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Abstract 
 

In this paper, we propose a new lifetime distribution called the generalized weighted Rama (GWR) 
distribution, which extends the two-parameter Rama distribution and has the Rama distribution as a 
special case. The GWR distribution has the ability to model data sets that have positive skewness and 
upside-down bathtub shape hazard rate. Expressions for mathematical and reliability properties of the 
GWR distribution have been derived. Estimation of parameters was achieved using the method of 
maximum likelihood estimation and a simulation was performed to verify the stability of the maximum 
likelihood estimates of the model parameters. The asymptotic confidence intervals of the parameters of 
the proposed distribution are obtained. The applicability of the GWR distribution was illustrated with a 
real data set and the results obtained show that the GWR distribution is a better candidate for the data 
than the other competing distributions being investigated. 
 

 
Keywords:  Weighted Rama distribution; hazard rate function; maximum likelihood method; order 

statistics. 
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1 Introduction 
 
Parametric statistical methods assume that the data being analyzed come from a particular statistical 
distribution. In most practical situations, some of the well-known statistical distributions do not fit some real 
life data adequately and one is led to seek some modifications of existing statistical distributions that will fit 
varieties of real life data more appropriately. Over the years, researchers have been developing new 
statistical distributions capable of providing more flexible models for several real life phenomena. One of 
the trending methods for generating new statistical distributions is the weighted method. The concept of 
weighted distributions came to limelight when Fisher [1] studied how methods of ascertainment can affect 
the form of distribution of recorded observations. Continuing, Rao [2] improved the weighted method in a 
more general manner to capture a situation where the standard distributions are inappropriate in recording 
statistical observations with equal probabilities, for instance, situations where the observations are non-
experimental, non-replicated and non-random. Naturally, when observations are recorded according to some 
probabilistic mechanism, the distribution of the original observations may not have the original distribution 
unless every observation is given equal chance of being recorded. In view of this, the weighted method 
formulates models such that observations are recorded according to some weight function. A special case of 
the weighted distributions is the length bias distribution introduced by Cox [3] and Zelen [4], which 
considers the weight function as the length of the units. In particular, weighted distributions found 
applications in modelling biased samples in the fields of medicine [5], ecology [6], reliability and branching 
processes [7] and so on. 
 
Recently, several weighted distributions have been developed and applied to many real life phenomena. 
Notable among them are the new class of weighted exponential distribution due to Gupta and Kundu [8], 
weighted Weibull proposed by Dey et al. [9], weighted exponential by Dey et al. [10], weighted Lindley 
introduced by Ghitany et al. [11], weighted Maxwell by Joshi and Modi [12], new weighted Lindley due to 
Asgharzadeh et al. [13], weighted Akash by Shanker and Shukla [14], weighted Shanker due to Shanker and 
Shukla [15], three-parameter weighted Lindley proposed by Shanker et al. [16], weighted exponentiated 
Mukherjee-Islam by Subramanian and Rather [17], two-parameter weighted Sujatha due to Shanker and 
Shukla [18], three-parameter weighted Pareto Type II  by Para and Jan [19], two-parameter weighted Rama 
due to Eyob and Shanker [20], weighted quasi Akash developed by Eyob et al. [21], weighted exponential-
Gompertz by Abd and Ragab [22], weighted Aradhana  due to Ganaie et al. [23], weighted Sushila by Rather 
[24], weighted Akshaya due to Rather and Subramanian [25], Weighted Odoma by Manoj and Elangovan 
[26], weighted new quasi Lindley Ganaie et al. [27], weighted three-parameter Akash by Ganaie and 
Rajagopalan [28], weighted two parametric Rama by Vijayakumar et al. [29], weighted Suja by Alsmairan 
and Al-Omari [30] among others. 
 
The aim of this paper is to introduce a generalized weighted Rama (GWR) distribution having three 
parameters. The paper is motivated by the fact that weighted distributions finds application in modelling 
biased samples, which the baseline distribution cannot offer. The remaining part of this paper is organized as 
follows. Section 2 gives the derivation of the probability density function and its corresponding cumulative 
distribution function. In Section 3, we present the stochastic ordering. Section 4 deals with the quantile 
function. A comprehensive account of mathematical properties of the proposed distribution is provided in 
Section 5. Also, reliability measures of the proposed distribution are derived in Section 6. Estimation by 
method of maximum likelihood and approximate confidence intervals are presented in Sections 7 and 8. In 
Section 9, a simulation study is presented in order to assess the performance of the estimation procedure. 
Section 10 illustrates an application of the proposed model by using a real data set. Finally, the conclusion of 
this work is provided in Section 11. 
 
