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In this paper, the complete discrimination system method is used to construct the single traveling wave solutions for the
(3 + 1)-dimensional Jimbo-Miwa equations with space-time fractional derivative. As a result, we get the exact traveling wave
solutions of the (3 + 1)-dimensional Jimbo-Miwa equation with space-time fractional derivative, which include rational function
solutions, Jacobian elliptic function solutions, hyperbolic function solutions, and trigonometric function solutions. Some
graphical representations of the solutions are also provided. Finally, the obtained solution is compared with the existing literature.

1. Introduction

In recent decades, a large number of nonlinear partial differ-
ential equation (NLPDE) have been proposed and studied in
order to describe nonlinear wave phenomena in the fields of
hydrodynamics, plasma physics, solid physics, and con-
densed matter physics. Moreover, in order to make these
NLPDE better fit the actual situation, many researchers also
simulate complex factors by using mathematical tools, such
as stochastic differential and fractional differential [1–5]. In
the research methods, traveling wave solutions, as a special
kind of analytical solutions of NLPDE, plays an important
role in understanding nonlinear wave phenomena [6–12].
Therefore, the exact traveling wave solution is an attractive
work in the study of theory and practice.

In 1983, Jimbo and Miwa [13] firstly proposed the fol-
lowing nonlinear partial differential equation in the study
of Lie algebra:

uxxxy + 3uyuxx + 3uxuxy + 2uyt − 3uxz = 0, p, q, r, s ∈ R, ð1Þ

which is called classical (3 + 1)-dimensional Jimbo-Miwa
(JM) equation. JM equation is the second equation of the
famous Kadomtsev–Petviashvili (KP) hierarchy of inte-
grated systems. It plays an important role in the study of
three-dimensional waves in plasma and optics.

Although JM equation is nonintegrable, it has solitary
wave solutions, and the behavior of these solitary waves is
different from that of solitons in multiple collisions, which
has attracted much attention to its traveling wave solutions.
In 2000, the generalized tanh method was used [14] to
obtain some traveling wave solitary wave solutions. In
2001, some hyperbolic function solutions and trigonometric
function solutions of JM equation were obtained by the
homogeneous balance method [15]. In 2007, through the
double soliton method and bilinear method, Dai et al. [16]
obtained some special traveling wave solutions, including
smooth cross kink wave solution, singular periodic kink
wave solution, singular periodic soliton wave solution, and
singular double periodic wave solution. In 2017, Wazwaz
obtained multiple-soliton solutions using the tanh-coth
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method [17]. In 2010, Song and Ge use G′/G expansion
method; three new traveling wave solutions were expressed
as hyperbolic function, trigonometric function, and rational
function in [18]. In 2011, Li et al. [19] applied the general-
ized three wave method to derive accurate three wave solu-
tions, including periodic cross kink wave solutions, double
periodic solitary wave solutions, and solitary wave solutions.
In 2016, Ma gets four kinds of block solutions for Hirota
bilinear form which are given in [20]. In 2017, Su and Dai
[21] gave its single-periodic wave solution and double-
periodic wave solution by using the multidimensional ellip-
tic function. It is worth mentioning that with the develop-
ment of traveling wave solution theory, more and more
effective methods are applied to find traveling wave solu-
tions. Very recently, N-soliton solutions to integrable equa-
tions have systematically been studied by the Hirota direct
method, see [22–25].

Due to various real-world applications of fractional dif-
ferential equations [26–30], we consider the (3 + 1)-dimen-
sional JM equation with fractional order space-time
derivatives in the following form [31]:

2Dβ
yD

α
t u + 3Dβ

y uD
2η
x u + 3Dη

xuD
η
xD

β
y u

− 3Dη
xD

γ
zu +D3η

x Dβ
y u

= 0, 0 < α, β, γ, η < 1,
ð2Þ

where α, β, γ, and η are denoted the order of fractional
derivative.

The fractional Jimbo-Miwa (FJM) equation contains the
same property of fractional KP equation and fractional KdV
equation. Also, it practically describes the (3 + 1)-dimen-
sional travelling wave nature [32]. The exact analytical solu-
tions of (3 + 1) space-time FPDEs are very difficult to
handle, due to the presence of very complicated nonlinear
terms. Because of that, numerous numerical and analytical
methods have been suggested for getting solutions to those
types of equations. The analytical solutions of conformable
time-fractional space-time fractional JM equation have been
presented by Korkmaz [32]. In 2017, the exp(-(phi)) method
is used to construct the exact solutions of nonlinear space-
time fractional (3 + 1)-dimensional Jimbo-Miwa equation
[33]. In 2019, Zhou et al. [34] applied the bifurcation
method of dynamical system to investigate the phase space
geometry of (3 + 1)-dimensional JM equation. In 2020,
Sahoo and Ray [35] applied extended G′/G-expansion
method to space-time fractional (3 + 1)-dimensional JM
equation and got antikink wave solutions.

