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ABSTRACT 
 
Forest ecosystems occupied substantial vacuum in the balance of atmospheric carbon and thereby 
control global carbon cycle as well as climate change effect. Assessment of forest biomass value 
determines the role of forest as carbon offset entity. The selection of appropriate biomass 
assessment method and/or the use of reliable allometry are prime factors to carbon calculation of a 
forest. This study developed and compared biomass models as well as produced acceptable 
allometry equation for the study area and forest similar characteristics. It was revealed that forest 
biomass could be assessed with the use spatial image with spectral bands, and indices calculated. 
Different spectral indices correlated with one another as well as correlated with biomass observed 
data. Though, correlation level differs across the various indices considered but Enhance Vegetation 
Index (EVI) gave the best fit based on the criteria set for this study ( �� ���� � 7.981 �

10.799 �����). Two forms of biomass equation including the observed Above-ground Tree Biomass 
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(AGTB) value were compared and the result shows that there were no significant differences 
amongst the different estimation methods. Carbon spatial distribution pattern was generated with the 
chosen spectral index model. 
 

 
Keywords: EVI; biomass; carbon; climate; indices; spatial; AGTB; spectral. 
 
1. BACKGROUND OF THE STUDY 
 
The estimation of forest biomass is an essential 
aspect of studies of carbon storage and carbon 
balance of forests [1]. Since forests play an 
important role in global carbon budget as carbon 
sinks and emission when disturbed or altered 
[2,3]. Plant growth and development reflects the 
possibility of removing CO2 from the atmosphere 
through photosynthesis especially the plant 
growth rate, or increment, which influences the 
performance of forest ecosystems to uptake 
carbon. Also, emissions are caused by forest or 
biomass losses (i.e. harvest, disturbance and 
mortality). The resultant effect of these two 
activities affects the results of carbon emissions 
and removals which are also expressed as total 
carbon stock changes of an area. 
 
The assessment of carbon storage in the forest 
biomass has gained special interest as a result 
of the United Nations Framework Convention on 
Climate Change (UNFCCC) and its Kyoto 
Protocol. As a result of these agreements, 
countries who signed this treaty are mandated to 
estimate and report CO2 emissions and 
removals by forests through effective Measuring 
Reporting and Verified (MRV) systems that 
comply with the guidelines of the 
Intergovernmental Panel on Climate Change. 
This process is considered as an integral part of 
Reduce Emissions from Deforestation and forest 
Degradation (REDD+) actualization within their 
member country [4]. REDD+ programme of the 
United Nations deploys results-based finance for 
incentive on carbon emissions reduction, based 
on a functional forest carbon measurement, 
reporting and verification (MRV) system [5]. 
Nevertheless, technical challenges in 
measurement, reporting and verification have 
substantially contributed to the lack of progress 
for implementation of REDD+ programme of the 
agreed countries. A functional measurement, 
reporting and verification to support REDD+ 
programme requires estimates of the area of 
forest loss and gain as well as the corresponding 
carbon stock and changes [5]. These data are 
needed for the estimation of the actual emissions 
and the construction of forest reference 
emissions level, as a benchmark against which 

the actual emissions are compared [5]. A 
combination of accurate field inventory and 
remote sensing are expected to provide the 
carbon emission and sink results. 
 
The estimation of forest biomass over a large 
area and accurate reporting without expertise 
either from sample tree or stand could be very 
difficult and almost impossible. Though, it was the 
destructive method which encompasses cutting of 
trees, excavating their components, drying and 
weighing of the components to obtain biomass. 
These processes could be very tedious and 
therefore, attentions should focus more in the use 
and development of techniques to estimate forest 
biomass from easily measurable tree 
characteristics (e.g stem diameter, height etc.). 
These techniques, is generally known as 
allometry which usually involve relationships 
between tree biomass and parameters such as 
stem diameter and/or height [6,7,8]. 
 
