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ABSTRACT

In this paper we generalize the Riesz integral representation for continuous linear maps associated
with additive set-valued maps with values in the set of all closed bounded convex non-empty
subsets of any Banach space. We deduce the Riesz integral representation results for set-valued
maps, for vector-valued maps of Diestel-Uhl and for scalar-valued maps of Dunford-Schwartz.
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1 INTRODUCTION

The Riesz-Markov-Kakutani representation
theorem states that for every positive functional
L on the space Cc(T ) of continuous compact
supported functional on a locally compact
Hausdorff space T , there exists a unique Borel
regular measure µ on T such that L(f) =

∫
f dµ

for all f ∈ Cc(T ). Riesz’s original form [1] was
proved in 1909 for the unit interval (T = [0; 1]).
Successive extensions of this result were given,
first by Markov in 1938 to some non-compact
space (see [2]), by Radon for compact subset of
Rn (see [3]), by Banach in note II of Saks’book
[4] and by Kakutani in 1941 to compact Hausdorff
space [5]. Others extensions for locally compact
spaces are due to Halmos [6], Hewith [7], Edward
[8] and N. Bourbaki [9]. Singer [10], [11],
Dinculeanu [12], [13] and Diestel-Uhl [14] gave an
integral representation for functional on the space
C(T,E) of vector-valued continuous functions.
Recently Mehdi Ghasemi has shown the integral
representation for continuous functionals defined
on the space C(T ) of all continuous real-valued
functions on T ; as an application, he gives short
solutions for the full and truncated K-moment
problem (see [15]). The set-valued measures
which are a natural extension of the classical
vector measures have been the subject of many
thesis. In the school of Pallu De La Barriere we
have the ones of: D. S. Thiam [16], A. Costé [17],
K. Siggini [18]. In the school of C. Castaing
the one of C. Godet-Thobie [19], and in the
school of D. S. Thiam the ones of G. Dia [20],
M. Thiam [21], G. B. Ndiaye [22]. Investigations
are undertaken for the generalization of results
for set-valued measures in particular the Radon-
Nikodym theorem for weak set-valued measures
[23], [24] and the integral representation for
additive strictly continuous set-values maps
with regular set-valued measures (see [25]).
The work of W. Rupp in T arbitrary non-empty
set and T compact allowed to generalize the
Riesz integral representation of additive and σ-
additive scalar measures to the case of additive
and σ-additive set-valued measures (see [26]).
Among other things he showed that if T is a
non-empty set and A the algebra of subsets of
T , for all continuous linear maps l defined on
the space B(T,R) of all uniform limits of finite
linear combinations of characteristic functions

of sets in A associated with an additive set-
valued map with values in the space ck(Rn)
of convex compact non-empty subsets of Rn,
there exists a unique bounded additive set-valued
measure M from A to the space ck(Rn) such that
δ∗ (. |l(f) ) = δ∗

(
.
∣∣∫ fM

)
and conversely. In this

paper we prove this result in the case of any
Banach space E. We deduce the Riesz integral
representation for additive set-valued maps with
values in the space of all closed bounded convex
non-empty subsets of E; for vector-valued maps
(see [14], theorem 13, p.6) and for scalar-valued
maps (see [28], theorem 1, p. 258).