The paper is constituted in six sections as described as
the following: the introduction of local fractional calculus
and algorithm of the complete discrimination system
method have been described in Section 2. We simplify Equa-
tion (2) to the nonlinear ordinary differential equation by
fractional traveling wave transformation in Section 3. The
classification of all single traveling wave solutions has been
presented in Section 4. The numerical simulation of results
have been presented in Section 5. A precise conclusion of
the presented work has been presented in Section 6.

2. Introductions of Local Fractional Calculus
and Algorithm of the Proposed Method

2.1. Definition of Local Fractional Derivative

Definition 1. Let hðxÞ ∈ Cαðm, nÞ. Then, the derivative with
local fractional-order α at x = x0 for hðxÞ is presented as [36]:

h αð Þ x0ð Þ = dαh xð Þ
dxα

����
x=x0

= lim
x⟶x0

Δα h xð Þ − h x0ð Þð Þ
x − x0ð Þα , ð3Þ

where ΔαðhðxÞ − hðx0ÞÞ ≅ Γð1 + αÞðhðxÞ − hðx0ÞÞ and 0 < α
≤ 1:

Remark 2. The following rule holds:

dηxkη

dxη
= Γ 1 + kηð Þ
Γ 1 + k − 1ð Þηð Þ x

k−1ð Þη: ð4Þ

Remark 3. If ωðxÞ = ð f ∘ gÞðxÞ, where gðxÞ = uðxÞ, then we
get

dηω xð Þ
dxη

= f ηð Þ u xð Þð Þ u 1ð Þ xð Þ
� �η

, ð5Þ

when f ðηÞðuðxÞÞ and uð1ÞðxÞ exist.

If ωðxÞ = ð f ∘ gÞðxÞ, where gðxÞ = uðxÞ, then we get

dηω xð Þ
dxη

= f 1ð Þ u xð Þð Þu ηð Þ xð Þ, ð6Þ

when f ð1ÞðuðxÞÞ and uðηÞðxÞ exist.
2.2. The Algorithm of the Complete Discriminant System
Method. The complete discriminant system method was first
introduced by Yang and his team members in 1961. The
higher-order polynomial discriminant system established
by this method can be used to find the traveling wave solu-
tions of fractional nonlinear fractional partial differential
equations. The primary steps are given as follows.

Step 1. Here, we have considered a nonlinear fractional dif-
ferential equation as the following form

P u,Dα
t u,Dη

xu,Dβ
y u,Dγ

zu,Dα
t D

α
t u,Dα

t D
η
xu,Dη

xD
β
y u,⋯

� �
= 0, 0 < α, β, γ, η < 1,

ð7Þ

where Dη
xu,Dβ

y u,Dγ
zu, and Dα

t u are the local fractional deriv-
atives of u with respect to x, y, z, and t. P is a polynomial of
u = uðx, y, z, tÞ and its various partial derivatives, in which
the highest-order derivatives and nonlinear terms are
involved.
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Step 2. The fractional complex transform is presented as (see
[10, 11])

u x, y, z, tð Þ =U ξð Þ, ξ = k1x
η

Γ 1 + ηð Þ + k2y
β

Γ 1 + βð Þ
+ k3z

γ

Γ 1 + γð Þ −
νtα

Γ 1 + αð Þ ,
ð8Þ

where k1, k2, k3, and ν ≠ 0 are arbitrary constants.

By using the chain rule (see Remark 3), we have:

Dα
t u = −νσtUξ′,Dη

xu = k1σxUξ′,⋯: ð9Þ

Here, σt , σx are the fractal indexes, without loss of gener-
ality, σt = σx = θ, θ is a constant.

Equation (7) is reduced to the following nonlinear ordi-
nary differential equation (ODE) by using Equation (8):

P U ,−νθU ′, k1θU ′, k2θU ′, k3θU ′, ν2θ2U″,−k1νθ2U″,⋯
� �

= 0:

ð10Þ

Without losing generality, Equation (8) can also be writ-
ten in the following form:

Q U , kU ′, k2U″, k3U ′″,⋯,νU ′,⋯
� �

= 0, ð11Þ

where Q is a polynomial in u and its derivatives and notation
(′) are the derivatives with respect to ξ.