 
 

 



 
 
 

Enogwe et al.; ARJOM, 16(12): 9-37, 2020; Article no.ARJOM.64621 
 
 
 

11 
 
 

 
2 The Generalized Weighted Rama Distribution 
 
From the work of Umeh et al. [31], the probability density function (pdf) and the cumulative distribution 

function (cdf) of the two-parameter Rama distribution having parameters   and   may be written 

respectively as  
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Using the pdf (1) as the baseline distribution, we present the proposed distribution in Theorem 1. 
 
Theorem 1. The probability density function of the generalized weighted Rama (GWR) distribution with 

parameters  ,   and   is given by 
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where   is a scale parameter,   and  are shape parameters, and   is the complete gamma function 

defined by   1

0

yy e dy


    . 

 
Proof:  Following the work of Eyob and Shanker [20], one defines the GWR distribution as 
 

     ; , ; ; ,f x k w x g x                                                 (4) 

 

where k  is the normalizing constant,  ;w x   is the weighting function and  ; ,g x    is the pdf of the 

two-parameter Rama distribution defined in (1), which serves as the baseline distribution in this work.  Now, 

by setting   1;w x x   and putting (1) into (4), we obtain 
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Observe that (5) contains a normalizing constant k , which is to be found such that  
0

; , 1f x dx 


 
Thus, 
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Solving (6) for k  gives 
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Substituting (7) into (5), one obtains the pdf of the GWR distribution defined in (3) and this completes the 
proof of Theorem 1. 
 

Observe that the pdf (3) can be expressed as a two-component mixture of   , gamma  and 

 3, gamma   distributions such that 
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Corollary 1. The area under the curve of the GWR distribution is unity. 
 

Proof: We are required to show that  
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Theorem 2. The cumulative distribution function of the GWR distribution with parameters  ,   and   is 

given by 
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    is an upper incomplete gamma function. 

 
Proof:  The cumulative distribution function (cdf) of the GWR distribution (3) is obtained as follows 
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Letting y x , x y  and dx dy  , then    0, 0,x x y x    and thus, 
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0

,
x

yx y e dy


       and    3 1

0

3,
x

yx y e dy


         are lower incomplete gamma 

functions. Equation (10) may be simplified by recalling that  
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To obtain the expression for  x ,3
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Now, a substitution of (15) into (12) leads to 
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Putting (11) and (16) into (10), we obtain 
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Further simplification of (17) leads to (9), which completes the proof of Theorem 2. 
 
The various shapes of the pdf and cdf of the GWR distribution are shown in Figs. 1 and 2 respectively. 
 

 
 

Fig. 1. Density function shapes for GWR distribution considering different values of  ,   and   
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Fig. 2. Cumulative distribution function shapes for GWR distribution considering different values of 

 ,   and   
 

3 Stochastic Ordering of The GWR Distribution 
 
One of the activities of distribution theorists deals with the comparison of random quantities based on some 
measures associated to them. A good index for achieving such comparison is the stochastic ordering, which 
is routinely used in many applications in economics, finance, insurance, management science, operations 
research, statistics, and other various fields of study (Shaked and Shanthikumar [32]). According to Dey et 
al. [33], the different types of stochastic orderings which are useful in ordering random variables include the 
usual stochastic order, the hazard rate order, the mean residual life order and the likelihood ratio order. 

Given two nonnegative random variables X  and Y with absolutely continuous distribution functions

 XF x  and  YF x , hazard rate functions  Xh x and  Yh x , and mean residual life functions  Xm x  

and  Ym x respectively, then X  is said to be smaller  than Y  in the(i) usual stochastic order  stX Y if 

   X YF x F x for all x ; (ii) hazard rate order   hrX Y if    X Yh x h x  for all x ; (iii) mean 

residual life order   mrlX Y if    X Ym x m x  for all x ; and  

 

(iv) likelihood ratio order  lrX Y  if    X Yf x f x decreases in x . 

 

It may be noted that a distribution that has likelihood ratio  lr ordering possesses the same ordering in 

hazard rate  hr and distribution  st . In addition, if a family of distributions has likelihood ratio ordering, 

then there exists a uniformly most powerful test (Shaked and Shanthikumar [32]). Meanwhile, the following 
stochastic ordering relationships due to Shaked and Shanthikumar [34] are well known for establishing 
stochastic ordering of continuous distributions 
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In view of the above relationship, it is clear that the likelihood ratio appears stronger than the other ones and 
can be used as a sufficient condition for the rest of the other stochastic orders (Belzunce [35]).  
Consequently, the GWR distribution is said to be ordered with respect to the strongest “likelihood ratio” 
ordering as shown in Theorem 3. 
 