2 PRELIMINARIES

Let E be a Banach space and E′ its dual space.
We denote by ∥.∥ the norm on E and E′. If X
and Y are subsets of E we shall denote by X+Y
(resp. X−Y ) the family of all elements of the form
x + y (resp. x − y) with x ∈ X and y ∈ Y , and
by X+̇Y or adh(X + Y ) the closure of X + Y .
The closed convex hull of X is denoted co(X).
The support function of X is the function δ∗(.|X)
from E′ to ]−∞; +∞] defined by δ∗(y|X) =
sup{y(x); x ∈ X}. We denote by cfb(E) the set
of all closed bounded convex non-empty subsets
of E. Let cfb(E) be endowed with the Hausdorff
distance denoted by δ and the operations +̇ and
the multiplication by positive real numbers. For all
K ∈ cfb(E) and for all K′ ∈ cfb(E), δ(K,K′) =
sup{|δ∗(y|K) − δ∗(y|K′)|; y ∈ E′, ∥y∥ ≤ 1}.
Recall that (cfb(E), δ) is a complete metric space
(see [27], proposition 4.2, p. I-13-). We denote
by Ch(E′) the space of all continuous real-valued
map defined on E′ and positively homogeneous
ie if u ∈ Ch(E′), then u(λy) = λu(y) for all y ∈
E′ and for all λ ∈ R, λ ≥ 0. We endowed Ch(E′)
with the norm: ∥u∥ = sup{|u(y)|; y ∈ E′, ∥y∥ ≤
1}. Put C0 = {δ∗(.|B); B ∈ cfb(E)} and put
C̃0 = C0−C0; then C̃0 is a subspace of the vector
space Ch(E′) generated by C0. Let T be a non-
empty set, let A be the algebra of all subsets of
T and let B(T,R) be the space of all bounded
real-valued functions defined on T , endowed with
the topology of uniform convergence. We denote
by S(T,R) the subspace of B(T,R) consisting of
simple functions (i.e. of the form

∑
αi1Ai where

αi ∈ R, Ai ∈ A, {A1, A2, ..., An} a partition
of T and 1Ai the characteristic function of Ai.)
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We denote by B(T,R) the closure in B(T,R) of
S(T,R); S+(T,R) (resp.B+(T,R)) the subspace
of S(T,R) (resp.B(T,R)) consisting of positive
functions. Let B(T,R) be endowed with the
induced topology.

Note that if A is the Borel σ-algebra, then B(T,R)
is the space of all bounded measurable real-
valued functions.

Let M be a set-valued map from A to cfb(E).
M is called an additive set-valued measure if
M(∅) = {0} and M(A ∪ B) = M(A)+̇M(B)
for all disjoint sets A, B in A. The set-
valued measure M is said to be bounded
if

∪
{M(A), A ∈ A} is a bounded subset

of E. The semivariation of M is the map
∥M∥(.) from A to [0;+∞] defined by ∥M∥(A) =
sup{|δ(y|M(.))|(A); y ∈ E′, ∥y∥ ≤ 1} where
|δ(y|M(.))|(A) denotes the total variation of
the scalar measure δ∗(y|M(.)) on A defined
by |δ(y|M(.))|(A) = sup

∑
i

|δ∗(y|M(Ai))|; the

supremum is taken over all finite partitions (Ai)
of A, Ai ∈ A.

If ∥M∥(T ) < +∞, then M will be called
a set-valued measure of finite semivariation.
We denote by M(A, cfb(E)) the space of all
bounded set-valued measures defined on A with
values in cfb(E). Let m be a vector measure
from A to E. We say that m is a bounded additive
vector measure if its verifies the similar conditions
of bounded additive set-valued measures. We
denote by ∥m∥ the semivariation of m defined by

∥m∥(A) = sup{|y ◦ m|(A); y ∈ E′, ∥y∥ ≤ 1}
where |y◦m|(A) denotes the total variation of the
scalar measure y◦m on A defined by |y◦m|(A) =
sup

∑
i

|y(m(Ai))| for all A ∈ A; the supremum is

taken over all finite partitions (Ai) of A, Ai ∈ A.

Let L : B+(T,R) → cfb(E) be a set-
valued map. We say that L is an additive
(resp. positively homogeneous) if for all f, g ∈
B+(T,R) (resp. for all λ ≥ 0), L(f + g) =
L(f)+̇L(g) (resp. L(λf) = λL(f)). We denote
by L(B(T,R), Ch(E′)) the space of all linear
continuous maps defined on B(T,R) with values
in Ch(E′). If l ∈ L(B(T,R), Ch(E′)); we put
∥l∥ = sup{∥l(f)∥; f ∈ B+(T,R), ∥f∥ ≤ 1}
where ∥f∥ = sup{|f(t); t ∈ T |}. For a numerical
function f defined on T , we set f+ = sup (f, 0) ,
and f− = sup (−f, 0) .

