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ABSTRACT 
 

Background: Tuberculosis (TB) is one of the foremost causes of human mortality across the 
world. In general, it is a curable disease and several drugs are available in market for its treatment, 
however, because of the drug resistance to the currently available anti-TB drugs, the development 
and/or discovery of new drugs with better efficacy against TB cannot be overlooked. In the present 
study, we performed virtual screening of the major phytochemicals of the plant Nigella sativa for 
investigating their potential to inhibit some novel drug targets of Mycobacterium tuberculosis, which 
included- pantothenate kinase, type 1 (MtPanK), β-ketoacyl ACP synthase I (MtKasA), and 
decaprenylphosphoryl-β-D-ribose 2′-epimerase 1 (MtDprE1). 
Methods: The screening of the phytochemicals was investigated through a molecular docking 
approach using Auto dock vina and the molecular interactions in the protein-ligand complexes were 
visualized and analysed through PyMol and BioVia Discovery Studio Visualizer. 
Results: Our in silico observations reveal that, out of the nine selected phytochemicals screened, 
five compounds, namely α-hederin, dithymoquinone, nigellidine, thymoquinone and thymol binded 
to one or more of the selected target enzymes with significant docking scores. α-hederin binded to 
MtDprE1 and MtKasA with a docking score of −8.5kcal/mol and −7.9kcal/mol, respectively, 
dithymoquinone binded to MtKasA, MtDprE1 and MtPanK with a docking score of −6.5kcal/mol, 
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−8.2kcal/mol and −9.2kcal/mol, respectively and nigellidine binded to MtDprE1 and MtPanK with a 
docking score of −8.1kcal/mol and −8.2kcal/mol, respectively. Further, thymol as well as 
thymoquinone were observed to bind MtKasA with a docking score of −6.6kcal/mol.  
Conclusions: The results of our study indicate that the five phytochemicals of N. sativa, including 
α-hederin, dithymoquinone, nigellidine, thymoquinone and thymol, are worth studying further for 
their anti-TB activity, however, additional biological studies are warranted to validate these findings. 
 

 
Keywords: Nigella sativa; tuberculosis; molecular docking; in silico; phytochemicals; M. tuberculosis; 

drugs; drug targets. 
 

1. INTRODUCTION 
 
Tuberculosis (TB), an infectious bacterial disease 
caused by Mycobacterium tuberculosis (M. 
tuberculosis or Mtb), affects millions of people 
each year [1]. Being a treatable disease, its 
treatment is currently available and requires 
multiple drugs to be taken by the patient at least 
for six months. However, due to various 
limitations of the presently available anti-TB 
drugs and the emergence of drug-resistant 
strains of Mtb, the discovery and development of 
new drugs against TB are indispensably needed 
[2,3]. To meet this demand, various anti-TB drug 
development efforts are being intensively carried 
out by researchers across the globe and as a 
result of those continuous efforts a drug 
development pipeline is currently available, with 
two new drugs for tuberculosis (delamanid and 
bedaquiline) already licensed for marketing [4,5]. 
However, the available drug development 
pipeline is still not adequate to address TB as a 
global health issue [3]. Therefore, additional 
strategies for discovery or development of new 
anti-TB drugs, are essentially required for 
overcoming this global health challenge of 
tuberculosis [2,3]. As natural products of plant 
origin and plant extracts have been used by 
humans as traditional remedies for TB 
management since ancient times. Therefore, one 
of the promising strategies for anti-TB drug 
discovery is to test the potential phytochemicals 
from different plant sources [6-10]. Among the 
various medicinal plants, Nigella sativa (N. 
sativa) is one of the most treasured nutrient-rich 
herbs with numerous medicinal benefits [11] and 
recently, the in vitro anti-TB activity of N. sativa 
seed extracts and some of its phytochemicals, 
has been reported in several studies [12-14]. 
 