Theorem 3. Let X  and Y follow a generalized weighted Rama distribution with parameters  1 1 1, ,    

and  2 2 2, ,   , then 

 

(i) 1 2 1 2 1 2,  and , then , ,  andlr hr mlr stX Y X Y X Y X Y           
 

 

(ii) 1 2 1 2 1 2,  and , then , ,  andlr hr mlr stX Y X Y X Y X Y           
 

 

(iii) 1 2 1 2 1 2,  and , then , ,  andlr hr mlr stX Y X Y X Y X Y           
 

 

(iv) 1 2 1 2 1 2,  and , then , ,  andlr hr mlr stX Y X Y X Y X Y           
 

 
Proof:  The likelihood ratio for the GWR distribution is 

 

 
 

   
  

 
 

 
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2

33 3
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; , , 1 2

; , , 1 2
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Y

f x x
x e

f x x


  



         

        


 



     
       

            (18) 

 

Next, the log-likelihood ratio may be expressed as 

 

 
 

  
   

 
 

 

     

1

2

33
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; , , 1 2
ln ln ln

; , , 1 2

ln ln

X

Y

f x
x

f x

x x x





        
 

       

   





      
            

     

           (19) 

 
Differentiating (19) with respect to

 x , we obtain 

 

 
 

 

  
 

2
1 1 1 2 11 2

1 23 3
2 2 2 1 2

; , , 3
ln

; , ,

X

Y

f x xd

dx f x x x x

     
 

    

  
        

            (20) 

 

For 1 2 1 2 1 2,  and        , one obtains 

 

 
 

 1 1 1
1 2

2 2 2

; , ,
ln 0

; , ,

X

Y

f xd

dx f x

  
 

  

 
    

   
 

Also, for 1 2 1 2 1 2,  and        , we get 
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 
 

1 1 1 1 2

2 2 2

; , ,
ln 0

; , ,

X

Y

f xd

dx f x x

    

  

  
   

   
 

Again, if 1 2 1 2 1 2,  and        , one obtains 

 

 
 

 

  

2
1 1 1 2 1

3 3
2 2 2 1 2

; , , 3
ln 0

; , ,

X

Y

f x xd

dx f x x x

    

    

  
      

 

 

Finally, when 1 2 1 2 1 2,  and        , the following result is obtained 

 

 
 

 

  
 

2
1 1 1 2 11 2

1 23 3
2 2 2 1 2

; , , 3
ln 0

; , ,

X

Y

f x xd

dx f x x x x

     
 

    

  
         

 
 

Since 
 
 

1 1 1

2 2 2

; , ,
ln 0

; , ,

X

Y

f xd

dx f x

  

  

 
  

 
 for conditions (i), (ii), (iii) and (iv), then lrX Y  and hence 

,  andhr mlr stX Y X Y X Y   , which completes the proof of Theorem 3. 

 

4 Quantile Function 
 
Let X  be a generalized Weighted Rama distributed random variable having cdf (9), then, the thp quantile 

function of X , denoted by    1
p p px FQ 

  , can be obtained by inverting (9), as follows 

 

          
          





















ppp

p
xxx

xp
x

212

21,1
ln

1
2

3

        (21) 

 

where  0,1p  . The quantile function (21) is useful for generating random numbers from the GWR 

distribution.  
 

5 Mathematical Properties of the Generalized Weighted Rama 
Distribution 

 
In this section, important properties of the GWR distribution including the raw moments, central moments, 
coefficient of variation, index of dispersions, skewness, kurtosis, harmonic mean, Bonferroni curve, Lorenz 
curve, entropy, distribution of order statistics,  moment generating function and characteristic function are 
presented. 
 

5.1 Raw Moments of the Generalized Weighted Rama Distribution 
 
Theorem 4. For the random variable X having the GWR distribution with parameters ,   and  , the 

rth raw moment is given by 
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 
 

   
  

3
'

3

1 2

1 2
r r

r r r r    


     

        
 

       

             (22) 

 

Proof: The rth raw moment of a continuous random variable X  is given by 
 

   ' r r
r E X x f x dx





                                              (23) 

 
Substituting (3) into (23), the rth raw moment of the GWR distribution is obtained as follows 
 

    
 

3
' 1 3

3
01 2

x
r x x e dx


 

 
    


  

     


 
 

    
 

3
3 11

3
0 01 2

x xx e dx x e dx


  


    

 
   

 
  

       
 

 
 

    
   3

33

3

1 2
r r

r r

 

   

     



  

     
  

       

          (24) 

 
After little algebra on (24), one gets the results in (22) and the proof is complete. 
 