3 MAIN RESULTS

Definition 3.1. Let l ∈ L(B(T,R), Ch(E′)) and
let L : B+(T,R) → cfb(E) be an additive,
positively homogeneous and continuous set-
valued map. We say that l is associated with L
if l(f) = δ∗(.|L(f)) for all f ∈ B+(T,R). Then
l(f) = δ∗(.|L(f+)) − δ∗(.|L(f−)) ∈ C̃0 for all
f ∈ B(T,R).

Lemma 3.1. Let M : A → cfb(E) be an additive
set-valued measure. Then M is bounded if and
only if it is finite semivariation.

Proof. The set-valued measure M is bounded if there exists a real number c > 0 such that
sup
A∈A

sup
∥y∥≤1

|δ∗(y|M(A))| ≤ c. We have:

sup
A∈A

sup
∥y∥≤1

|δ∗(y|M(A))| ≤ sup
∥y∥≤1

|δ∗(y|M(.))|(T ) = ∥M∥(T ).

On the other hand, by the lemma 5 ([28], p. 97) one has

|δ∗(y|M(.))|(T ) ≤ 2 sup
A∈A

|δ∗(y|M(A))| for all y ∈ E′.

Then sup
∥y∥≤1

|δ∗(y|M(.))|(T ) ≤ 2 sup
A∈A

sup
∥y∥≤1

|δ∗(y|M(A))|. Therefore

sup
A∈A

sup
∥y∥≤1

|δ∗(y|M(A))| ≤ ∥M∥(T ) ≤ 2 sup
A∈A

sup
∥y∥≤1

|δ∗(y|M(A))|.
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Lemma 3.2. Let C0 be the set {δ∗(.|B);B ∈ cfb(E)} and let l : B(T,R) → Ch(E′) be a continuous
linear map. Then l is associated with an additive, positively homogeneous and continuous set-valued
map if and only if l(f) ∈ C0 for all f ∈ B+(T,R).

Proof. The necessary condition is obvious. Now assume that l(f) ∈ C0 for all f ∈ B+(T,R). Let
consider the map j : cfb(E) → C0(B 7→ δ∗(.|B)); then j is an isomorphism, more a homeomorphism
(see [29], Theorem 8, p.185). Let l′ be the restriction of l to B+(T,R). Put L = j−1 ◦ l′; then L is
additive, positively homogeneous and continuous. Therefore for all f ∈ B+(T,R), l(f) = δ∗(.|L(f)) ∈
C0.

Let M : A → cfb(E) be a bounded additive set-valued measure.

For all h ∈ S+(T,R) such that h =
∑

ai1Bi and for all A ∈ A, the integral
∫
A
hM of h with respect to

M is defined by:∫
A
hM = adh (a1M(A ∩B1) + a2M(A ∩B2) + ...+ anM(A ∩Bn)). This integral is uniquely defined.

Moreover for all y ∈ E′, δ∗
(
y
∣∣∫

A
hM

)
=

∫
A
hδ∗(y|M(.)). The map: h 7→

∫
A
hM from S+(T,R) to

cfb(E) is uniformly continuous. Indeed, for all f, g ∈ S+(T,R), one has:

δ
(∫

A
fM,

∫
A
gM

)
= sup

∥y∥≤1

∣∣∫
A
(f − g)δ∗ (y |M(.))

∣∣
≤ sup

∥y∥≤1

∥f − g∥|δ∗(y|M(A))|

≤ ∥f − g∥∥M∥(T ) < +∞.

Since S+(T,R) is dense on B+(T,R) and cfb(E) is a complete metric space, then it has a unique
extension to B+(T,R): let f ∈ B+(T,R) and let (hn) be a sequence in S+(T,R) converging uniformly
to f on T ; therefore the integral

∫
A
fM of f is uniquely defined by

∫
A
fM = lim

n→+∞

∫
A
hnM .

Moreover δ∗
(
y
∣∣∫

A
fM

)
=

∫
A
fδ∗(y|M(.)) for all y ∈ E′, A ∈ A and for all f ∈ B+(T,R). The

map: B+(T,R) → cfb(E)(f 7→
∫
fM) is additive, positively homogeneous and uniformly continuous.

If m is a vector measure defined on A, the integral will be defined in the same manner.

