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In this paper, according to the power output characteristics of distributed
photovoltaic users, the SSA-ELM (Sparrow Search Algorithm - Extreme
Learning Machine) model based on weather type division is proposed for
photovoltaic power day ahead prediction. Because the solar panel power
generation sequence of photovoltaic users contains high frequency
fluctuations, in this paper we use the power sequence convergence effect to
make cluster prediction on all photovoltaic panels to reduce the randomness of
distributed photovoltaic. The prediction accuracy is further improved by dividing
weather types. The historical data of distributed PV users in a region of Gansu
province is used for modeling verification, and the results show that the prediction
error of the proposedmethod is lower. In badweather, the rootmean square error
is at least 0.02 less than the comparison model, and the average annual accuracy
rate is 93.2%, which proves the applicability of the proposed method in different
output types.
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1 Introduction

The competitiveness of photovoltaic system compared with other new energy generation
technologies not only increases the installed capacity of photovoltaic systems in photovoltaic
power stations in recent years, but also increases the number of solar panels installed by
distributed photovoltaic users (Arghvadeep et al., 2019). Due to the geographical location,
installation conditions and other issues, distributed photovoltaic has strong randomness,
intermittency and uncertainty (Ji-dong et al., 2020). After the photovoltaic user power
generation system is connected to the grid, it may affect the power system dispatching
generation plan, and unit maintenance and other tasks in a certain region (Ming-hong et al.,
2012; Peiman and Navid, 2020). The power day-ahead prediction for distributed
photovoltaic users is of great significance to the power dispatching department and
future photovoltaic power generation planning (Si-fan et al., 2018; Shafqat et al., 2021).
High-precision photovoltaic power prediction can provide accurate short-term power
prediction, so as to help the production planners of photovoltaic power stations to
reasonably arrange the operation mode of the photovoltaic power station, such as the
overhaul and maintenance of solar energy equipment in the no-light period (Sandeep K.
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et al., 2020), reduce the abandonment of light, and improve the
economic benefits of the photovoltaic power station.

Aiming at the defects of distributed photovoltaic power stations
(Han-fang et al., 2019), literature (Wei et al., 2022) analyzed and
studied the mechanism of solar power generation, established
physical models to obtain numerical weather prediction (NWP)
data of power stations to be predicted as the basis for power
prediction. However, the paper did not consider distributed
power stations with small installed capacity and different
installation methods (Shi-wei et al., 2023). Literature (Ming et al.,
2022) concluded that wind power clusters can reduce the fluctuation
frequency (Mao et al., 2021) and the difference of daily maximum
power values through step-by-step cumulative analysis of power
values at various historical points of a large number of active wind
farms. Based on this study, this paper migrates the method and
conclusion to photovoltaic power and verifies that they have similar
characteristics. In literature (Ze-xian et al., 2021), the clustering
method was used to decompose the power sequence into trend and
random sequence and model prediction respectively. However, the
clustering algorithm was too simple to consider the difference of PV
output duration (Shu-xia et al., 2023), so it could not effectively
divide the power series after the time delay problem occurs. By
analyzing the characteristics of photovoltaic power curve data,
literature (Mao and Kai-xuan, 2021) modeled and predicted
different frequency components of power series respectively
according to their own characteristics, but this method did not
combine the actual physical significance corresponding to each
frequency. In literature (Kazutoshi et al., 2018), dimensionality
reduction method was used to extract effective features of NWP
meteorological data as model input to improve the prediction
accuracy (Peng et al., 2021; António and Ana, 2022), but it was
not verified in other aspects. On the basis of clustering, the literature
(Mao et al., 2022) used the deep learning network as the prediction
model to greatly reduce the error. However, the model was too
complex, and overfitting may occur in the face of data of different
geographical locations and different characteristics (Rui et al., 2022;
Zanetti et al., 2022). Literature (Mao et al., 2020) analyzed the
characteristics of wind power, excavated the change trend of power
data to improve the prediction effect. On this basis, this paper
optimized the prediction model for the characteristics of distributed
photovoltaic user data in the study of photovoltaic power prediction
to reduce the prediction error.