In particular, the first four raw moments of GWR distribution are respectively defined as: 
 

   

  

3
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1 2 3
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               (25) 
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             (27) 
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  

3

'
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    
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           (28) 

 

5.2 Central Moments of the Generalized Weighted Rama Distribution 
 

Theorem 5. For the random variable X  having the GWR distribution with parameters ,  and  , the 

rth central moment is given by 
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            

  
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

                    
  

     
 

     (28) 

 

Proof: The rth central moment of a GWR variable X  is given by 
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          (29) 

 
Further simplification of (29) yields (28), which completes the proof of Theorem 5. 
 
It is obvious that the first central moment is zero while the second, third and fourth central moments of the 
GWR distribution are respectively given by 
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Observe that the first raw moment is the mean   '
1XE  and the second central moment is the variance 

  2
Var X  , which may be alternatively expressed as 
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     (33) 

 

5.3 Coefficient of Variation and Index of Dispersion of the Generalized Weighted 
Rama Distribution 

 
Given the random variable X  having the GWR distribution with parameters  ,   and  , then the 

coefficient of variation (cv) is given by  
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 (34) 

 

Similarly, the index of dispersion   of the GWR distributed random variable X is given by 
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 (35) 

 

5.4 Skewness and Kurtosis of the Generalized Weighted Rama Distribution 
 

Given the random variable X  having the GWR distribution with parameters  ,   and  , then the 

skewness and kurtosis are respectively given by  
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The mean, variance, skewness, kurtosis, coefficient of variation and index of dispersion of the GWRD for 

different values of  ,   and  are given in Tables 1-5. It can be seen that the mean, variance and index of 

diversity decreases as the value of  and   increases for fixed  . The positive values of skewness mean 

that the GWRD is skewed to the right.  
 



 
 
 

Enogwe et al.; ARJOM, 16(12): 9-37, 2020; Article no.ARJOM.64621 
 
 
 

21 
 
 

Table 1. Mean, variance, Skewness, Kurtosis, coefficient of variation and index of dispersion for the 
GWR distribution 

 

      Mean Variance Skewness Kurtosis CV   

1 4.5 0.5 0.2998 0.1123 2.2169 9.6195 1.1179 0.3747 
1 4.5 1.5 0.2503 0.0735 2.3872 11.6617 1.0834 0.2938 
1 4.5 3.5 0.2345 0.0602 2.2835 11.259 1.0459 0.2566 
1 4.5 5.5 0.2301 0.0563 2.2119 10.7619 1.0314 0.2448 
1 4.5 10.0 0.2266 0.0532 2.1331 10.146 1.0183 0.2350 
1 5.0 0.5 0.2526 0.0793 2.3162 10.5186 1.1149 0.3139 
1 5.0 1.5 0.2186 0.0545 2.3606 11.6571 1.0683 0.2495 
1 5.0 3.5 0.2081 0.0464 2.2328 10.9146 1.0353 0.2231 
1 5.0 5.5 0.2052 0.0441 2.1672 10.4197 1.0237 0.2150 
1 5.0 10.0 0.2029 0.0423 2.1016 9.8846 1.0136 0.2084 
1 7.5 0.5 0.1444 0.0236 2.3459 11.6024 1.0629 0.1631 
1 7.5 1.5 0.1371 0.0198 2.1783 10.5065 1.0256 0.1442 
1 7.5 3.5 0.135 0.0186 2.0876 9.7670 1.0116 0.1381 
1 7.5 5.5 0.1344 0.0183 2.0579 9.5123 1.0075 0.1364 
1 7.5 10.0 0.1339 0.0181 2.0329 9.2929 1.0042 0.1350 
1 10.0 0.5 0.1036 0.0114 2.2123 10.7645 1.0315 0.1102 
1 10.0 1.5 0.1012 0.0105 2.0864 9.7566 1.0115 0.1035 
1 10.0 3.5 0.1005 0.0102 2.0393 9.3496 1.0050 0.1015 
1 10.0 5.5 0.1003 0.0101 2.0254 9.2271 1.0032 0.1010 
1 10.0 10.0 0.1002 0.0101 2.0142 9.1270 1.0018 0.1005 