In M. tuberculosis there are several enzymes, 
with important physiological functions, that have 
been identified as novel drug targets. Here in this 
study, the three drug-targets/enzymes of Mtb 
including pantothenate kinase, type 1 
(MtPanK)[15], β-ketoacyl acyl carrier protein 

synthase I (MtKasA) [16], and 
decaprenylphosphoryl-β-D-ribose 2′-epimerase 1 
(MtDprE1)[17] were selected, and the major 
phytochemicals of N. sativa were individually 
screened against each of these enzymes using 
molecular docking approach. Molecular docking, 
being a popular tool in virtual screening of small 
molecules against the protein targets, has been 
successfully used in several studies investigating 
the interactions of natural products against 
specific target proteins [3,18-22]. However, there 
are no available reports in literature regarding the 
molecular docking of N. sativa phytochemicals 
towards the selected mycobacterial target 
enzymes. Therefore, in this in silico study, we 
aimed to target the three selected mycobacterial 
enzymes and investigated the possible anti-TB 
potential of the key phytochemicals of N. sativa. 
 

2. MATERIALS AND METHODS  
 

2.1 Ligand Selection  
 
In this study, the nine chief phytochemicals of the 
seeds of N. sativa and the control inhibitors of 
the target enzymes, were selected as ligands. 
The chemical structures and the compound 
identification (CID) number of the selected 
phytochemicals of N. sativa are shown in Fig.1. 
 
2.1.1 Protein preparation for molecular 

docking 
 
The crystal structures of MtKasA (PDB ID: 
2WGE), MtDprE1 (PDB ID: 4FF6), and MtPanK 
type 1 (PDB ID: 4BFT) were obtained from the 
Protein Data Bank (PDB) database 
(http://www.pdb.org). The preparation of the 
protein structures for molecular docking (which 
included the removal of the hetero-atoms and 
water molecules, the addition of polar hydrogens 
and appropriate charges, and the repair of 
missing atoms) was performed using UCSF 
Chimera 1.12 software. The prepared structures 
were saved in PDBQT format and used as input 
files during the docking procedure. 

https://www.biorxiv.org/content/10.1101/2020.04.28.067090v1.full#ref-31
https://www.biorxiv.org/content/10.1101/2020.04.28.067090v1.full#ref-32
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Fig. 1. Chemical structure of the selected phytochemicals of N.sativa along with their 
compound identification (CID) number 

 

2.2 Ligand Preparation 
 
The 3-dimensional (3D) structures of the 
selected phytochemicals of N. sativa were 
downloaded from PubChem 
(https://pubchem.ncbi.nlm.nih.gov/) and those of 
the control inhibitors, 2-chloro-N-[1-(5-{[2-(4-
fluorophenoxy)ethyl] sulfanyl}-4-methyl-4h-1,2,4-
triazol-3-Yl) ethyl]benzamide (ZVT), 3-
(hydroxyamino)-N-[(1r)-1-phenylethyl]-5-
(trifluoromethyl)benzamide (OT4), and 
thiolactomycin (TLM), which are the standard 
inhibitors for MtPanK, MtDprE1 and MtKasA, 
respectively, were retrieved from their 
corresponding PDB entries 
(http://www.ebi.ac.uk/thornton-srv/databases/cgi-
bin/pdbsum/GetPage.pl?pdbcode=index.html). 
All the ligands were prepared for molecular 
docking using UCSF Chimera 1.12 software. The 
ligand preparation process mainly included, 
setting the torsion roots, adding the gasteiger 
charges, and merging the non-polar hydrogens. 
The PDBQT files of the prepared ligands were 
saved and used in molecular docking process.  
 
2.2.1 Grid box preparation and molecular 

docking 
 
Identification of the binding site residues for 
MtKasA, MtPanK, and MtDprE1was acquired 
from the available literature [3, 15-17]. For each 
receptor protein a grid box covering the active 
site residues of the protein structure was 
generated using AutoDock Tools 1.5.7 and the 
grid box parameters (Table 1) were saved and 
used as input during the docking procedure. The 

molecular docking calculations for all 
phytochemicals with each of the selected 
enzymes were performed using AutoDockVina v. 
1.1.2 [23]. AutoDockVina results designate the 
Gibbs free energy of binding (ΔG (kcal/mol)) as 
docking scores which represents the efficacy of 
ligand binding to chosen receptor [24]. The 
accuracy of our docking results was validated by 
re-docking all co-crystallised inhibitory ligands 
(control inhibitors) into their corresponding 
protein structures. Further, the docking 
complexes (protein-ligand complexes) of different 
poses of the ligands were generated using PyMol 
molecular graphics system (https://pymol.org) 
[25], and the interactions of the ligands with the 
selected enzymes were analysed and visualized 
using PyMol molecular graphics system and 
BioVia Discovery Studio Visualizer 
(https://discover.3ds.com/discovery-studio-
visualizer-download). 
 