To sum up, different installed angles and capacities of
photovoltaic panels for distributed photovoltaic users lead to
poor data quality and so on (Han et al., 2022), which makes it
difficult for the prediction model to explore its data series features.
Therefore, we aggregated all users within the fixed area to be
predicted to prediction, which reduce data fluctuations and the
adverse impact of poor data quality on subsequent prediction. The
characteristics of PV power output curve are different due to seasons
or different weather types. In order to further improve the accuracy
of power prediction, weather types need to be divided,
meteorological data with high correlation should be screened and
feature extraction should be carried out, and dimension reduction
results should be used as the classification basis to improve the
accuracy of type classification and improve the accuracy of PV
power prediction. Improve the capacity of power grid to absorb

photovoltaic energy and reduce the phenomenon of light
abandonment.

The main contributions of this paper are as follows.

1) Firstly, by analyzing the common problem of distributed
photovoltaic power generation system, this paper proposed to
sum up the photovoltaic solar panels with limited installed
capacity to forecast to reduce the error. Due to the small
installed capacity and different installation angles of
distributed PV users, PV power output has stronger
randomness and intermittency, and the daily power curve of a
single PV panel has a sudden increase or drop. According to the
convergence effect of power sequence, cluster prediction was
carried out for distributed PV users to reduce the influence of
data fluctuations on prediction.

2) Secondly, in view of the problem that the solar panels of
distributed photovoltaic users are not configured with NWP
data system, this paper divided historical power data into
different output types by clustering to reduce the dependence
of the subsequent prediction model on NWP data.

3) Finally, through the correlation analysis of the distributed
photovoltaic historical data from 2021 to 2022 in a county in
Gansu Province, this paper selected NWP data with high
correlation with power sequence as the prediction basis, and
used feature extraction method to reduce the dimension of the
selected NWP data. Effective prediction data were extracted to
verify the universality of the proposed method under different
output types.

The chapters of this paper are arranged as follows: Section 1 will
analyze the output characteristics of distributed PV users and the
pretreatment before prediction. Section 2 introduces the specific
weather type and the classification method of photovoltaic output
type. Section 3 is the prediction method chosen in this paper and the
overall forecast framework. In Section 4, the method proposed in
this paper is verified by modeling and forecasting the actual
operating data of photovoltaic power generation. Finally, the
conclusion is given in Section 5.

2 Power prediction of distributed
photovoltaic users

The effective grid connection of distributed photovoltaic power
generation can further promote the development of new energy
industry, and the prediction of daily power output curve becomes an
important link. Compared with centralized photovoltaic power
stations, the lack of meteorological spatio-temporal information
data of distributed photovoltaic power stations increases the
prediction difficulty (Aike et al., 2021). Considering the
prediction cost, it is impossible to achieve accurate
meteorological services for all distributed users. According to the
existing problems and referring to the prediction method of
centralized photovoltaic power station, the distributed
photovoltaic users who are close to each other in a fixed area
share the public NWP data in this area to make up for the
missing meteorological data.
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Due to the different installation methods, photovoltaic panel
angles, user geographical locations and other conditions of
photovoltaic users, each photovoltaic panel of photovoltaic users
is predicted separately in a single field. The prediction effect based
on public NWP data cannot fully meet the requirements. The daily
power output curve of distributed photovoltaic users has poor
regularity, which is more random and intermittent except for the
daily periodicity of photovoltaic power output. To solve this
problem, cluster prediction is carried out for distributed
photovoltaic users whose geographical locations are close to each
other and within the same NWP prediction area. According to the
convergence effect of wind power series, summing the output power
of different distributed photovoltaic solar panels for prediction can
reduce the drastic fluctuation of photovoltaic power curve, indirectly
weaken the impact on prediction, and improve the prediction effect.
The frequency distribution of the first order difference value of the
power sequence is used to reflect the convergence effect of
photovoltaic power. As shown in Figure 1, with the increase of
the number of photovoltaic users, the absolute difference of the
original power sequence gradually approaches the range with
smaller absolute values, which proves that the photovoltaic power
sequence also has the convergence effect and can dilute the sharp
fluctuations in the sequence.