 
Table 2. Mean, variance, Skewness, Kurtosis, coefficient of variation and Index of dispersion for the 

GWR distribution 
 

      Mean Variance Skewness Kurtosis CV   

2 4.5 0.5 0.6745 0.2503 1.2323 4.7676 0.7418 0.3711 
2 4.5 1.5 0.5440 0.1774 1.5768 6.4225 0.7741 0.3260 
2 4.5 3.5 0.4911 0.1381 1.6448 7.0921 0.7566 0.2811 
2 4.5 5.5 0.4749 0.1249 1.6210 7.0894 0.7442 0.2630 
2 4.5 10.0 0.4616 0.1137 1.5660 6.8687 0.7305 0.2463 
2 5.0 0.5 0.5665 0.1855 1.3508 5.2328 0.7602 0.3274 
2 5.0 1.5 0.4681 0.1298 1.6240 6.7807 0.7698 0.2774 
2 5.0 3.5 0.4312 0.1040 1.6308 7.1111 0.7478 0.2412 
2 5.0 5.5 0.4202 0.0958 1.5931 6.9907 0.7365 0.2279 
2 5.0 10.0 0.4113 0.0889 1.5366 6.7201 0.7250 0.2162 
2 7.5 0.5 0.3075 0.0557 1.6346 6.8824 0.7673 0.1811 
2 7.5 1.5 0.2813 0.0431 1.6009 7.0217 0.7384 0.1534 
2 7.5 3.5 0.2731 0.0389 1.5223 6.6435 0.7225 0.1426 
2 7.5 5.5 0.2708 0.0377 1.4892 6.4572 0.7173 0.1393 
2 7.5 10.0 0.2689 0.0368 1.4584 6.2749 0.7129 0.1367 
2 10.0 0.5 0.2137 0.0253 1.6212 7.0899 0.7443 0.1184 
2 10.0 1.5 0.2047 0.0219 1.5210 6.6364 0.7223 0.1068 
2 10.0 3.5 0.2020 0.0208 1.4666 6.3239 0.7140 0.1030 
2 10.0 5.5 0.2013 0.0205 1.4488 6.2163 0.7116 0.1019 
2 10.0 10.0 0.2007 0.0203 1.4338 6.1236 0.7096 0.1011 
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Table 3. Mean, variance, Skewness, Kurtosis, coefficient of variation and Index of dispersion for the 
GWR distribution 

 

         Mean Variance Skewness Kurtosis CV   

3 4.5 0.5 1.0456 0.3414 0.8323 3.7890 0.5588 0.3265 
3 4.5 1.5 0.8700 0.2876 1.1234 4.5689 0.6164 0.3305 
3 4.5 3.5 0.7722 0.2308 1.2870 5.3322 0.6222 0.2989 
3 4.5 5.5 0.7379 0.2064 1.3159 5.5663 0.6157 0.2797 
3 4.5 10.0 0.7079 0.1831 1.3040 5.6301 0.6044 0.2586 
3 5.0 0.5 0.8939 0.2687 0.9087 3.9366 0.5799 0.3006 
3 5.0 1.5 0.7455 0.2152 1.1994 4.8778 0.6223 0.2887 
3 5.0 3.5 0.6724 0.1727 1.3114 5.5137 0.6180 0.2568 
3 5.0 5.5 0.6482 0.1562 1.3150 5.6310 0.6098 0.2410 
3 5.0 10.0 0.6275 0.1412 1.2852 5.5825 0.5989 0.2251 
3 7.5 0.5 0.4886 0.0927 1.2237 4.9897 0.6233 0.1898 
3 7.5 1.5 0.4346 0.0706 1.3166 5.6214 0.6114 0.1625 
3 7.5 3.5 0.4156 0.0614 1.2740 5.5450 0.5963 0.1478 
3 7.5 5.5 0.4101 0.0586 1.2437 5.4256 0.5904 0.1429 
3 7.5 10.0 0.4056 0.0563 1.2104 5.2764 0.5850 0.1388 
3 10.0 0.5 0.3321 0.0418 1.3159 5.5655 0.6157 0.1259 
3 10.0 1.5 0.3115 0.0345 1.2730 5.5411 0.5961 0.1107 
3 10.0 3.5 0.3051 0.0320 1.2197 5.3194 0.5864 0.1049 
3 10.0 5.5 0.3032 0.0313 1.1991 5.2225 0.5833 0.1032 
3 10.0 10.0 0.3018 0.0307 1.1805 5.1316 0.5807 0.1018 