Denotes L0(B(T,R), Ch(E′)) the subspace of L(B(T,R), Ch(E′)) consisting of functions that verify
the condition l(f) ∈ C0 for all f ∈ B+(T,R).

Theorem 3.3. Let M(A, cfb(E)) be the space of all bounded additive set-valued measures from
A to cfb(E). Let l ∈ L0(B(T,R), Ch(E′)). Then there exists a unique set-valued measure M ∈
M(A, cfb(E)) such that l(f) = δ∗

(
.
∣∣∫ fM

)
for all f ∈ B+(T,R).

Conversely for all M ∈ M(A, cfb(E)), the mapping: f 7→ δ∗
(
.
∣∣∫ f+M

)
− δ∗

(
.
∣∣∫ f−M

)
from

B(T,R) to Ch(E′) is an element of L0(B(T,R), Ch(E′)).
Moreover ∥l∥ = ∥M∥(T ).

Proof. Let l ∈ L0(B(T,R), Ch(E′)). Let us prove the uniqueness of the set-valued measure M .
Assume that there exists two set-valued measures M,M ′ ∈ M(A, cfb(E)) such that

δ∗
(
.
∣∣∫ fM

)
= l(f) = δ∗

(
.
∣∣∫ fM ′ ) for all f ∈ B+(T,R). Then for all A ∈ A

δ∗
(
.
∣∣∫ 1AM

)
= δ∗

(
.
∣∣∫ 1AM

)
= l(1A) = δ∗

(
.
∣∣∫ 1AM

′ )(ie δ∗(.|M(A)) = δ∗(.|M ′(A)). Hence
M(A) = M ′(A) for all A ∈ A. Since l ∈ L0(B(T,R), Ch(E′)) then l is associated with an additive,
positively homogeneous and continuous set-valued map L from B+(T,R) to cfb(E). Let M : A →
cfb(E) be the set-valued map defined by M(A) = L(1A) for all A ∈ A. Then M is additive. It
follows from the continuity of L that M is bounded. Moreover

∫
hM = L(h) for all h ∈ S+(T,R).

Let f ∈ B+(T,R) and let (hn) be a sequence in S+(T,R) converging uniformly to f on T . It follows
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from the definition of the integral
∫
fM of f with respect to M and the continuity of L that L(f) =

lim
n→+∞

L(hn) = lim
n→+∞

∫
hnM =

∫
fM . Hence l(f) = δ∗

(
.
∣∣∫ fM

)
for all f ∈ B+(T,R).

Conversely let M ∈ M(A, cfb(E)). Then the map θ : B+(T,R) → Ch(E′) defined by θ(f) =
δ∗

(
.
∣∣∫ f+M

)
− δ∗

(
.
∣∣∫ f−M

)
verifies the condition θ(f) ∈ C0 for all f ∈ B+(T,R). Let j be the

isomorphism from cfb(E) to C0 defined by j(B) = δ∗(.|B) and let L be the set-valued map from
B+(T,R) to cfb(E) defined by L(f) =

∫
fM for all f ∈ B+(T,R). Then j and L are continuous;

therefore θ = j ◦ L is continuous on B+(T,R) and then on B(T,R).

Let us prove now that ∥l∥ = ∥M∥(T ). On one hand, for all y ∈ E′

∥l∥ = sup
∥f∥≤1

∥l(f)∥

= sup
|y|≤1

sup
∥f∥≤1

∣∣δ∗ (y| ∫ f+M
)
− δ∗

(
y|
∫
f−M

)∣∣
= sup

|y|≤1

sup
∥f∥≤1

∣∣∫ f+δ∗(y|M(.))−
∫
f−δ∗(y|M(.))

∣∣
= sup

|y|≤1

sup
∥f∥≤1

∣∣∫ fδ∗(y|M(.))
∣∣ .

On the other hand ∥M∥(T ) = sup
∥y∥≤1

|δ∗(y|M(.))|(T ). Then it suffices to prove the equality

sup
∥f∥≤1

∣∣∣∣∫ fδ∗(y|M(.))

∣∣∣∣ = |δ∗(y|M(.))|(T )

which is classic.