In order to further reduce the prediction error of distributed
photovoltaic user clusters, the power data are classified into weather
types according to the difference of NWP data sequence
characteristics. The original data set is divided into sample
clusters of multiple power output types through clustering, and
corresponding to the output under different weather types at the
same time. Then, models are built for different output types. Specific
steps are as follows: 1) Calculate pearson correlation coefficient
(PCC) of meteorological data series and power series in NWP, and
screen out meteorological data with high correlation coefficient. 2)
Principal component analysis (PCA) is used to extract the selected
NWP data feature sequence and select the principal component
sequence meeting the cumulative contribution rate of no less than
90% as the clustering basis. 3) The feature sequences extracted by

dimension reduction are used for clustering, and the appropriate
clustering method is selected according to the characteristics of the
sequence data.

3 Weather type division of distributed
photovoltaic users

Under different weather conditions, the output of photovoltaic
power station is affected by shortwave radiation, temperature,
relative humidity and other climatic factors, and the fluctuation
of power curve is different from the overall trend. Some statistical
characteristics of PV daily power curve are determined by
meteorological factors. Accurate classification of weather types
can improve the accuracy of power prediction and reduce the
prediction error (Xiao-yang et al., 2022). Meteorological factors
have different degrees of influence on power sequence, and the
changes of various data in NWP have great differences in the results
caused by the trend and fluctuation of power curve under different
weather types. Without weather classification, it is difficult for each
model to distinguish the weight of different meteorological data
under different output types in the training process, which will lead
to poor prediction effect. The prediction accuracy of power curve
fluctuation data is low, and even the prediction of trend sequence
has a large deviation.

3.1 Pearsons correlation coefficient

Meteorological conditions have different impacts on
photovoltaic output. Using NWP data with a greater correlation
with power series can not only improve the efficiency of similar day
screening, but also reduce the calculation cost of the prediction
model. Pearson correlation coefficient can eliminate the influence
of sample variable dimension (Imane et al., 2021). The correlation
between each series can be obtained by calculating the mean value
and covariance of each sample data and used as the basis for
weather type division. The Pearson correlation coefficient formula
is shown in Eq. 1 -(4). Pearson correlation coefficient is used to
measure the degree of linear correlation between two sample
sequences. The larger the absolute value of PCC of two samples
is, and the closer it is to 1, the stronger the correlation is; On the
contrary, it is weaker.

�X �
∑n
i�1
Xi

n
(1)

SX �

����������∑n
i�1

Xi − �X( )2
n − 1

√√
(2)

Cov X,Y( ) �
∑n
i�1

Xi − �X( ) Yi − �Y( )
n − 1

(3)

rXY � Cov X, Y( )
SXSY

(4)

Where:X and Y are samples; �X, �Y is the average value of sample
X and Y; n is the number of variables in the sample; SX, SY is the
standard deviation of the sample; Cov(X,Y) is the covariance of

FIGURE 1
Frequency distribution of power difference absolute values of
each cluster power station.
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sample X and Y; rXY is the pearson correlation coefficient of the
sample.

3.2 Principal component analysis

Principal component analysis uses linear projection to map
high-dimensional data processing to a low dimensional space.
Based on variance, the data information is retained to the
maximum extent on the low dimensions of the projection, and
the original high-dimensional data features are retained to fewer
sequences as much as possible during dimension reduction. PCA
reconstructs the original sample sequence with certain
correlation into a new set of unrelated comprehensive
indicators to remove the redundant information in the
original data and reduce the subsequent calculation cost
(Diman et al., 2023).