Step 3. Rewrite Equation (11) into the following form:

U ′ ξð Þ
h i2

= G U , θ1, θ2,⋯,θmð Þ, ð12Þ

where θ1, θ2,⋯, θm are parameters.

Step 4. Integrate both sides of Equation (12) once, we have

± ξ − ξ0ð Þ =
ð 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

G U , l1, l2,⋯,lmð Þp dU , ð13Þ

where GðUÞ is a polynomial function. In this paper, GðUÞ is
a third-degree polynomial in the form

G Uð Þ =U3 + l2U
2 + l1U + l0, ð14Þ

where l0, l1, l2 are constants with respect to the parameters
θ1, θ2,⋯, θm.

According to the complete discrimination system (23)
for the third-degree polynomial, the roots of GðUÞ can
be classified, and then, the solution of Equation (13) can
be obtained. The detailed classification will be given in
Section 3.

3. The Fractional Traveling Wave
Transformation for Space-Time
FJM Equation

This section contains the solution of Equation (2) by using
the complete discriminant system method.

By the help of Equation (8), Equation (2) can be reduced
to the following third-order nonlinear ODE:

2νk2 + 3k1k3ð ÞU ′ − 3k21k2 U ′
� �2

− k31k2U ′″ = C1: ð15Þ

Multiply both sides of (15) by U′′ and integrate once, we
get

1
2 2νk2 + 3k1k3ð Þ U ′

� �2
− k21k2 U ′

� �3
−
1
2 k

3
1k2 U″
� �2

= C1U ′ + C0,
ð16Þ

where C0 and C1 are integral constants.
Let U ′ðξÞ =VðξÞ. Then, Equation (16) can be written as

V ′
� �2

= −
2
k1

V3 + 2νk2 + 3k1k3
k31k2

V2 −
2C1
k31k2

V −
2C0
k31k2

: ð17Þ

Take a suitable transform in the following form:

V ξð Þ = −
2
k1

� �−1/3
W ξ1ð Þ, ξ1 = −

2
k1

� �1/3
ξ,

d2 = −
2
k1

� �−2/3 2νk2 + 3k1k3
k31k2

, d1 = −
2
k1

� �−1/3 2C1
k31k2

, d0 = −
2C0
k31k2

:

8>>>><
>>>>:

ð18Þ

Substituting (18) into Equation (17), we get a nonlinear
ODE:

Wξ1
′

� �2
=W3 + d2W

2 + d1W + d0: ð19Þ

Assume that

f Wð Þ =W3 + d2W
2 + d1W + d0: ð20Þ

Then, we write Equation (19) to the form:

dWffiffiffiffiffiffiffiffiffiffiffi
f Wð Þp = ±dξ1 = ± −

2
k1

� �1/3
dξ: ð21Þ

Equation (19) can be changed to the following integral
form by using Equation (21):

± −
2
k1

� �1/3
ξ − ξ0ð Þ =

ð
dWffiffiffiffiffiffiffiffiffiffiffi
f Wð Þp , ð22Þ

where ξ0 is an integral constant.
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The corresponding complete discrimination system of
(19) is

Δ = −27 2d32
27 + d0 −

d1d2
3

 !2

− 4 d1 −
d32
3

 !3

,

D1 = d1 −
d22
3 :

8>>>><
>>>>:

ð23Þ

However, in this study, we aim to establish new exact
solitary wave solutions to the space-time fractional (3 + 1
)-dimensional JM Equation (2) by complete discriminant
system method with the aid of symbolic computation soft-
ware Maple. A kind of comparison analysis will be provided
alongside the results and discussion of the considered prob-
lems. Some graphical representations of the problems and
that of comparison will be provided at the end.

4. The Classification of All Single Traveling
Wave Solutions

Case 1. If Δ = 0, and D1 < 0, then f ðWÞ = 0 has a double real
root and a single real root. Denote f ðWÞ = ðW − r1Þ2ðW −
r2Þ, where r1 ≠ r2.

