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Abstract

The Earth is exposed annually to the fall of some meteorites and probably other celestial bodies
which cause a potential danger to vital areas in several countries. Consequently, the accurate
calculation of the falling time of such bodies is useful in order to take the necessary procedures
for protecting these areas. In this paper, Newton’s law of general gravitation is applied to analyze
the vertical motion in the Earth’s gravitational field. The falling time is obtained in exact form.
The results are applied on several objects in real life.
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1 Introduction

Several centuries ago, the British scientist Isaac Newton developed the laws of regular motion with
a constant acceleration in a straight line. Such laws are often studied in the early years of the
university stage to investigate the vertical motion of objects close enough to the surface of the
earth, that is, at small heights compared to the radius of the Earth. Newton also discovered his
important law of general gravitation in classical mechanics, which is usually used to analyze the
motion of an object in the gravitational field of another object. The latter is of course more general
than the aforementioned vertical motion laws. The question that we want to answer in the present
study is that; what is the difference between the falling time of an object in view of both Newton’s
laws of vertical motion and Newton’s law of general gravitation? In the present study, we will
determine the amount of error resulting from the applications of Newton’s laws of vertical motion.
Such error will be expressed in terms of the height from which the object fall. The results will be
applied on several objects in real life.

Perhaps the first attempt to study the falling objects in the Earth’s gravitational field was the
experiment of the pound and the quill made by the great scientist Isaac Newton several centuries
ago. Newton concluded from his experiment that the falling time of two bodies from the same height
does not depend on their masses and that they will take the same time to reach the ground in the
absence of air resistance, where Newton has conducted his famous experiment in a vacuum tube of
air. Newton made great contributions and discovered many scientific laws in classical mechanics [1],
not only, he also developed other important theories and laws in various branches of physics and
astronomy. Some of the most famous laws developed by Newton were the three laws of motion in a
straight line with a constant/regular acceleration. These laws are usually taught in the early years
for the students in physics and mathematics departments. Replacing the constant acceleration with
the acceleration due to the gravity of Earth leads to Newton’s laws of vertical motion which can be
used to study the vertical motion of objects near to the Earth’s surface.

The question arises here is that; is it possible to apply Newton’s laws of vertical motion on objects
falling from hundreds of kilometers above the ground? On the other hand, Newton derived his
famous law of gravitation through which can be used to study the vertical motion of objects far
away from the Earth’s surface [2]. Hence, Newton’s law of gravitation could be applied in a much
greater range than Newton’s laws of vertical motion. The questions that we try to answer in the
current study are; what is the difference between the results that can be obtained in light of both
Newton’s laws of vertical motion and Newton’s law of gravitation? Is the falling time derived
from both types of laws will be the same when an object falls from a prescribed height above the
ground? In the present research, we will be able to determine the amount of error resulting from
the applications of Newton’s laws of vertical motion in estimating the falling time of objects as a
function of the height.

2 Formulation of the Problem

The equation of motion of a particle in a general resistant medium in view of Newton’s law of
gravitation is given by [2]

r̈(t) = −GM

r2
+ kvn, (2.1)

where, M is the mass of Earth, G is Newton’s constant of general gravitation, r is the distance
of the particle from the center of Earth, v(t) = ṙ(t) is the vertical instantaneous velocity of the
particle, k is the constant of resistance, and n is a positive natural number. Assuming that R is
the radius of Earth, the initial conditions (ICs) are given as

ṙ(0) = 0, r(0) = h+R, (2.2)
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where h is the height of the particle above the Earth’s surface at initial time. The proposed method
depends basically on applying some basic concepts in calculus [3,4] for the special case k = 0. In
case k ̸= 0, n ≥ 1, the Adomian decomposition method (ADM) [5-14] may be applied to solve the
nonlinear system (1-2) which is a complex nonlinear initial value problem. The objectives of this
paper are focused on estimating the falling time and comparing our results with the corresponding
ones obtained from Newton’s laws of vertical motion. Then, applying the results on several bodies
in our real life.