PCA is used to reduce the dimension of multidimensional
NWP data and extract effective features. The steps of principal
component analysis are as follows: 1) Centralize all high latitude
sequence features to be reduced, and each sequence feature is
divided by its own mean to obtain a new sample. 2) Calculate the
covariance matrix between any two samples of multidimensional
data. 3) Get the eigenvalues of the covariance matrix and their
corresponding eigenvectors. 4) The eigenvalues are arranged
from small to large, and the final dimension reduction
sequence dimension is determined according to the
contribution rate and cumulative contribution rate of the
principal components.

3.3 Multiple clustering

Traditional clustering algorithms mainly include hierarchical
clustering, partition clustering, density clustering, grid clustering
and model-based clustering. The single clustering method is
difficult to ensure the clustering effect and determine the
number of clusters. For large-scale photovoltaic data, the
clustering accuracy and efficiency cannot be satisfied at the
same time. Multi clustering is used to process the original data
hierarchically and divide the clusters (Xiao-li et al., 2022). For the
problems to be solved for data, specific clustering methods are
selected according to the characteristics of each layer of data set,
which can improve the clustering accuracy and ensure the
clustering efficiency.

Due to the large amount of data, the first level clustering method
of the original data set chooses partition clustering for preliminary
sample cluster segmentation, and euclidean distance is selected as
the distance formula by using K-means algorithm; The second layer
of clustering method selects hierarchical clustering. On the basis of
the first layer of clustering, the clustering center obtained by dividing
clustering is used as the new data set to be clustered, and hierarchical
clustering is used to prevent similar feature samples from being
classified into different clusters due to the time lag problem of power
series.

The optimal number of clusters is determined by the cluster
evaluation index. The DBI index represents the ratio of the distance
within the cluster to the distance between clusters of each sample

cluster. The smaller the DBI index is, the higher the similarity of
samples within each cluster and the greater the difference of sample
sequences between clusters; The contour coefficient represents the
compactness of each sample sequence with the inside and outside of
the cluster. The larger the contour coefficient is, the better the
clustering effect is; The CH coefficient represents the relationship
between the data covariance inside and outside the cluster. The
larger the value, the better. The formula involved in each evaluation
index is as follows:

avg � 2
n n − 1( )∑1≤ i< j≤ n

�������������∑m

t�1 xit − xjt( )2√
(5)

DBI � 1
k
∑k

i�1 max
j≠i

avg Ci( ) + avg Cj( )
ci − cj
���� ����2⎛⎝ ⎞⎠ (6)

S i( ) � b i( ) − a i( )
max a i( ), b i( ){ } (7)

CH i( ) � tr Bk( ) n − k( )
tr Wk( ) k − 1( ) (8)

Where: avg is the average distance between samples in the
cluster; n is the number of samples; m is the sample dimension; xit,
xjt is the sample point; DBI is Davidson Bauting index; k is the
number of clusters; Ci, Cj are sample clusters; ci、 cj are the cluster
centers of the sample cluster; S(i) is the profile coefficient; CH(i) is
the CH coefficient; tr is the trace of the matrix; Bk is the sample
covariance matrix between clusters; Wk is the sample covariance
matrix between clusters; b(i) is the distance between samples outside
the cluster, and a(i) is the distance between samples within the
cluster.

Since photovoltaic power output has annual periodicity, the
annual photovoltaic daily power sequence was divided by this
method, and each sample cluster corresponds to one output type.
Photovoltaic power output in different seasons has different
characteristics, and power curves with similar statistical
characteristics may appear in different seasons, because the
weather type has a higher impact on photovoltaic output. In
conclusion, the classification of weather types can improve the
prediction accuracy and reduce the upper limit of prediction
error to some extent. After the divided sample clusters were
obtained, the NWP data characteristics corresponding to the
samples in each cluster were used as the basis to determine the
weather type of the day to be predicted.

4 Prediction model

4.1 Sparrow search algorithm

Sparrow search algorithm (SSA) is an intelligent iterative
optimization algorithm, which can optimize the input weights
and offsets based on the initial weights and thresholds randomly
generated by the original prediction model to improve the accuracy
of prediction (Mei-gang et al., 2022).