3. RESULTS 
 
Based on the available literature, here in this 
study, we screened the chief phytochemicals of 
N. sativa for their possible ability to bind and 
inhibit the three selected enzymes of M. 
tuberculosis, namely MtKasA, MtPanK, and 
MtDprE1. The molecular structure of the selected 
phytochemicals is shown in Fig. 1. The screening 
was performed by applying an in silico molecular 
docking procedure. For validation of the docking 
conditions before virtually screening the 
phytochemicals, each control inhibitor retrieved 
from its corresponding co-crystallised complex 
was re-docked against the relevant target 

https://pymol.org/
https://discover.3ds.com/discovery-studio-visualizer-download
https://discover.3ds.com/discovery-studio-visualizer-download
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enzyme. After separately docking the 
phytochemicals with the individual target 
enzymes, the best pose docking score of each 
phytochemical towards MtPanK, MtDprE1, and 
MtKasA was selected and noted (Table 2). The 
docking score values for each compound were 
compared to those of the control inhibitors for 
each target and the phytochemicals with the 
lowest energy values that are comparable or 
higher than those of the respective control 
inhibitors were selected. We observed that α-
hederin, dithymoquinone and nigellidine showed 
high docking scores/binding affinity towards 
MtDprE1 (−8.5, −8.2 and −8.1 kcal/mol, 
respectively), comparable to that of the 
corresponding control inhibitor, 0T4 
(−8.3kcal/mol). α-hederin was also observed to 
show higher predicted binding towards MtKasA 
(−7.9 kcal/mol) as compared to that of its control 
inhibitor, TLM (−6.7kcal/mol). The docking 
scores of thymoquinone, thymol and 
dithymoquinone towards MtKasA (−6.6, −6.6, 

and −6.5 kcal/mol, respectively) were slightly 
lower but comparable to that of its control 
inhibitor (−6.7kcal/mol). Futhermore, the docking 
scores of dithymoquinone and nigellidine towards 
MtPanK (−9.2 and −8.2 kcal/mol, respectively) 
were slightly higher or lower than that of its 
control inhibitor, ZVT (−8.5kcal/mol) (Table          
2). 
 
In order to understand the nature of the inter-
molecular bonds between selected 
phytochemicals and the binding site residues of 
the corresponding enzyme in the complex, the 
specific inter-molecular interactions in the 
docking complexes were visually inspected 
through PyMol and BioVia Discovery Studio 
Visualizer. Following the visualization of the 
different ligand poses in the docking complexes, 
the best ligand poses were selected and 
analysed for the interactions between the specific 
ligand and the active site residues of the 
associated enzyme as depicted in Figs. 2-4.  

 

Table 1. Grid parameters (dimensions in X, Y, Z-axis) for the selected target enzymes 
 

Target Enzyme  Centre Grid Box dimensions Size Grid Box dimensions 
MtPanK (PDB ID: 4BFT) −20 × −5 × 10 30 × 30 × 30 
MtDprE1 (PDB ID: 4FF6) 14.99 × −20.507 × 37.226 45 × 40 × 35 
MtKasA (PDB ID: 2WGE) 33.8 × 0.5 × −4.5 48 × 48 × 55 

Abbreviations: MtDprE1; decaprenylphosphoryl-β-D-ribose 2′-epimerase 1 of Mtb, MtKasA; β-ketoacyl ACP 
synthase I of Mtb and MtPanK; pantothenate kinase, type 1 of Mtb 

 

Table 2. Predicted binding affinity (represented as docking scores in kcal/mol) of the main 
phytochemicals of N. sativa and the control inhibitors against M. tuberculosis target enzymes 