This study aimed at developing and established 
a Landsat 8 based equation for the assessment 
of aboveground tree biomass in the study area. 
The specific objectives includes; (i) develop and 
compare biomass equation obtain from different 
assessment method methods, (ii) produce spatial 
distribution of carbon over the study area with the 
selected spectral index model. 
 
2. METHODS  
 
2.1 Study Area 
 
This study was conducted in a polygon of 
10,200.57 hectares as Omo Biosphere Reserve, 
which was carved out for this study based on 
vegetation cover with no traces of 
encroachment. The study area lies 
approximately between latitudes6o 55’’ 12.0’ to 
7o 10’’ 12.0’N and longitudes4o 13’’ 12.0’ to 4o 
24’’ 0.0’E within the high forest zone in south-
western of Nigeria (Fig. 1). Originally, the 
biosphere reserve covers about 14,660 hectares 
of land including its core area and buffer zone, 
which was constituted a Strict Nature Reserve in 
1949 and Biosphere Reserve in 1977 
respectively [9].  
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The climate of the study area is humid tropical. 
The biosphere reserve exhibit two seasons: rainy 
and dry seasons as obtained in the southwest 
geopolitical zone of Nigeria. The wet (rainy) 
season starts from March and ends in November 
while dry season lasts from December to 
February. Annual rainfall ranges from 1700 to 
2200 mm while annual temperature and average 
daily relative humidity are 26°C and 80%, 
respectively. Rainfall distribution is bi-modal with 
a marked decline in August and at the peaks in 
July and September. Average elevation is about 
123 m in Omo Biosphere Reserve [9]. 
Geologically, the reserve rest on crystalline rocks 
of the undifferentiated basement complex which 
in the southern parts is overlain by Eocene 
deposits of sand, clay and gravel as reported by 
[10]. Thus, the soils are predominantly 
ferruginous tropical, typical of the variety found in 
intensively weathered areas of basement 
complex formations in the rainforest zone of 
south-western Nigeria [11]. The soils are well 
drained, mature, red, stony and gravely in upper 
parts of the sequence [9].  
 
2.2 Sampling Design 
 
The map of Omo Biosphere Reserve (i.e. 
undisturbed natural forest) was carved and 
gridded into plots of 30 m by 30 m as obtained in 
the Landsat image pixel obtained for this study. 
Ten [10] sample plots of 0.09 ha was randomly 

selected from the map and located on the field 
with the use of Global Positioning System (GPS) 
during the data collection stage of the study. 
 
2.3 Data Collection and Measurements 
 
All standing trees (with minimum Dbh of 10 cm) 
within each sample plot were identified by a forest 
taxonomist and their Dbh was measured in the 
field using a girth tape. Afterwards the trees in 
each sample plot were grouped into species 
groups and two mean trees per species were 
selected for AGTB assessments. The total 
heights, diameters at the base, middle and top of 
all the mean trees were measured using Spiegel 
Relaskop, which were used for the volume 
estimations. Newton’s formula (Equation 1) [12] 
was used to estimate the standing volume of 
each mean tree.  
 

������  �  
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�}                       (1) 

 
Where: 
 

Vtotal = Volume of the stem 
h = Total Tree Height 
∏ = 3.142 
Db =  Diameter at the base 
Dm = Diameter at the middle 
Dt = Diameter at the top. 

 

 

 
 

Fig. 1. Map showing the study area 
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2.4 Estimation of Stem Core Volume 
 
A core sample of each of the two mean trees of 
each species group was extracted with an 
increment borer at the breast height point (i.e. 
1.3 m). Shape of the stem core sample is 
cylindrical and therefore the equation (2) was 
employed to estimate the volume of each core 
sample. 
 