The sparrow search algorithm firstly calculates the fitness value
of the initial variables and sorts them in order, and then iteratively
updates and calculates the fitness value repeatedly through Eqs 9–11
until the conditions for stopping iteration are met and the final
requirements are reached.
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Xt+1
i,j � Xi,j · exp − i

α · iter max
( )

Xi,j + Q · L

⎧⎪⎪⎨⎪⎪⎩ (9)

Xt+1
i,j �

Q · exp Xworst −Xt
i,j

i2
( )

Xt+1
P + Xi,j −Xt+1

P

∣∣∣∣ ∣∣∣∣AT AAT( )−1L
⎧⎪⎪⎪⎨⎪⎪⎪⎩ (10)

Xt+1
i,j �

Xt
best + β Xt

i,j −Xt
best

∣∣∣∣∣ ∣∣∣∣∣
Xt+1

P +K
Xt

i,j −Xt
worst

∣∣∣∣∣ ∣∣∣∣∣
fi − fw( ) + ε

⎛⎝ ⎞⎠
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩ (11)

Where: t is the current iteration number; itermax is a constant; α
is a random number of (0,1]; Q is a random number subject to
normal distribution; L is a row vector whose length is equal to the
dimension and whose elements are all 1; Xp is the optimal position
occupied; Xworst is the worst position of the global current iteration.
A is a column vector whose length is equal to the dimension;Xbest is
the current optimal location; K is a random number of [-1,1].

4.2 Extreme learning machine based on SSA
optimization

Extreme learning machine (ELM) is a typical single hidden
layer h(x) neural network. Its structure consists of input layer,
hidden layer and output layer. Each layer is connected by
neurons. The SSA-ELM network structure is shown in
Figure 2. The connection weights wi, β and thresholds bi
between the input layer, the output layer and the hidden layer

of the network are generated randomly. The number of neurons
and other super parameters need to be set before prediction,
which makes the prediction accuracy of the model unable to
reach the optimum under the premise of setting the initial
weights and thresholds. SSA algorithm has the characteristics
of fast convergence speed and good stability. This algorithm is
used to optimize the ELM model to avoid the neural network
falling into the local optimal problem (Zhi-feng et al., 2020).
Compared with the deep learning model, the SSA algorithm has
the characteristics of fast convergence speed and good stability.
The algorithm is used to optimize the ELM model to avoid the
problem of the neural network falling into the local optimal.
Compared with the current deep learning model, the ELM model
optimized by SSA can better prevent the overfitting of the model
in the training process and lead to poor prediction effect.

The model uses the sparrow search algorithm to optimize the initial
weight and threshold, and sets the optimization objective function,
namely, fitness function, as the error of the training set. The smaller the
error is, the higher the coincidence degree between the prediction results
and the original data is. The final optimized output is the best initial
weight and threshold, and then the newly obtained initial weight and
threshold are input to the ELM model for power prediction.

The sparrow search algorithm optimizes the threshold value and
initial connection weight value of the extreme learningmachine. The
fitness function of the optimization algorithm selects the mean
square error (MSE) of the training set. The smaller the error
index is, the closer the predicted data is to the original actual
data. Finally, the optimal threshold value and initial weight value
are output for prediction using the ELM model. The specific
prediction process is shown in Figure 3.

FIGURE 2
SSA-ELM network structure diagram.
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5 Experimental results

5.1 Dataset and evaluation indicators

The actual operation data of PV power generation from
2020 to 2021 of distributed PV users in a county-level city in
Gansu province were selected as the data in this paper, and the
NWP data are the public data of the region where the PV users
are located. The geographical location of PV panels concentrated
distribution is 103°50′east longitude and 36°12′north latitude.
The number of photovoltaic users is 16, with a total of 23 solar
photovoltaic panels installed and put into use. The installed
capacity of photovoltaic panels has three types, namely, 3 kW,
5 kW and 6kW, and the total installed capacity of 23 solar panel
clusters is 90 kW. The time resolution of all data in this paper is
15 min, and the training data set is from January 1 to
31 December 2020. The test data set covers January 3 to
25 December 2021. Extreme learning machine (ELM) model,
SSA-ELM model, ELM model based on weather type division,
continuous method and Gate Recurrent Unit (GRU) model were

selected as comparison models to prove the accuracy of the
proposed method mentioned in this paper.