3 The Exact Solution

In this section, the exact solution of the system (1-2) will be obtained at the special case k = 0. In
this case, Eq. (1) becomes

r̈(t) = −GM

r2
. (3.1)

Multiplying both sides by ṙ, we have

ṙr̈(t) = −GMr−2ṙ. (3.2)

Integrating once, yields
1

2
(ṙ(t))2 =

GM

r
+ c1, (3.3)

where c1 is a constant of integration. Applying the ICs (2), we obtain

c1 = − GM

h+R
, (3.4)

and Eq. (5) becomes

(ṙ(t))2 = 2GM

(
1

r
− 1

h+R

)
, (3.5)

or

ṙ(t) = ±

√
2GM

(
1

r
− 1

h+R

)
(3.6)

Since r(t) is a decreasing function in time, we choose the negative sign in (8) and this yields

dr

dt
= −

√
2GM

(
1

r
− 1

h+R

)
. (3.7)

Making use of the new variable u = 1
r
, we have

dr

dt
= − 1

u2

du

dt
. (3.8)

Inserting (10) into (9) gives

− 1

u2

du

dt
= −

√
2GM (u− α), (3.9)

where

α =
1

h+R
. (3.10)

Using separation of variables approach, we can write (11) as

du

u2
√
u− α

=
√
2GM dt. (3.11)
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Integrating once again, yields ∫
du

u2
√
u− α

=
√
2GM t+ c2, (3.12)

where c2 is also a constant of integration. Implementing the trigonometric substitution method, we
have

u = α (secϕ)2 , du = 2α (secϕ)2 tanϕdϕ. (3.13)

Substituting (15) into (14) and simplifying leads to

2√
α3

∫
(cosϕ)2dϕ =

√
2GM t+ c2, (3.14)

i.e.,
1√
α3

(ϕ+ sinϕ cosϕ) =
√
2GM t+ c2. (3.15)

From (15), we have

ϕ = sec−1

(√
u

α

)
, cosϕ =

√
α

u
, sinϕ =

√
1− α

u
. (3.16)

Hence,
1√
α3

[
sec−1

(√
u

α

)
+

√
α

u

√
1− α

u

]
=

√
2GM t+ c2, (3.17)

or √
(h+R)3

[
sec−1

(√
u

α

)
+

√
α

u

√
1− α

u

]
=

√
2GM t+ c2, (3.18)

From the ICs (2), we have

u(0) =
1

r(0)
=

1

h+R
= α, (3.19)

Applying this condition on Eq. (20), we obtain

c2 =
√

(h+R)3 sec−1(1) = 0, (3.20)

and hence, √
(h+R)3

[
sec−1

(√
u

α

)
+

√
α

u

√
1− α

u

]
=

√
2GM t. (3.21)

The product GM is also given by
GM = gR2, (3.22)

where R is the radius of the Earth and g is the acceleration due to gravity of the Earth. Accordingly,
the equation (22) gives the falling time as

t =

√
(h+R)3

2gR2

[
sec−1

(√
u

α

)
+

√
α

u

√
1− α

u

]
, (3.23)

or in terms of r and h as

t =

√
(h+R)3

2gR2

[
sec−1

(√
h+R

r

)
+

√
r

h+R

√
1− r

h+R

]
. (3.24)

The object reaches the Earth’s surface when r = R and accordingly the exact falling time TExact is
expressed as

TExact =

√
(h+R)3

2gR2

[
sec−1

(√
h+R

R

)
+

√
R

h+R

√
1− R

h+R

]
. (3.25)
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Newton’s laws of vertical motion for a falling object are well-Known as

v = v0 + gt, v0 = ṙ(0) = 0, (3.26)

h = v0t+
1

2
gt2, (3.27)

v2 = v20 + 2gh. (3.28)

From Eq. (30), the approximate falling time TApprox is expressed as

TApprox =

√
2h

g
. (3.29)

Therefore, the error Error(t) in estimating the falling time is given by

Error(t) = TExact − TApprox, (3.30)

and in terms of the height h we have

Error(t) =

√
(h+R)3

2gR2

[
sec−1

(√
h+R

R

)
+

√
R

h+R

√
1− R

h+R

]
−

√
2h

g
. (3.31)

