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Abstract 
 

In this research, the formation of second derivative two-step block hybrid Enright’s linear multistep 
methods for solving initial value problems is studied. In forming the method, we follow Enright’s 1974 
approach, by introducing the off-mesh points at both interpolation and collocations; we developed the 
continuous schemes for new Enright’s method. The analysis of new Enright method was studied and it 
was found to be consistent, convergent and zero-stable. We further computed the order, error constants 
and plotted the region of absolute stability within which the method is A-stable. The methods exhibited 
better accuracy level when provided with numerical examples than the existing method with which we 
compared our results. 
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1 Introduction 
 
Recently, the integration of Ordinary Differential Equations (ODEs) is investigated using different types of 
block methods. This present work discusses the formation of implicit Linear Multistep Method (LMM) for 
numerical integration of general second order ODEs which arise frequently in the area of science and 
engineering especially mechanical system, control theory and celestial mechanics [1].  
 

            (1.1) 
 

Many researchers have developed numerical methods for solving equation of the form (1.1) using Enright 
Approach, [2], [3], [4] and [5]. 
 
These techniques have been introduced in many literature such as [6], [2], [7], and others. Most practical 
problems that arise in various fields, like engineering or science are considered as mathematical models 
before being solved. These models often lead to differential equations, which can be defined as an equation 
containing a derivative. Numerous problems such as orbital dynamics, chemical kinetics, circuit and control 
theory and Newton’s second law applications involve second-order ODEs as [6]. In many diverse fields such 
as operation research, engineering, behavioural sciences, industrial mathematics, artificial intelligence, 
management and sociology Ordinary differential equations (ODEs) are commonly used for mathematical 
modelling [1]. Mathematical modelling is the art of translating problem from an application area into 
tractable mathematical formulations whose numerical and theoretical analysis provides answers, insight and 
guidance useful for the originating application [8]. This type of problem can be formulated as first-order or 
higher order ODEs. 
 
This research is organised as follows: in section 2, the derivation of the method was discussed, where we 
considered two off-step points through the approach of interpolation and collocation. In Section three, the 
analysis of the methods was discussed. In section four, a few numerical problems were solved and the 
performance of the developed method was compared with the existing methods [9] and [10]. Finally, in the 
fifth section, the conclusion was drawn. 
 

2 Derivation of the Method 
 
Very often, reactions in physical systems transform into system of ODE. Some classes of these systems are 
called Stiff system. The modification of second derivative linear multistep ordinary differential equation for 
solving stiffly differential equation was studied by Sabo et al, 2018. The numerical methods to obtain 
solutions to class of problems are one-step method and Multistep method (MM), (Adeniran, Odejide & 
Ogundare, 2015). Using interpolation and collocation technique, the second derivative multistep methods are 
derived [3], (Enright &Hull, 1975) and [4]. Consider the initial value problem of the form 
 

            (2.1) 
 

The general second derivative formula for solving equation (2.1) using  second derivative linear 

multistep method is of the form 
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 is a discrete point at  are coefficients to be determined. To obtained the 

method of the form (2.2),  is approximated by a basis polynomial of the form 

 

                              (2.3) 

 
equation (2.3) will be used for the derivation of the main and complementary methods for the class of 

continuous second derivatives multistep method of [3] which is a special case of (2.3). Interpolating  

at point , collocating at point  and collocating at points

. 

 

 

 

The system of equations generated are solved to obtained the coefficients of  

which are used to generate the continuous multistep method of Enright of the form 
 

                            (2.4) 

 

evaluating (2.4) yields the second derivative multistep method of Enright, evaluating at 

gives  methods, which will be called complementary 

methods to complete the k block for the system. The Enright's method so obtained is of the form 
 

                            (2.5) 

 

To derive the continuous second derivative multistep method of Enright, Let the basis function  be 
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We interpolate (2.6) at point collocate  at points , and  at 

points , we obtain a system of equation represented in matrix form 

 

 

 
            

 
Applying the Gaussian elimination method on Equation (2.7) gives the coefficient . 