 
Table 4. Mean, variance, Skewness, Kurtosis, coefficient of variation and Index of dispersion for the 

GWR distribution 
 

      Mean Variance Skewness Kurtosis CV   

4 4.5 0.5 1.3721 0.3936 0.6806 3.6154 0.4572 0.2868 
4 4.5 1.5 1.2006 0.3774 0.8501 3.8513 0.5117 0.3144 
4 4.5 3.5 1.0711 0.3263 1.0264 4.3760 0.5333 0.3046 
4 4.5 5.5 1.0177 0.2954 1.0901 4.6548 0.5341 0.2903 
4 4.5 10.0 0.9665 0.2605 1.1231 4.8779 0.5281 0.2695 
4 5.0 0.5 1.1945 0.3200 0.7120 3.6287 0.4735 0.2679 
4 5.0 1.5 1.0341 0.2925 0.9192 4.0249 0.5230 0.2828 
4 5.0 3.5 0.9291 0.2466 1.0744 4.5781 0.5345 0.2654 
4 5.0 5.5 0.8892 0.2234 1.1145 4.7980 0.5315 0.2512 
4 5.0 10.0 0.8526 0.1993 1.1208 4.9152 0.5236 0.2337 
4 7.5 0.5 0.6784 0.1274 0.9448 4.0988 0.5262 0.1878 
4 7.5 1.5 0.5971 0.1011 1.1097 4.7657 0.5324 0.1692 
4 7.5 3.5 0.5634 0.0862 1.1159 4.9158 0.5212 0.1531 
4 7.5 5.5 0.5530 0.0812 1.0954 4.8720 0.5153 0.1469 
4 7.5 10.0 0.5444 0.0769 1.0649 4.7697 0.5094 0.1412 
4 10.0 0.5 0.4581 0.0599 1.0898 4.6535 0.5341 0.1307 
4 10.0 1.5 0.4222 0.0484 1.1153 4.9153 0.5210 0.1146 
4 10.0 3.5 0.4099 0.0439 1.0741 4.8030 0.5110 0.1070 
4 10.0 5.5 0.4064 0.0425 1.0529 4.7242 0.5074 0.1046 
4 10 10 0.4036 0.0414 1.0320 4.6392 0.5043 0.1026 
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Table 5. Mean, variance, Skewness, Kurtosis, coefficient of variation and Index of dispersion for the 
GWR distribution 

 

      Mean Variance Skewness Kurtosis CV   

5 4.5 0.5 1.6589 0.4338 0.6277 3.5892 0.3970 0.2615 
5 4.5 1.5 1.5149 0.4428 0.6972 3.5969 0.4392 0.2923 
5 4.5 3.5 1.3758 0.4121 0.8369 3.8668 0.4666 0.2996 
5 4.5 5.5 1.3080 0.3831 0.9111 4.0886 0.4732 0.2929 
5 4.5 10.0 1.2360 0.3423 0.9755 4.3513 0.4734 0.2770 
5 5.0 0.5 1.4624 0.3561 0.6329 3.5678 0.4081 0.2435 
5 5.0 1.5 1.3170 0.3531 0.7441 3.6660 0.4512 0.2681 
5 5.0 3.5 1.1946 0.3178 0.8904 4.0204 0.4719 0.2660 
5 5.0 5.5 1.1404 0.2926 0.9511 4.2392 0.4743 0.2566 
5 5.0 10.0 1.0863 0.2616 0.9900 4.4402 0.4708 0.2408 
5 7.5 0.5 0.8662 0.1555 0.7638 3.7019 0.4552 0.1795 
5 7.5 1.5 0.7663 0.1321 0.9419 4.2016 0.4743 0.1724 
5 7.5 3.5 0.7165 0.1130 0.9926 4.4697 0.4691 0.1577 
5 7.5 5.5 0.6999 0.1055 0.9870 4.4955 0.4641 0.1507 
5 7.5 10.0 0.6856 0.0986 0.9646 4.4491 0.4581 0.1439 
5 10.0 0.5 0.5887 0.0776 0.9108 4.0874 0.4732 0.1318 
5 10.0 1.5 0.5368 0.0634 0.9927 4.4719 0.4690 0.1181 
5 10.0 3.5 0.5170 0.0565 0.9724 4.4695 0.4598 0.1093 
5 10.0 5.5 0.5110 0.0543 0.9536 4.4163 0.4559 0.1062 
5 10.0 10.0 0.5062 0.0524 0.9320 4.3434 0.4524 0.1036 