4 Applications

In this section, we give some applications of the exact formula of the falling time for various objects
in real life. The following values of the radius of Earth and the acceleration due to gravity of Earth
are implemented [15] to conduct the results of this section:

R|at the equator = 6378.137× 103 [meter], R|at the poles = 6356.752× 103 [meter],

(4.1)

g = 9.7803253359

(
1 + 0.001931850400 sin2 λ√
1− 0.006694384442 sin2 λ

)
[meter/s2],

where λ denotes the latitude and λ ∈ [0, π]. At the equator, we have g ≈ 9.78[meter/s2] (λ = 0)
while at the poles of Earth we find that g ≈ 9.83[meter/s2] (λ = π/2). The variation of the
acceleration due to gravity versus the latitude λ is depicted in Fig. 1.

π
4

π
2

3π
4

π λ [Radians]

9.78
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9.81

9.82
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g [m/s2]

Fig. 1. Variation of the acceleration due to gravity of Earth g versus the latitude λ
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4.1 Aeroplane

It is well known in the fields of aviation and air transport that the aircrafts, which are used in
internal or international flights, fly at altitudes ranging between 29000 and 35000 feet, equivalent
to 9 to 11 kilometers above the Earth’s surface. Perhaps the reason for flying at this altitude is
that such a layer of the Earth’s atmosphere is more stable than other layers and air resistance is
lower the required thrust is the lowest and the same for fuel consumption. We are now facing the
question that if all of the plane’s engines are suddenly stopped, how long will the plane take to
reach the ground? To answer that question, let us consider that the average altitude of aircraft is 10
kilometers above the Earth’s surface, and by substituting for h = 10 [Km] or h = 10000 [m] in Eq.
(27) we obtain TExact = 45.2806 ≈ 45 seconds, which means that the aircraft takes about 45 seconds
to reach the ground in the absence of air resistance. Such result coincides with the time when the
atomic bomb fell on the cities of Hiroshima and Nagasaki in Japan during the second world war.
Applying the approximate formula (31), we have TApprox = 45.2216 ≈ 45 seconds. The error (32) in
this case is too small and given as Error = TExact − TApprox = 45.2806− 45.2216 = 0.0590 seconds
This is because the height h = 10 [Km] is too small when compared with the radius of the Earth.

4.2 Geostationary satellites

The geostationary satellites are at altitude h = 36000 [Km] above the Earth’s surface and they
are in stationary orbits around the Earth. Assume that the motion of such satellites is suddenly
stopped, regardless of how this happens, then the expected exact time taken by these satellites to
reach the Earth’s surface is calculated from (27) as TExact = 14962.8 seconds. Converting this value
into hours and minutes gives TExact = 4 hours and 9 minutes.

4.3 The Moon around Earth

The Moon is at a distance 384400 Km from the center of the Earth, consequently, the corresponding
height is h = 384400 − 6378.137 = 378021.863 [Km]. Substituting h = 378021.863 [Km] in (27),
we get TExact = 419295.86 seconds. Converting this value into days and hours gives TExact = 4
days and 20 hours. This result gives the falling time of the Moon on the Earth (assuming that the
Moon is suddenly stopped, whatever the reason) which coincides with Ref. [16] (Problem 5.107,
page 141).

4.4 The Earth around Sun

The Earth is at a distance 150×106 Km from the center of the Sun. In order to estimate the falling
time of the Earth on the Sun (assuming that the Earth is suddenly stopped, whatever the reason),
we modify Eq. (27) as

TExact =

√
(h+Rs)3

2gsR2
s

[
sec−1

(√
h+Rs

Rs

)
+

√
Rs

h+Rs

√
1− Rs

h+Rs

]
, (4.2)

where Rs is the radius of the Sun (Rs = 6.96 × 105 Km) and gs is the acceleration of gravity
due to the Sun (gs = 273 [meter/s2]). In this case, the height of Earth above the Sun equals
h = 150×106−6.96×105 = 149.304×106 [Km]. Accordingly, Eq. (35) leads to TExact = 5.61039×106

seconds. Converting this value into days gives TExact = 64.9 ≈ 65 days. Also, this result agrees
with the obtained result in Ref. [16] (Problem 5.108, page 141).
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5 Discussion of Errors

Using the error equation (33), we present in Tables (1-3) some numerical results, from which it
becomes clear that the amount of error in time is about 21 seconds in the first 500 kilometers above
the surface of the earth, as in Table 1.