Corollary 3.4. Let L be an additive, positively
homogeneous and continuous set-valued map
from B+(T,R) to cfb(E). Then there is a unique
bounded additive set-valued measure M from A
to cfb(E) such that L(f) =

∫
fM for all f ∈

B+(T,R).

Conversely for all bounded additive set-valued
measure M : A → cfb(E), the map: f 7→

∫
fM

from B+(T,R) to cfb(E) is an additive, positively
homogeneous and continuous set-valued map.

Proof. The second part follows from the
definition of the integral with respect to M .

Let L : B+(T,R) → cfb(E) be an additive,
positively homogeneous and continuous set-
valued map and let j : cfb(E) → C0(B 7→
j(B) = δ∗(.|B)). We denote by l the unique
extension of j ◦ L to B(T,R) : for all f ∈
B(T,R) l(f) = j ◦ L(f+) − j ◦ L(f−) =
δ∗(.|L(f+)) − δ∗(.|L(f−)). We have l(f) =
δ∗(.|L(f)) ∈ C0 for all f ∈ B+(T,R); then
there exists a unique bounded additive set-
valued measure M from A to cfb(E) such that
l(f) = δ∗

(
.
∣∣∫ fM

)
for all f ∈ B+(T,R). Hence

L(f) =
∫
fM for all f ∈ B+(T,R).

The following corollary is partly known (see [14],
theorem 13, p.6)

Corollary 3.5. Let L(B(T,R), E) be the space of
all continuous linear maps from B(T,R) to E and
let M(A, E) be the space of all bounded additive
vector measures from A to E.

Let l ∈ L(B(T,R), E). Then there exists a unique
vector measure m ∈ M(A, E) such that l(f) =∫
fm for all f ∈ B(T,R).

Conversely, given a vector measure m ∈
M(A, E), the mapping f 7→

∫
fm from B(T,R)

to E is an element of L(B(T,R), E). Moreover
∥l∥ = ∥m∥(T ).

Proof. Put Ẽ0 = {{x}; x ∈ E}. Then Ẽ0 is a
closed subspace of cfb(E). Let j1 be the map
from E to Ẽ0 defined by j1(x) = {x}. Then
j1 is an isomorphism more a homeomorphism.
let l′ be the restriction of j1 ◦ l to B+(T,R).
Then l′ is additive, positively homogeneous and
continuous. Therefore by the corollary 3.4
there exists a unique set-valued measure m′ ∈
M(A, cfb(E)) such that l′(f) =

∫
fm′ for all

f ∈ B+(T,R). It follows from this equality that
m′(A) ∈ Ẽ0 for all A ∈ A. Put m = j−1

1 ◦m′. Then

5
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m ∈ M(A, E) and verifies m′(A) = j1(m(A)) for
all A ∈ A. We deduce that

∫
fm′ = j1(

∫
fm) for

all f ∈ B+(T,R); then
∫
fm = j−1

1 ◦ l′(f) = l(f)
for all f ∈ B+(T,R) and consequently l(f) =∫
fm for all f ∈ B(T,R).

The second part of corollary is proved as in the
corollary 3.4. The equality ∥l∥ = ∥m∥(T ) is a
particular case of the theorem 3.3.

By putting E = R, we have the following corollary:

Corollary 3.6. ([28], theorem 1, p. 258)
Let M(A,R) be the space of all bounded additive
real-valued measures defined on A. Let l
be a continuous linear functional defined on
B(T,R). Then there exists a unique measure
µ ∈ M(A,R) such that l(f) =

∫
fd µ for all

f ∈ B(T,R).
Conversely, for all measure µ ∈ M(A,R), the
mapping: f 7→

∫
fd µ is a continuous linear

functional defined on B(T,R).
Moreover ∥l∥ = |µ|(T ).

4 CONCLUSION

We investigate the first part of the Riesz
integral representation for continuous linear maps
associated with additive set-valued maps with
values in the set of all closed bounded convex
non-empty subsets of any Banach space, which
allows the construction of bounded additive set-
valued measures. In particular the integral
representation is given for additive, positively
homogeneous and continuous set-valued maps,
and an alternative proofs are given for the integral
representation results for vector-valued maps of
Diestel-Uhl and for real-valued maps of Dunford-
Schwartz.
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