�# �  
�$%

&

�
'                                      (2) 

 
Where: 

 
ds = diameter of the core sample, (cm)l 
 = length of the core sample, (cm) 
∏ = 3.142 
Vs = volume of the core sample, (m) 

 

2.5 Conversion of Stem Volume and Core 
Volume to above Ground Tree 
Biomass 

 
A non-destructive sampling method was used in 
this study to estimate the above-ground tree 
biomass. The two mean trees per species group 
selected were used for AGTB estimation. A core 
sample of each of the two mean trees of each 
species was extracted with an increment borer at 
the breast height point (i.e. 1.3 m). The length of 
the core extracted using the increment borer was 
measured in centimetres. Core diameter was 
also measured for the sample and their average 
was taken since only one increment borer with 
one extraction tube was used for the entire study. 
The core samples were oven-dried at 75ºC to a 
constant weight and the mass measured. Dry 
weight of the core sample was measured in 
grams using an electronic weighing balance. 
Tree AGTB was calculated for each stem by 
using the equation (3) below [13].  
 

���� �  
()×+��

+%
   (3) 

 

Where: 
 

Vol = total stem volume (m3) 
Wd =  oven dry weight of the core sample 

(kg) 
AGTB =  Above-ground Tree Biomass (kg) 

 

2.6 Carbon Stock Assessment 
 

The above-ground tree biomass estimated was 
used to determine the amount of carbon stock in 
each of trees, plots and forest stand since it is 
known that carbon is 50% of biomass estimates 
[14] as obtained in equation [4].  

,-./0� � �102-33 4 0.5                       (4) 
 
Where: 
  

0.5 = Constant 
Biomass = Above-ground Tree Biomass (kg) 

 
Carbon per plot was obtained by adding the 
carbon of all the mean trees within the plot. 
Carbon per hectare was computed by first 
summing the carbon of all the sample plots 
selected for this study and finding their mean, 
and secondly by multiplying the mean carbon per 
plot by the number plots per hectare (i.e. 11.111 
plots). Also per hectare values was multiplied by 
number of hectare within the biosphere reserve 
to obtain carbon for the entire stand. 
 

2.7 Modelling of Biomass/Carbon 
 
Land sat TM image covering the whole study area 
was obtained during the same season as that of 
the research and it was cloud free. Projection of 
the image was defined to WGS_1984 [15]. In the 
search for best predictive and acceptable 
biomass model; seven (7) spectral bands (2 - 9) 
were extracted from Land sat 8 image of the 
study area to calculate seven (7) spectral indices 
(NDVI, SAVI, EVI, GNDVI, NDMI, NBR AND 
NBR2) considered for this present study (see 
Table 1). These spectral indices were chosen for 
this study because they indicate biophysical 
characteristics and conditions of vegetation as 
well as represent vegetation quantity and 
greenness [16,17]. Although these spectral 
indices are moderately or highly correlated with 
one another, but each of these indices comes 
with some advantages [17]. The above-ground 
tree biomass data obtained from each sample 
plot were expressed in tonnes and correlated 
with the spectral indices calculated.  
 
Also, in attempt to provide the best predictive 
model(s); tree parameter, mean Dbh from each 
sample plot was used as a predictor of AGTB as 
reported by some authors [e.g.7,18]. 
 
2.8 Data Analysis 
 
Regression analysis between the spectral indices 
and the AGTB data were performed in order to 
quantify the relationship between dependent 
variable (AGTB) and one or more independent 
variables (spectral indices). Both the relationship 
between AGTB and spectral indices; AGTB and 
tree variable (Dbh) were examined to provide the 
best predictive model(s). 
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Table 1. Landsat-derived spectral indices used to estimate AGB 
 

Index  Equation Constant Author 
Normalised Difference 
Vegetation Index (NDVI) 
 

6��� �
b5 − b4

b5 � b4
 

 Rouse et al., 
(1974) [19] 

Soil Adjusted Vegetation 
Index (SAVI) 9��� �

�1 � L�b5 − b4

b5 � b4 � L
 

L=0.5 Huete (1988) 
[20] 

Greenness Normalised 
Difference Vegetation Index 
(GNDVI) 

�6��� �
b5 − b3

b5 � b3
 

 Gitelsonet al., 
(1996) [21] 

Enhanced Vegetation Index 
(EVI) ��� �

�b5 − b4�

�b5 �  6 �b4�  −  7.5 �b2�  �  1�
 

 L=1 C1=6  
C2=7.5 

Huete (1997) 
[22] 