 

(Control inhibitors or Phytochemicals 
of N. sativa) 

Docking scores against the selected target enzymes 

MtDprE1 
(PDB ID: 4FF6) 

MtKasA 
(PDB ID: 2WGE) 

MtPanK 
(PDB ID: 4BFT) 

Control inhibitors  
0T4 −8.3 ND ND 
ZVT ND ND −8.5 
TLM  ND −6.7 ND 
Phytochemicals of N. sativa 
α-hederin −8.5 −7.9 −6.7 
Nigellidine −8.1 −5.9 −8.2 
Dithymoquinone −8.2 −6.5 −9.2 
Nigellicine −6.8 −5.9 −6.8 
Carvacrol −5.7 −6.0 −5.6 
Nigellimine −5.7 −5.1 −5.6 
Thymohydroquinone −5.7 −6.0 −5.7 
Thymol −5.6 −6.6 −5.5 
Thymoquinone −5.9 −6.6 −6.0 

Abbreviations: MtDprE1; decaprenylphosphoryl-β-D-ribose 2′-epimerase 1 of Mtb, MtKasA; β-ketoacyl ACP 
synthase I of Mtb, MtPanK; pantothenate kinase, type 1 of Mtb, 0T4; 3-(hydroxyamino)-N-[(1R)-1-phenylethyl]-5- 
(trifluoromethyl)benzamide, ZVT; 2-chloro-N-[1-(5-{[2-(4-fluorophenoxy)ethyl] sulfanyl}-4-methyl-4h-1,2,4-triazol-

3-Yl) ethyl]benzamide, TLM; Thiolactomycin, and ND; not determined. 
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Fig. 2. 2D representation of the interaction of ligands with amino acid residues in the active 
site of MtDprE1; (a) Control inhibitor, 0T4, (b) α- hederin, (c) Dithymoquinone, (d) Nigellidine. 

The dotted lines in different colours indicate the types of interaction of the ligand with the amino acid residues in 
the active site of the target enzyme (dark green; hydrogen bonds, light green; Van der Waals, dark purple or dark 

pink; Pi-Sigma, light pink; Pi-Alkyl, Cyan; Halogen (Fluorine) and yellow; Pi-Sulfur interactions). 
 

 
 

Fig. 3. 2D representation of the interaction of ligands with amino acid residues in the active 
site of MtKasA; (a) Control inhibitor, TLM, (b) Thymol, (C) Thymoquinone, (d) α- hederin, (e) 

Dithymoquinone. 
The dotted lines in different colours indicate the types of interaction of the ligand with the amino acid residues in 

the active site of the target enzyme (dark green; hydrogen bonds, light pink; Pi-Alkyl, dark red; unfavourable 
donor-donor, dark pink; Pi-Sigma and yellow; Pi-Sulfur interactions). 
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Fig. 4. 2D representation of the interaction of ligands with amino acid residues in the active 
site of MtPanK; (a) Control inhibitor, ZVT, (b) Dithymoquinone, (c) Nigellidine. 

The dotted lines in different colours indicate the types of interaction of the ligand with the amino acid residues in 
the active site of the target enzyme (dark green; hydrogen bonds, dark purple or dark pink; Pi-Sigma, light purple 

or light pink; Pi-Alkyl, yellow; Pi-Sulfur, light green; Van der Waals interactions). 

 

 
The phytochemical α- hederin interacted with the 
binding residues of MtDprE1 (Fig. 2b) and 
MtKasA (Fig. 3d) through two hydrogen bonds 
each. The other two phytochemicals, nigellidine 
and dithymoquinone interacted with the binding 
residues of MtDprE1 through one hydrogen bond 
each (Fig. 2c and d), and with the binding 
residues of MtPanK through 2and 1conventional 
hydrogen bonds, respectively (Fig. 4b and c). 
Further, thymol, thymoquinone and 
dithymoquinone interacted with MtKasA through 
1, 3 and 1 conventional hydrogen bonds, 
respectively (Fig. 3b, c and e)   In addition to the 
conventional hydrogen bonds, some non-
covalent interactions (like Pi-Alkyl interactions, 
Pi-Sigma interactions etc.) were also observed 
between these top-ranked N. sativa 
phytochemicals and the active site residues of 
the corresponding docked enzymes, as depicted 
in the two-dimensional (2D) illustrations (Figs. 2-
4).The molecular interaction of various active site 
residues of MtDprE1, MtKasA and MtPanK with 
their respective control inhibitors is available in 
the literature [3] and reported here as well (Figs. 
2a, 3a and 4a). Based on our observations, we 