 

5.5 Harmonic Mean of the Generalized Weighted Rama Distribution 
 
For the random variable X having the GWR distribution with parameters  ,   and  , the harmonic 

mean  is obtained as follows 
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5.6 Moment Generating Function and Characteristic Function of the Generalize 
Weighted Rama Distribution 

 

For the random variable X  having the GWR distribution with parameters  ,   and  , the moment 

generating function (mgf) is obtained as follows 
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Similarly, the characteristic function (cf) of a random variable X having the GWR distribution with 

parameters  ,   and  becomes 
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5.7 Bonferroni and Lorenz Curves for the Generalized Weighted Rama Distribution 
 
The Bonferroni was developed by Bonferroni [36] and Lorenz curve by Lorenz [37]. The two curves can be 
used to measure the inequality of the distribution of a random variable. They are applicable in the field of 
economics but also in other areas like reliability, demography, insurance and medicine. Given that X  is a 
nonnegative random variable with pdf  f x , then the Bonferroni and Lorenz curves are defined as 
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Respectively, where  E X   and  1q F p .So, for the GWR distribution, one obtains the following 

Bonferroni curve 
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Similarly, the Lorenz curve of the GWR distribution is 
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where  1, q    and  4, q   are lower incomplete gamma functions. 
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5.8 R�́nyi Entropy of the Generalized Weighted Rama Distribution 
 
Entropy is used to measure the randomness of systems and it is widely used in areas like physics, molecular 
imaging of tumours, sparse kernel density estimation, high-resolution scalar quantization, estimation of the 
number of components of a multi-component non-stationary signal, identification of cardiac autonomic 
neuropathy in diabetes  and signal segmentation in time-frequency plane (Popescu and Aiordachioaie [38]). 
A large value of entropy implies that there is greater uncertainty in the data. The Rényi, Shannon and Tsallis 
entropy, among others, are some different forms of entropy.  This paper concentrates on the R�́nyi entropy, 
which according to R�́nyi [39] is defined for the GWR distribution as follows 
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5.9 Distributions of Order Statistics for the Generalized Weighted Rama Distribution 
 
Moments of order statistics play an important role in quality control testing and reliability to predict the 

failure items based on the times of fewer early failures. Let 1 2, ,..., nX X X be a random sample of size  

from the GWR distribution with cumulative distribution function (cdf)  F x  and probability density 

function  f x . Then,      1 2, ,..., nX X X  denote corresponding order statistics, where      1 2 ,... nX X X  , 

   1 21 min , ,..., nX X X X  and    1 2max , ,..., nnX X X X . The probability density function (pdf) of the 

kth order statistic are given by 
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                  (44) 

 

If 1k  in (44), one obtains the probability density function (pdf) of the minimum order statistic  1X for the 

GWR distribution as 
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  (45) 
 
Similarly for nk   in (44), we obtain the probability density function (pdf) of the maximum order statistic 

 nX  for the GWR distribution as 
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6 Reliability Measures of the Generalized Rama Distribution 
 
In this section, we present the survival, hazard rate, reversed hazard, cumulative hazard and odds functions 
of the GWR distribution, which are very useful in reliability analysis. 
 

6.1 Survival Function of the Generalized Weighted Rama Distribution 
 
The survival function also known as the reliability function refers to the probability of surviving an age x  or 
becoming older than age x . The survival function is useful in survival analysis and reliability theory. It is 

important in calculating systems’ reliability. Given that X  is a continuous random variable having the GWR 

distribution with parameters  ,   and  , then the survival function of X  is defined to be 
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 (47) 

 
for 0, 0, , 0x      .  

 

6.2 Hazard Rate Function of the Generalized Weighted Rama Distribution 
 
The hazard rate function of a statistical distribution is obtained mathematically as the ratio of the probability 

density function  f x  to the survival function  S x . Thus, the hazard rate function of the GWR 

distribution is defined as  
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    (48) 

 
 for 0, 0, , 0x      . 

 

For the GWR distribution, the behaviour of  S x and  h x for different values of the parameters  ,   

and   are shown in Figs. 3 and 4 respectively. 
 

 
 

Fig. 3. Survival function shapes for the GWR distribution considering different values of  ,   and 

  
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Fig. 4. Hazard function shapes of for GWR distribution considering different values of  ,   and   
 

6.3 Reversed Hazard Rate Function of the Generalized Weighted Rama Distribution 
 
The reversed hazard rate refers to the ratio of the probability density function (pdf) to the cumulative 
distribution function (cdf). It extends the concept of hazard rate to a reverse time direction and is given by 
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  (49) 

 
for 0, 0, , 0x      . 
 