Normalized Burn Ratio 
(NBR) 
 

6�> �
b5 − b7

b5 � b7
 

 Miller and 
Thode, (2007) 
[23] 

Normalized Difference 
Moisture Index (NDMI) 6�?� �

b5 − b6

b5 � b6
 

 [24] 

Normalized Burn Ratio-2 
(NBR2) 

 

6�>2 �
b6 − b7

b6 � b7
 

 [23] 

 
The best fitting model(s) were determined based 
on the goodness of fit statistics; highest R2, 
lowest RMSE and highest AdjR2. After 
determined the best model (s) for the predictions 
of AGTB with spectral indices as well as tree 
variable, the spatial distribution pattern of carbon 
of the study area was mapped using the data 
obtained from the respective model. 
 
2.9 Comparison between AGTB Estima-

tion Models  
 
The resultant AGTB values from both models 
alongside the field AGTB(i.e. the observed AGTB 
value and the predictive AGTB values from both 
spectral indices and tree variables models) were 
compared with Analysis of Variance (ANOVA) to 
test for significant difference between the AGTB 
values (P≤ 0.05). The ten plots AGTB obtained 
from the field as well as those obtained from 
AGTB predictive models (i.e. both the spectral 
indices and tree variable values) were used in 
the comparison test. 
 
3. RESULTS 
 
3.1 Modelling of Above-ground Tree 

Biomass (AGTB) 
 
There were high correlation coefficient between 
the observed AGTB data and some of the indices 
(ranges from 0.45 – 0.98) which justified the 
candidate predictor(s) amongst the spectral 
indices. Although, majority of the calculated 

spectral signature values correlated with 
observed AGTB values, and also there exist 
either moderate or high correlation between the 
various spectral signatures. But Enhances 
Vegetation Index (EVI) produced the highest 
correlation to the observed AGTB values and this 
justified the use of this signature as explanatory 
variable. 
 
Logarithmic transformed model with one 
explanatory variable was obtained based on the 
simplicity of model and their significance as well 
as estimated accuracy with little or no error. The 
predictive capability and accuracy of selected 
model(s) for this study was confirmed with the 
data generated which indicated little or no 
difference from the field AGTB (see Table 4).  
 
This model with EVI as explanatory variable was 
chosen as the best spectral model to predict 
AGTB with (0.945 and 0.118 as AdjR2and RMSE 
respectively) (Table 2). Also, Diameter at Breast 
Height (Dbh) was chosen as preferred tree 
variable to predict AGTB with (0.788 and 0.231as 
AdjR2and RMSE respectively) (Table 3). 
 
The EVI index equation (Table 2) and Equation 
number 1 (Table 3) as selected models were 
reproduced as Equation 7 and 8 respectively. 
These model has been tested with prove of 
adequate and significant as explanatory 
variables (see Table 4). The AGTB values from 
the three methods (i.e. observed AGTB; spectral 
index model and tree variable predicted AGTB) 
considered for this study were generated with the 
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equations/models obtained as well as observed 
AGTB values from the field (see Table 4).The 
Equation 7 was used to estimate predicted AGTB 
with spectral signature (EVI) as explanatory 
variable while Dbh was used as explanatory 
variable to obtain predicted AGTB in Equation 8.  

 
�� ���� � 7.981 � 10.799 �����          (7) 
 
�� ���� �  −1.230 � 0.170 ��/ℎ�          (8) 

 

3.2 Comparison between Biomass 
Estimation Methods 

 
The comparison test carried out revealed that 
there are no significant differences among the 

treatments (i.e. observed AGTB and the two 
predictive AGTB values) used for this study (see 
Table 5). Though, spectral signature predicted 
AGTB was slightly higher followed by observed 
AGTB value and the tree variable predicted 
AGTB gave the lowest but there are no 
significant difference among these values 
(P<0.05). The result of the test shows that the P-
value (0.98979) is greater than 0.05 which 
means that there is no significant difference 
amongst the AGTB estimation methods 
considered for this study. More also, F-calculated 
is less than F-critical value which also signified 
that there are no significant difference      
amongst the three AGTB estimation methods 
(see Table 5). 