When W > r2, we have

± −
2
k1

� �1/3
ξ − ξ0ð Þ

=
ð 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

W − r1ð Þ2 W − r2ð Þ
q dW

=

1ffiffiffiffiffiffiffiffiffiffiffiffiffi
r1 − r2

p ln
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
W − r2

p
− ffiffiffiffiffiffiffiffiffiffiffiffiffi

r1 − r2
pffiffiffiffiffiffiffiffiffiffiffiffiffiffi

W − r2
p + ffiffiffiffiffiffiffiffiffiffiffiffiffi

r1 − r2
p

����
����, r1 > r2,

2ffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 − r1

p arctan
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
W − r2
r2 − r1

s
, r1 < r2:

8>>>>><
>>>>>:

ð24Þ

Then, by VðξÞ = ð−ðp + qÞ/3Þ−1/3Wðð−ðp + qÞ/3Þ1/3ξÞ and
(24), the solution of Equation (17) is

V1 ξð Þ = −
2
k1

� �−1/3
"
r2 + r1 − r2ð Þ tan h2 12

� −
2
k1

� �1/3
ξ − ξ0ð Þ

 !#
, r1 > r2,

ð25Þ

V2 ξð Þ = −
2
k1

� �−1/3
"
r2 + r1 − r2ð Þ cot h2 12

� −
2
k1

� �1/3
ξ − ξ0ð Þ

 !#
, r1 > r2,

ð26Þ

V3 ξð Þ = −
2
k1

� �−1/3
"
r2 + r2 − r1ð Þtan2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 − r1

p
2

� −
2
k1

� �1/3
ξ − ξ0ð Þ

 !#
, r1 < r2:

ð27Þ

We can see that when Δ = 0 and D1 < 0, Equation (17)
has solitary wave solutions (25) and (26) and has trigono-
metric function periodic solutions (27).

Case 2. If Δ = 0, and D1 = 0, then f ðWÞ = 0 has a triple real
root. Denote f ðWÞ = ðW − rÞ3, we have

± p + q
3

� �1/3
ξ − ξ0ð Þ =

ð 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
W − rð Þ3

q dW: ð28Þ

Then, the solution of Equation (17) is

V4 ξð Þ = 4 −
2
k1

� �−2/3
ξ − ξ0ð Þ−2 + −

2
k1

� �−1/3
r: ð29Þ

Equation (29) shows that the factional JME (17) has
rational function solution.

Case 3. If Δ > 0, and D1 < 0, then f ðWÞ = 0 has three differ-
ent real roots, r1, r2, r3, and r1 < r2 < r3. If r1 <W < r3, taking
the transformation W = r1 + ðr2 − r1Þ sin2ζ, then we obtain

± −
2
k1

� �1/3
ξ − ξ0ð Þ = 2ffiffiffiffiffiffiffiffiffiffiffiffiffi

r3 − r1
p

ð 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −m2

1sin2ζ
p dζ, ð30Þ

where m2
1 = ðr2 − r1Þ/ðr3 − r1Þ.

By the definition of Jacobi function and (30), we have

W = r1 + r2 − r1ð Þsn2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
r3 − r1

p
2 −

2
k1

� �1/3
ξ − ξ0ð Þ,m1

 !
:

ð31Þ

Thus, the solution of Equation (17) is

V5 ξð Þ = −
2
k1

� �−1/3
"
r1 + r2 − r1ð Þsn2

�
ffiffiffiffiffiffiffiffiffiffiffiffiffi
r3 − r1

p
2 −

2
k1

� �1/3
ξ − ξ0ð Þ,m1

 !#
:

ð32Þ
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If W > r3, take the transformation W = ð−r2sin2ζ + rÞ/ð
cos2ζÞð/Þ; the solution of Equation (17) is

V6 ξð Þ = −
2
k1

� �−1/3 r3 − r2sn
2 ffiffiffiffiffiffiffiffiffiffiffiffiffi

r3 − r1
p /2 −2/k1ð Þ1/3 ξ − ξ0ð Þ,m2
� �

cn2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
r3 − r1

p /2 −2/k1ð Þ1/3 ξ − ξ0ð Þ,m2
� �

2
4

3
5,

ð33Þ

where m2
2 = ðr2 − r1Þ/ðr3 − r1Þ:

So, we get two periodic solutions, because sn and cn are
biperiodic functions. Note that

lim
k⟶1

sn x, kð Þ = tanh xð Þ, lim
k⟶1

cn x, kð Þ = sech xð Þ: ð34Þ

If r2 ⟶ r3, m⟶ 1, then Equation (17) has two solitary
wave solutions
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Figure 1: u1ðx, y, z, tÞ when k1 = k2 = k3 = ν = α = β = γ = η = 1/4, c0 = c1 = 0, ξ0 = 0:
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Figure 2: u2ðx, y, z, tÞ when k1 = k2 = k3 = ν = α = β = γ = η = 1/4, c0 = c1 = 0, ξ0 = 0:
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v5 ξ1ð Þ = α1 + α2 − α1ð Þ tanh2 1
2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
α3 − α1

p
ξ1 − ξ0ð Þ

� �
,

v6 ξ1ð Þ = −α2 tanh 1/2 ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
α3 − α1

p
ξ1 − ξ0ð Þ� 	

+ α3
sech 1/2 ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

α3 − α1
p

ξ1 − ξ0ð Þ� 	 :