The prediction and evaluation indexes in this paper are root
mean square error (RMSE), mean absolute error (MAE), mean
error (ME), mean square error (MSE) and mean absolute
percentage error (MAPE). The calculation formula is as
follows:

RMSE �

���������������
1
n
∑n
i�1

PPi − PMi

Ci
( )2

√√
(12)

MAE � 1
n
∑n
i�1

PPi − PMi

Ci

∣∣∣∣∣∣∣ ∣∣∣∣∣∣∣ (13)

ME � 1
n
∑n
i�1

PPi − PMi

Ci
( ) (14)

MSE � 1
n
∑n
i�1

PPi − PMi( )2 (15)

MAPE � 1
n
∑n
i�1

PMi − PPi

PPi

∣∣∣∣∣∣∣ ∣∣∣∣∣∣∣ (16)

FIGURE 3
Forecast flow chart.
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Where: n is the number of all samples;PPi is the actual power at time
i; PMi is the predicted power at time i;Ci is the startup capacity at time i.

5.2 Weather type division

First, the abnormal time points in the power data which are
below 0 or above the installed capacity and do not conform to the
physical meaning were corrected, and then the Pearson correlation
coefficient between NWP data and power sequence was calculated.
As shown in Figure 4, the NWP sequence with the absolute value of
PCC which is not less than 0.5 was selected for feature extraction.
Among them, the meteorological data that meet the requirements
are temperature, ultraviolet irradiance, ultraviolet index, direct
radiation, scattering and total radiation.

The above selected sequences were used as original features for
PCA dimension reduction, and the hierarchical number of
subsequent clusters was determined according to the cumulative
contribution rate of each principal component sequence, with
0.85 as the standard, the number of sequences reaching the
requirement was the number of new features. The cumulative
contribution rate of the original feature sequence in this paper is
shown in Figure 5. When the number of principal component

sequence is 2, the cumulative contribution rate exceeds 0.85 for
the first time, namely, the number of new features is 2.

Multiple clustering was performed according to the new feature
sequence, so an appropriate clustering method needs to be selected
according to the corresponding sequence characteristics of each
layer. The daily power curve of PV is a parabola in trend, and some
fluctuations are attached on the basis of the parabola affected by
environmental and meteorological factors. According to Figure 5,
the cumulative contribution rate of the first principal component is
the highest, so this feature is used as the clustering basis of the first
layer, representing the daily power output amplitude of
photovoltaic. In addition, this layer needs to process the original
data set with a large amount of data. Using partition clustering not
only ensures the clustering efficiency, but also realizes the
classification of power output sequence trend by calculating the
distance between power curves. The data proportion of each cluster
sample cluster is shown in Figure 6.

On the basis of the first layer clustering, the feature of second
dimension was taken as the clustering basis, aiming at the
fluctuation of photovoltaic power curve, the centers of each
sample cluster in the first layer were calculated and further
divided by hierarchical clustering. Since the first two dimensional

FIGURE 4
Pearson correlation coefficient graph.

FIGURE 5
Accumulated contribution rate of the feature sequence.

FIGURE 6
Distribution of data in the first layer.

FIGURE 7
Comparison diagram of each cluster index.
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principal component feature sequences in this paper meet the
cumulative contribution rate standard, only two layers of
clustering were carried out. The optimal number of clusters is
determined by contour coefficient, DBI index and CH coefficient.
The comparison of clustering index results is shown in Figure 7.
When the number of clusters is 4, DBI index is the smallest, SC
coefficient is the highest, CH coefficient is the largest when the
number of clusters is 3, and CH coefficient is close to the maximum
when the number of clusters is 4, so the optimal number of
clusters is 4.