 
Table 2. Equations/Models generated with spectral indices 

 
Index Equation R2 AdjR2 RMSE 
EVI LnAGTB = 7.981 + 10.799(EVI) 0.951 0.945 0.118 
NDMI LnAGTB = -3.366 + 30.922(NDMI) 0.911 0.900 0.159 
GNDVI LnAGTB = 6.918 + 0.000(GNDVI) 0.870 0.842 0.214 
NBR LnAGTB = -7.089 + 28.835(NBR) 0.825 0.803 0.223 
SAVI LnAGTB = -7.505 + 24.941(SAVI) 0.779 0.751 0.250 
NBR2 LnAGTB = -5.484 +51.963 (NBR2) 0.774 0.746 0.253 
NDVI LnAGTB = -6.252 +32.677(NDVI) 0.753 0.723 0.264 

AGTB = dependent variable; EVI = (independent variable); Ln = natural logarithm 
 

Table 3. Equations/models generated with tree variable 
 

Equation No. Equation R2 AdjR2 RMSE 
1 LnAGTB = -1.230 + 0.170(Dbh) 0.811 0.723 0.231 
2 LnAGTB = 3.420 + 0.844(Dbh) 0.811 0.723 0.231 
3 LnAGTB = 0.292 + 0.170(Dbh) 0.811 0.723 0.231 
4 LnAGTB = 0.292 + 1.185(Dbh) 0.811 0.723 0.231 
5 LnAGTB = 6.170 - 79.351(Dbh) 0.826 0.804 0.222 
6 LnAGTB = 3.696 + 0.000(Dbh) 0.820 0.797 0.226 

AGTB = dependent variable; Dbh = (independent variable); Ln = natural logarithm 
 

Table 4. Resultant above-ground tree biomass from three methods 
 

Plot  Stem Mean Observed Predicted AGTB (t/ha) 
No. (ha-1) Dbh AGTB (t/ha) Tree variable (Dbh)  Spectral indices (EVI) 
1 311 17.9 156.52 281.24 108.10 
2 233 19.3 46.44 164.97 58.17 
3 467 19.4 253.02 181.61 159.69 
4 556 22.1 147.61 88.03 152.74 
5 489 23.1 276.16 139.28 278.69 
6 311 23.1 144.56 205.48 146.73 
7 389 23.7 100.25 67.64 99.05 
8 356 24.3 147.68 202.13 233.73 
9 367 24.4 197.50 165.43 248.31 
10 456 26.2 132.15 86.36 138.81 
Sum 1601.88 1582.16 1624.01 
Mean 160.19 158.22 162.40 
Study area total 1634007.78 1613897.35 1656587.73 
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Table 5. Showing analysis of variance (ANOVA) for biomass estimation methods 
 

Source of variation SS df MS F P-value F crit 
Between groups 0.76446 2 0.38223 0.01026 0.98979 3.35413 
Within groups 1005.67 27 37.2471    
Total 1006.44 29         

 

 
 

Fig. 2. Showing spatial distribution of carbon spread of Omo biosphere reserve with spectral 
indices model data 

 
3.3 Spatial Distribution Pattern of Carbon 

with Spectral Indices Model 
 
The AGTB values derived from spectral index 
model (EVI) was used to map the spatial 
distribution of carbon of the study area. The 
accumulation and spread of carbon within the 
reserve tailored towards the water source where 
vegetation is denser with high diameter trees 
(see Fig. 2). The spectral index (EVI) model 
estimated the biomass/carbon of the reserve little 
higher than the tree variable (Dbh) model as well 
as observed AGTB but there are no significant 
difference amongst them. The spectral index 
(EVI) model had 162.40 t/ha and a total of 
1,656,587.73 tons of AGTB for the 10,200.57 
hectares covered for this study, and the model 
with diameter (Dbh) as explanatory variable had 
1435.06 Mg/ha and a total of 1,613,897.35 tons 
of AGTB for the study area while the observed 
AGTB (i.e. AGTB measured from the field) had 
160.19 t/ha and 1,634,007.78 tons of AGTB for 
the area covered for this study (see Table 4). 
Though, slight variations exist amongst the three 

methods estimation of AGTB /carbon of the study 
area but there are no significant difference at 
(P<0.05). 
 