here report that α- hederin, thymoquinone, 
dithymoquinone, thymol and nigellidine possess 
the ability to bind and inhibit one or more of the 
selected enzymes of Mtb and are worth 
investigating further for their anti-TB efficacy 
under in vitro and in vivo models. 

 
4. DISCUSSION  
 
In this study, the in silico binding affinity of the 
main phytochemicals of N. sativa towards the 
three mycobacterial enzymes, including MtKasA, 
MtDprE1 and MtPanK was investigated. The 
reason for selecting these proteins is that they 
are among the key enzymes required for the 
growth and survival of Mtb within the eukaryotic 
host. Several vital pathways of Mtb, such as 
cofactor biosynthesis, cell wall biogenesis and 
signal transduction are regulated by these 
enzymes and their absence in mammalian cells 
makes them highly selective drug targets for TB. 
In addition, these enzymes represent some 
emerging drug-targets against which no 
confirmed drug is presently available [15–17]. 
Although several in silico studies have reported 
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the possible inhibitory potential of various N. 
sativa phytochemicals against SARS-Cov-2 [26-
32], the anti-mycobacterial potential of N. sativa 
constituents has been reported in a few studies 
only [12-14]. In this preliminary study, the nine 
prominent phytochemical compounds of N. sativa 
were selected and their inhibitory potential 
against the three selected mycobacterial 
enzymes was investigated through in silico 
molecular docking. In molecular docking, scoring 
algorithms are used to estimate the likelihood of 
a given compound to bind a protein target. 
Among the nine compounds, five (α- hederin, 
dithymoquinone, nigellidine, thymol and 
thymoquinone) were observed to bind one or 
more selected target enzymes with significant 
binding energies/docking scores, higher or 
comparable to those of the control inhibitors of 
the corresponding enzymes (Table 2). Based on 
our docking results, the best predicted-binders to 
MtDprE1 included α- hederin, dithymoquinone 
and nigellidine, among which dithymoquinone 
and nigellidine also binded to MtPanK with a 
good binding affinity. The best predicted-binders 
to MtKasA included α- hederin, dithymoquinone, 
thymol and thymoquinone (Table 2). 
 
Further, after visualizing the docked complexes 
using PyMol, it was observed that like the control 
inhibitors, the selected phytochemicals with 
significant docking scores bind within the binding 
pocket in the target proteins (Figs.2-4).  The top 
five compounds (α- hederin, dithymoquinone, 
nigellidine, thymol and thymoquinone), among 
the nine selected phytochemicals, efficiently bind 
to the binding pocket of one or more target 
enzymes and stably interacted with the 
interacting residues in the active site (Figs. 2-4). 
The interaction involved various bonds 
(including, conventional hydrogen bonds, Pi-
Alkyl, Pi-Sigma bonds etc.) which might lead to 
the possible inhibition of activity of the specific 
target enzyme. On the basis of the findings of our 
study, we suggest that the phytochemicals α- 
hederin, dithymoquinone, nigellidine, thymol and 
thymoquinone are worth studying further through 
in vitro biological evaluation.  
 

5. CONCLUSION  
 
In the current study, a molecular docking 
approach was applied to identify potential anti-TB 
compounds from the selected phytochemicals of 
N. sativa. Based on their docking score and 
stable interactions with one or more selected 
drug targets of Mtb, five phytochemicals- 
dithymoquinone, α- hederin, nigellidine, thymol 

and thymoquinone of N. sativa were identified 
and hypothesized as possible inhibitors of Mtb. 
However, further biological evaluations are 
essential to establish their comprehensive 
pharmacological role.  
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