ð35Þ

Case 4. If Δ < 0, then f ðWÞ = 0 has only one real roots.
Denote f ðWÞ = ðW − rÞðW2 + pW + qÞ, where r2 − 4q < 0:

If W > r, taking the transformation W = r +ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 + pr + q

p
tan2ζ/2, then we obtain

± −
2
k1

� �1/3
ξ − ξ0ð Þ

=
ð 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

W − rð Þ W2 + pW + qð Þ
p dW

=
ð ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r2 + pr + q
p

tan ζ/2cos2ζ/2
r2 + pr + qð Þ3/4 tan ζ/2cos2ζ/2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −m2

3sin2ζ
p dζ

= 2
r2 + pr + qð Þ1/4

ð 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −m2

3sin2ζ
p dζ,

ð36Þ

where m2
3 = 1/2ð1 − ððr + r/2Þ/ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r2 + pr + q
p ÞÞ.
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Figure 3: u3ðx, y, z, tÞ when k1 = k2 = k3 = ν = α = β = γ = η = 1/4, c0 = c1 = 0, ξ0 = 0:
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From the definition of Jacobi function and (36), we have

cos ζ = 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 + pr + q

p
W − r +

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 + pr + q

p − 1: ð37Þ

Then, if W > r, by Equation (37), the solution of Equa-
tion (17) is

V7 ξð Þ = −
2
k1

� �−1/3 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 + pr + q

p
1 + cn r2 + pr + qð Þ1/4 −2/k1ð Þ−1/3 ξ − ξ0ð Þ,m3

� �
2
4

−
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 + pr + q

p
+ r

3
5:

ð38Þ

Since UðξÞ = Ð VðξÞdξ and (8), we get the travelling
solutions of Equation (2) from (25), (26), (27), (29), (32),
(33), and (38), respectively.

u1 ξð Þ = −
2
k1

� �−1/3
r2 + 1ð Þ ξ − ξ0ð Þ − 2 −

2
k1

� �−2/3
r1 − r2ð Þ

� tanh 1
2 −

2
k1

� �1/3
ξ − ξ0ð Þ

 !
, r1 > r2,

u2 x, y, z, tð Þ = −
2
k1
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u7 x, y, z, tð Þ = −
2
k1

� �−1/3
ξ − ξ0ð Þ − E sn M ξ − ξ0ð Þ,m3ð Þ,m3ð Þ½ �
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ð39Þ

where Eðϕ,mÞ = Ð ϕ0 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −m2sin2ϕ

p
dϕ, M = ð−2/k1Þ−1/3

ðr2 + pr + qÞ1/4.

5. Numerical Simulation

According to the above classification of all single travelling
wave solutions to space-time fractional JM equation, we give
the corresponding representation of these solutions. By tak-
ing concrete parameter values and conditions, we give con-
crete solutions. This means that all these solutions are
realizable. The following contains the 3D and 2D solution
graph for the obtained solutions of space-time fractional
JM equation. Here, the numerical simulation has been done
in Figures 1–7 for showing the nature of the obtained
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solution. In addition, we also note that (25) and (26) are sol-
itary wave solutions, but u1 and u2 are not solitary wave
solutions. Similarly, (32), (33), and (38) are the periodic
wave solutions, but u5, u6, u7 are the sum of unbounded
function and periodic functions. These just illustrate the
complexity of JM equation.

6. Conclusion

The space-time fractional (3 + 1)-dimensional JM equations
is studied by the complete discrimination system method.
Compared with the existing literature [33, 35], a series of
new exact solutions are obtained, including rational function
solutions, Jacobian elliptic function solutions, hyperbolic
function solutions, and trigonometric function solutions. It
can be seen from the above figures that all solutions can be
realized by selecting appropriate parameters, which means
that compared with other literatures, we have obtained more
abundant traveling wave solutions of (3 + 1)-dimensional
Jimbo-Miwa equation with space-time fractional derivative.
These solutions may help us to explore new phenomena
which appear in Equation (2). This paper gives a new idea
to study the dispersive traveling wave solutions of (3 + 1
)-dimensional Jimbo-Miwa equation with space-time frac-
tional derivative. If α, β, γ, and ν take 1, we get the traveling
wave solutions to the usual JM Equation (1). Moreover, the
complete discrimination system method can also be used
to find the exact traveling wave solutions of other coupled
systems. In future research work, we will focus on the exact
traveling wave solution of more complex coupled systems.
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