4. DISCUSSION 
 
4.1 Modelling of Biomass/Carbon 
 
The proportion and amount of chlorophyll in the 
leaf and the reflectance of near infrared (NIR) 
radiation as well as absorption of red radiation 
determined the proportion to green leaf density 
which represents the biomass accumulation of 
trees in optical sensor [17]. The spectral index 
(EVI) produced the highest correlation (0.98) and 
the rest of the spectral indices had high 
correlation except the NBR and NBR2 which 
produced 0.45 correlations. The EVI offered the 
highest correlation amongst the spectral 
signatures, and this is consistent with the 
findings of [5]. But the correlation of EVI to 
aboveground biomass of 0.98 produced in this 
study is higher than 0.50 as obtained by [5]. The 
logarithmic transformed models were chosen to 
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predict above ground biomass which is also 
consistent with finding of some authors         
which generated models for biomass prediction 
[e.g. 25,7]. 
 
4.2 Comparison between Biomass 

Estimation Methods  
 
The comparison of three methods of biomass 
estimation considered for this study shows that 
there are no significant difference among them. 
Though, slight variations exist but it does not 
differ significantly. This finding is consistent with 
authors who generated biomass equations and 
compared them with observed biomass values 
[e.g. 7,26,27]. Therefore, these models are 
recommended for use in predicting the 
aboveground tree biomass accumulation in Omo 
Biosphere Reserve. 
 
4.3 Spatial Distribution Pattern of Carbon 

with Spectral Indices Model 
 
Omo Biosphere Reserve had mean biomass 
accumulation of 162.40 t/ha as well as mean 
carbon sequestration of 81.20 t/ha (Table 2) 
since carbon is 50% of biomass. The above-
ground tree biomass value obtained for this 
present study is double the value of biomass 
reported by [5] and also higher than the biomass 
value reported by [28]. Both of whom reported 80 
±7 t/ha and 138 t/ha respectively. But the value 
obtained is lower to what [29] reported for a 
protected forest in Côte d’Ivoire; who reported 
347.17 ± 101.70 t/ha and 245.09 ± 31.68 t/ha as 
the above-ground biomass accumulation of Yapo 
protected forest and Natural Voluntary Reserve 
(NVR) forest, respectively.  
 
The spatial distribution pattern of the carbon was 
mapped using the 50% of the above-ground 
biomass data. The Biosphere reserve has 
accumulated a total of 1,656,587.73 tonnes of 
biomass and 828,293.90 tonnes of carbon (Table 
2). This value of biomass/carbon obtained for this 
study exceeds the report of [5] which gave 140 ± 
7 Mt for area of 15, 700 km2. These values of 
biomass/carbon content show the importance of 
the area in carbon sequestration and climate 
change mitigation potential.  
 
5. CONCLUSION AND RCOMMENDATION 
 
This study was prepared to model and map with 
the selected model as well as compared the two 
allometric equations with observed forest 

biomass data in the quest to provide the best 
allometry for the study area and forest with 
similar characteristics. 
 
Logarithmic equation was selected with single 
explanatory variable for both the spectral index 
and tree variable models, and compared their 
output with observed forest biomass value which 
shows that there are no significant difference at 
(P<0.05) level of significance. This study 
facilitated the use of Landsat 8 data for the 
development of a simple linear model which 
provides the basis for mapping forest carbon, 
estimating carbon stock and detecting its spatial 
distribution. It thereby means that allometry 
equations developed with spectral index can be 
used to estimate the above-ground tree biomass 
of the study area with acceptable accuracy. 
 
These equations generated for this study are 
recommended for use in predicting the 
aboveground tree biomass accumulation in Omo 
Biosphere Reserve. 
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