Table 1. Calculated errors for h = 100, 200, 300, 400, 500 Km

h [Km] 100 200 300 400 500

Error(h)[S] 1.86753 5.27977 9.69521 14.9202 20.8426

While the error in time is about 59 seconds (approximately one minute), in the first 1000 km, as
shown in Table 2.

Table 2. Calculated errors for h = 600, 700, 800, 900, 1000 Km

h[Km] 600 700 800 900 1000

Error(h)[S] 27.3867 34.4968 42.1298 50.2509 58.8314

It is clear from Table 3 that the amount of error in time is approximately 853 seconds, that is, 14
minutes if the altitude reaches six thousand kilometers.

Table 3. Calculated errors for h = 2000, 3000, 4000, 5000, 6000 Km

h[Km] 2000 3000 4000 5000 6000

Error(h)[S] 165.802 303.663 466.272 650.11 852.817

200 400 600 800 1000
h [km]

10

20

30

40

50

60

Error(t) [seconds]

Fig. 2. Graph of the estimated error in the falling time, given by Eq. (33), versus
the height h in the range h ∈ [100, 1000] [km]

In addition, it can be indicated from Eq. (33) that the error in time is approximately 12249.5
seconds, i.e. about three hours and 24 minuets if the body fell from a height of 36,000 km above the
surface of the Earth, which is the same height as the motion of geosynchronous satellites. In light
of these results, it becomes clear to us that it is preferable not to apply Newton’s laws of vertical
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motion at altitudes higher than thousand kilometer above the surface of the Earth. This is because
the amount of error (in the estimated time of falling objects) becomes minutes and increases to
hours with increasing the height above the surface of the Earth. This conclusion can be confirmed
through Fig. 2, Fig. 3, and Fig. 4.

2000 3000 4000 5000 6000
h [km]

2

4

6

8

10

12

14

Error(t) [minutes]

Fig. 3. Graph of the estimated error in the falling time, given by Eq. (33), versus
the height h in the range h ∈ [1000, 6000] [km]

10000 15000 20000 25000 30000
h [km]

0.5

1.0

1.5

2.0

2.5

Error(t) [hours]

Fig. 4. Graph of the estimated error in the falling time, given by Eq. (33), versus
the height h in the range h ∈ [6000, 30000] [km]

6 Conclusion

In this paper, Newton’s law of general gravitation was applied to analyze the vertical motion of an
object towards the Earth. Explicit formula for the falling time was obtained and applied on some
objects in real life. The results revealed that the time taken by a plane to reach the ground was
about 45 seconds in the absence of air resistance (if all of the plane’s engines are suddenly stopped).
The geostationary satellites (altitude h = 36000 [Km] above the Earth’s surface) reach the Earth’s
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surface in 4 hours and 9 minutes under the assumption that the motion of such satellites is suddenly
stopped and regardless of how this happens. Under such assumption, the Moon takes about 4 days
and 20 hours to fall on the Earth. Furthermore, the time taken by the Earth to reach the Sun’s
surface was about 65 days. The last two results were in full agreement with the calculations made in
Ref. [16] (Problems 5.107 and 5.108, page 141). Finally, the error resulting from applying Newton’s
laws of vertical motion was obtained in terms of the height. In view of the obtained results, it was
recommended to avoid the use of Newton’s laws of vertical motion at altitudes higher than thousand
kilometer above the Earth. This is because the error in the estimated falling time becomes minutes
and increases to hours if the height is greater than thousand kilometer.
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