 
These values are then substituted into Equation (2.5) to give the implicit continuous hybrid method of the 
form: 
 
 

.         (2.8) 

 
differentiating Equation (2.8) once yields: 
 

 

 
where the continuous schemes are 
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3 Convergence Analysis of new Enright’s Method 
 
3.1 Order and error constants of the methods 
 
Using the Taylor series, the order of the new method in Equation (6) is obtained [11], it is found that the 
developed method has uniformly order ten, with an error constants vector of: 
 

 TC 8888
11 108655.2,108631.2,108625.2,108616.2  

 
 

3.2 Consistency 
 
Definition 3.1: The hybrid block method (6) is said to be consistent if it has an order more than or equal to 

one i.e.  [11]. 
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3.3 Zero stability 
 
Definition 3.2: The hybrid block method (6) said to be zero stable if the first characteristic polynomial 

 having roots such that , then the multiplicity of must not greater than 

two [11]. In order to find the zero-stability of hybrid block method (6), we only consider the first 
characteristic polynomial of the method according to definition (3.2) as follows 
 

  

 

Which implies . Hence the method is zero-stable since . 

 

3.4 Convergence 
 
Theorem (3.1): Consistency and zero stability are sufficient condition for linear multistep method to be 
convergent. As the method (6) is consistent and zero stable, it indicates that the method is convergent for all 
point [11]. 
 

3.5 Regions of Absolute Stability (RAS) 
 
The absolute stability region of the new method is A-stable and was found according to Sabo et al. 2018 and 
[11].  
 

 
 

Fig. 1. Absolute stability of region new Enright methods 
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and [2]. The performance of the new Enright method is examined on three systems of second-order stiffly 
initial value problems of ordinary differential equations. Tables 4.1, 4.2 and 4.3 show the comparison of our 
method with the other existing method [9] and [12], for absolute errors.  
 
Definition 4.1: In mathematics, a stiff equation is a differential equation for which certain numerical method 
for solving the equation are numerical unstable, unless the step size is taking to be extremely small, 
(Dahlquist, 1963). 
 
Problem 4.1  
 
Consider the stiff system  
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Table 4.2. Comparison of new Enright that of method with [10] 
 

 [10], 3K  Error in New method 
2K  

 xy1
  xy 2

  xy1
  xy 2

 

1.0  21082.5   21083.5   31004.3   31090.2   

2.0  31002.4   31095.3   31096.5   31093.5   
3.0  31017.9   31016.2   

41004.3   41060.1   

4.0  41013.7   41026.6   41011.1   51034.2   

5.0  41020.1   
51022.4   41071.2   

41035.1   

6.0  41028.2   41057.1   51044.9   510745.4   

7.0  41060.1   51077.7   
51050.2   41025.1   

8.0  41052.1   51067.7   41003.1   
51014.5   

9.0  41032.1   051078.6   
41027.2   41014.1   

0.1  41052.1   
51060.7   41005.1   61025.5   

 
Problem 4.3 Consider the stiff system  
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Table 4.3. Comparison of new Enright method with that of [10], 
 

valueX   Error in [10], 3K  Error in New method 
2K  

 xy1
  xy 2

  xy1
  xy 2

 

1.0  61060.2   
61060.2   61050.2   61005.9   

2.0  61042.2   
61042.2   71095.2   

71081.2   

3.0  61018.1   
61018.1   71084.4   61033.4   

4.0  61090.3   61090.3   61095.4   61083.4   

5.0  61058.5   61058.5   61025.6   
61084.5   

6.0  61023.3   61023.3   61012.6   61002.6   

7.0  61035.4   61035.4   61099.6   61066.6   

8.0  61097.3   61097.3   61071.6   61063.6   

9.0  61059.3   61059.3   
61026.7   61098.6   

0.1  61031.4   
61030.4   61088.6   61082.6   

 

valueX 
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5 Conclusions 
 
The formation of second derivative two-step block hybrid Enright’s linear multistep methods to solve initial 
value problems of general second order stiff ordinary differential equations was studied. For this, we follow 
Enright’s 1974 approach, by introducing the off-mesh points at both interpolation and collocations; we also 
developed the continuous schemes for new Enright’s method. The analysis of the method was found to be 
convergent, consistent and zero-stable with absolute stable region. We further computed the order, error 
constants and plotted the region of absolute stability within which the method is A-stable. The absolute 
errors arising from Problems 4.1, 4.2 and 4.3 using the new Enright method were compared with the existing 
method [9] and [10]. It is evident from the results displayed in tables, 4.1, 4.2 and 4.3, that the newly derived 
Enright method performs better than the existing method [9] and [10] when implemented with numerical 
examples.  
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