According to the data characteristics of the final clustering center
sequence of each sample cluster, the original data were divided into four
output types, denoted by types A, B, C, and D. Among them, the overall
fluctuation frequency of a sample cluster is low and its output value is
high, which was defined as type A, representing photovoltaic power
generation under cloudy weather. The curve fluctuation frequency is low
and the amplitude of the power curve is large. The lowest daily average
power value was defined as type B, representing theweather typewith the
worst photovoltaic output conditions and the lowest amplitude of the
curve. The number of fluctuations is the largest and the output condition
is not ideal, which is defined as type C, indicating that the weather
condition is relatively bad, which has a great impact on the power output,
and the frequency offluctuations in the sequence is large. The clusterwith
the largest number of samples has a higher curve power value, and the
average sunrise force is the highest among the four clusters. It is defined
as type D, which represents the sunny-like weather type with ideal power
generation conditions and the highest amplitude of output curve.

5.3 Predicted results analysis

SSA-ELM models were established for the prediction of the four
output types respectively. The training set and test set of each sample

cluster data were divided according to the development order of time,
and the data later in the time sequence was taken as the day to be
predicted. The selection of input data of the model directly affects the
prediction accuracy. The comparison of input of different feature
sequences is shown in Figure 8. It can be seen that the prediction effect
of the new feature sequence obtained after dimensionality reduction is
better, and the predicted scatter value is closer to the contour line.

The comparison of prediction results of various output types is
shown in Figures 9–12, where the optimal number of neurons of output
type A is 10. Type B, type C and type D are 2, 8 and 3 respectively, and
the number of comparison model neurons that need to set the
hyperparameter is the same as theirs. As can be seen from the figure,
the method proposed in this paper can well predict the overall trend of
the daily power curve to be predicted. Compared with other comparison
models, the prediction curve of the model in this paper is closer to the
actual value in terms of the changes of the fluctuation parts. When the
actual power suddenly increases and decreases at adjacent time points,
the tracking prediction effect of the model is also good.

The error evaluation indexes of the four types of prediction results
are shown in Figure 13. It can be seen that for type A with good
photovoltaic output conditions, the RMSE value of eachmodel does not
exceed 0.09 due to the small frequency of curve fluctuation, and the
RMSE value of the model in this paper is the lowest, which is 0.039.
However, the errors ofmodels C andDwith sudden power rise or fall in
a small range in time series are larger. The RMSE of the model in this
paper is 0.051 and 0.076, slightly higher than that under the condition of
flat output. Under severe weather conditions, the error indexes of the
proposed method are lower than those of the comparison model, and
MAE is up to 0.042. The highest value of ME is 0.0322; The maximum
values of MSE and MAPE were 12.182 and 0.116, indicating that the
prediction effect of the method proposed in this paper is better than
other models under the premise of unfavorable photovoltaic power
output. The SSA-ELM model based on the classification of weather

FIGURE 8
Comparison of the prediction results for different inputs.
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types can predict the photovoltaic output in complex climates, while the
ELMmodel can only predict the change trend, and the absolute error is
too large. The GRUmodel overfits because of its structure and training
characteristics. The persistence method does not involve the use of
NWP data, and the prediction accuracy decreases when the climate of
the day to be predicted is abrupt. The predictionmodel without weather
classification has poor anti-interference ability and the prediction result
is not ideal.

