest value of sensitivity index shows that the control measure, u3 is
the most sensitive control measure. So, u3 is the most influential measure in controlling the disease.

Table 2. Sensitivity analysis of control measures
Parameters → u1 u2 u3 r r1 r2

Baseline Values→ 0.1 0.1 0.1 1.1 0.1 0.1
Sign → -ve -ve -ve -ve -ve -ve

Sensitivity Indices→ 0.056 0.009 0.337 0.054 0.005 0.281
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5 Numerical Results and Discussion

In the present work, we have used SEIR - SEI epidemic model with control measures. The
simulations are carried out in order to explore the impacts of control measures on the dengue
disease dynamics. Following parameter values are used in the model for simulation purpose

Nh = 5071126, πv = 2500000, νh = 0.1667, µh = 0.0045, µv = 0.02941, γh = 0.328833, bβh = 0.75,
bβv = 0.375, νv = 0.1428 [13].

Fig. 2 shows that many susceptible humans remain uninfected over a time when control measures are
implemented. When human becomes aware of control measures such as: using mosquito repellents,
applying insecticides, seeking doctor for timely treatment and avoiding mosquitoes’ bite, only few
humans get infected of the disease (Fig. 3). From Fig 2 and Fig. 3 , we see that many hosts can
be saved from being infected of the disease when control measures are implemented properly.

Fig. 2. Dynamics of susceptible hosts with and without implementation of control measures

Fig. 3. Dynamics of infectious hosts with and without implementation of control measures

Basic reproduction number, R0 is a metric which tells that the disease dies out if R0 < 1 and the
disease takes hold if R0 > 1. Figs. 4-6 are simulated to study the impact of control measure in
determinig the value of R0. The figures show that R0 decreases with the increase in level of control
measures. That means, the prevalence of disease can be reduced with the implementation of control
measures. Sufficient increase in level of control measures causes the basic reproduction number to
be less than unity.
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Fig. 4. Basic reproduction number, R0 against control measures, r1 and r2

Fig. 5. Basic reproduction number, R0 against control measures, u1 and u3

Fig. 6. Basic reproduction number, R0 against control measures, r and u3

Figs. 7-10 are simulated to describe the sensitivity of the control measures on the transmission
dynamics of dengue disease. The figures show the change in the population of infectious hosts with
the change in level of control measures. Among all control measures, the control measures r, u1, u3

are seen more sensitive to the disease transmission. Fig. 10 shows that the most sensitive control
measure is u3 (control variable that represents the eradication effort of insecticide spraying).
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Fig. 7. Dynamics of infectious hosts with various values of control measure, r

Fig. 8. Dynamics of infectious hosts with various values of control measure, u1

Fig. 9. Dynamics of infectious hosts with various values of control measure, u2
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Fig. 10. Dynamics of infectious hosts with various values of control measure, u3

6 Conclusion

Dengue disease is becoming more prevalent worldwide and spreading in new areas. So, there is an
urgent need to develop mosquito management strategies and control strategies of the disease. In the
present study, we have used SEIR-SEI epidemic model to study the influence of control measures
in transmission dynamics of dengue disease. There is no effective treatment of dengue disease. So,
we have introduced some control measures in the model which can help in reducing of burden of
the disease.

Basic reproduction number is a metric, which determines whether the disease comes under control
or becomes more prevalent. Results in the present work show that DFE of the model is locally and
globally stable when R0 < 1; unstable and endemic equilibrium point exists when R0 > 1. Value
of basic reproduction number can be reduced by increasing the level of control measures. Also, the
simulated results show that very few hosts get infected of the disease in the presence of control
measures. That means prevalence of the disease get decreased with the proper implementation of
control measures.

Sensitivity analysis is made to identify the more influential control measures among the control
measures used against the disease. In the present case, the eradication effort of insecticide spraying
is found to be the most influential control measure to decrease the prevalence of the disease and to
bring the disease under control.
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