Compared with the direct prediction of SSA-ELM model, the
RMSE of thismethod is reduced by 0.026, 0.04, 0.014, and 0.071 under
different output types, proving that the division of weather types can
improve the prediction accuracy. The prediction error of the
continuous method in the comparison case is only higher than the
predictionmethod used in this paper, the accuracy of each output type
is slightly higher than other contrast model. The results show that the

power series with large variation trend difference can be divided into
different sample clusters by the clustering of weather types.
Meanwhile, the amplitude and fluctuation characteristics of each
sample series within the cluster are similar, which achieves the
expected purpose. The ELM model based on weather type division
has the largest error in severe output conditions, the RMSE is 0.15,
higher than 0.1 of the method proposed in this paper; the MAE is
0.06 higher; MSE is increased by 163; MAPE is increased by 0.35,
proving that the prediction effect of SSA-ELM model is better than
ELM. For some sudden fluctuations, it is difficult to predict accurately,
but the daily trend changes and some details to be predicted can be
obtained. For the data set with complex fluctuations, the GRU model
prediction curve deviates seriously from the actual value, indicating
that the proposed method can be adapted to different meteorological
conditions.

FIGURE 10
Compare the prediction results of type B.

FIGURE 9
Compare the prediction results of type A.
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TABLE 1 Average value of each error indicator in 2021.

Model RMSE MAE ME MSE MAPE

Proposed 0.068 0.041 −0.0322 46.167 0.261

SSA-ELM 0.109 0.091 0.072 175.13 0.329

ELM 0.171 0.135 0.133 390.45 0.383

Weather Classification ELM 0.129 0.054 0.052 120.76 0.341

ersistence 0.084 0.087 0.072 83.767 0.286

GRU 0.16 0.064 0.041 164.05 0.367

TABLE 2 Average value of each error index in Qinghai Province.

Model RMSE MAE ME MSE MAPE

Proposed 0.082 0.101 0.1012 49.127 0.268

SSA-ELM 0.154 0.141 0.122 188.256 0.419

ELM 0.198 0.175 0.153 350.211 0.493

Weather Classification ELM 0.159 0.164 0.112 110.72 0.561

Persistence 0.112 0.127 0.132 101.245 0.303

GRU 0.177 0.124 0.111 174.253 0.569

FIGURE 12
Compare the prediction results of type D.

FIGURE 11
Compare the prediction results of type C.
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The annual power of 2021 was predicted and the average value
was obtained. The predicted results are shown in Table 1. The
accuracy of the method in this paper is the highest, and the errors are
all the smallest, which proves that the SSA-ELMmodel based on the
division of weather types is universal.

In order to demonstrate the applicability of this model, the data
of photovoltaic users in a cluster in Qinghai Province with large
differences in meteorological conditions were selected for
prediction. The total installed capacity is 40 kW, and the data
used are photovoltaic power output and NWP data from 2018 to
2019, among which January 3 to 28 December 2018 is the training
set. From January 3 to 20 December 2019, as the test set, the annual
average values of each evaluation index of the model are shown in
Table 2. As can be seen from the table, the error of the model in this

paper is still lower than that of the comparison model for regions
with more complex weather changes, and all the prediction errors
are the lowest. Compared with the model without weather
classification, the prediction error is small and the anti-
interference ability of the model in this paper is strong, which
proves that the proposed model has good applicability to different
regions and different photovoltaic output types.

6 Conclusion

In order to solve the problem that distributed photovoltaic
users lack NWP forecasting equipment and the power output is
difficult to predict due to strong fluctuation, this paper adopts the

FIGURE 13
Evaluation indexes of various output types.

Frontiers in Energy Research frontiersin.org11

Ge et al. 10.3389/fenrg.2023.1145448

https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org
https://doi.org/10.3389/fenrg.2023.1145448


photovoltaic user cluster prediction method and uses the
convergence effect of power series to enhance the regularity of
daily power curve. Based on the feature extraction of regional
public NWP data, power data with different changing trends are
divided by multiple clustering, and different types are modeled
and predicted respectively.

Historical data of distributed PV users in a region of Gansu
province are used to verify the effectiveness of the proposed method.
The annual average accuracy was 0.932, higher than that of other
comparison models. The annual average RMSE of the predicted
value of the model was reduced by 0.103 compared with other
comparison models, and the error values of MAE, ME, MAPE and
MSE were the minimum. It is proved that the proposed method is
applicable to distributed PV users under different weather types.
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