The reversed hazard  ; , ,Rh x    describes the probability of an immediate past failure, given that the 

unit has already failed at time  x , described by  ; , ,h x    . 

 

6.4 Cumulative Hazard Rate Function of the Generalized Weighted Rama 
Distribution 

 
The cumulative hazard rate function of the GWR distribution is given by 
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 (50) 

 

Notice that  ; , ,H x     does not have a probabilistic connotation although it plays a key role in 

reliability and survivals analysis since     , 0
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P X x e x
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   . 

 

6.5 Odds Function for the Generalized Weighted Rama Distribution 
 
 The odds function of the GWR distribution is defined as 
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6.6 Mean Residual Life Function of the Generalized Weighted Rama Distribution 
 
The mean residual life function is the expected additional lifetime  X x , given that the item has survived 

to time x . Thus, in life testing situations, the expected additional lifetime given that a component has 

survived until time x  is called the mean residual life. The mean residual life function, say,  m x is given by  
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But from upper incomplete gamma function, it is known that    1, , s zs z s s z z e     . Consequently, 
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Substituting (13), (47), (53) and (54) into (52), we obtain  
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7 Maximum Likelihood Estimators of the Generalized Weighted Rama 
Distribution 

 
The method of maximum likelihood is the most frequently used method of estimation of parameters of 
statistical distributions (Casella and Berger [40]). Undoubtedly, the success of the maximum likelihood 
method is due to the fact that its estimators’ possess desirable properties such as consistency, asymptotic 
efficiency and invariance property. Thus, to obtain the maximum likelihood estimators of parameters of the 

GWR distribution, we let 1 2, ,..., nX X X denote a random sample of size n  from this distribution and 

define the likelihood function of the random sample as 
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Taking the natural log of (56) gives the log-likelihood function of the GWR distribution as  
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The maximum likelihood estimates  ˆ ˆ ˆ, ,    of the unknown parameters  , ,    of GWR distribution are 

the solution of the following nonlinear system of equations: 
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where      
 



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
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d

d
ln  is the digamma function of  .

  
 

It is usually more convenient to use nonlinear optimization algorithms such as quasi-Newton algorithm to 
numerically maximize the log-likelihood function since the system of equations (58), (59) and (60) cannot 
yield closed form solution. The R package provides nonlinear optimization for solving such problems.  
 

8 Asymptotic Confidence Intervals of the MLEs of The Generalized 
Weighted Rama Distribution 

 
Since the maximum likelihood estimators of the unknown parameters  ,   and   cannot be derived in 

closed form, it is not easy to derive the exact distributions of the maximum likelihood estimators. Hence, the 
exact confidence intervals for the parameter cannot be obtained. It is customary to use the large sample 
approximation to derive the asymptotic distribution of the maximum likelihood estimators.   Consequently, 
the asymptotic distribution of the MLEs is  
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where  , ,  I the Fisher information matrix of the unknown parameters  ,   and  is defined as 
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Notably, the variance-covariance matrix of the GWR distribution is given by  
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and the elements of the Fisher information matrix  , ,  I are defined as follows 
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Now, the approximate  100 1 % confidence intervals of the parameters  ,   and   of the GWR 

distribution takes the forms 
 

 ˆ ˆvar2Z                   (69) 

 

 ˆ ˆvar2Z                   (70) 

 
and  
 

 ˆ ˆvar2Z                   (71) 

 

where 2Z is the upper  2  percentile of the standard normal distribution. 

 

9 Monte Carlo Simulation Study 
 
This section deals with the simulation study for the assessment of the performance of the maximum 
likelihood estimates of the GWR distribution. Equation (15) was used to generate variates of the GWR 
distribution upon which the maximum likelihood estimates were obtained. In addition, the average bias and 
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mean square errors were obtained and displayed in Table 6 using the formula 
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    , where  , ,    . Simulation 

results were obtained for different combinations of  ,   and  . Clearly, the results in Table 6 show that 

the estimate are reasonably consistent and approaches the true parameter values. Consequently, it is 
concluded that the maximum likelihood technique performs well in estimation of parameters of the GWR 
distribution. 
 

Table 6. Average values of MLE, corresponding MSE and Bias 
 

 Set 1: 0.4  , 0.5  , 0.5   95% approximate  
confidence interval (CI) 

n  Parameters MLE SE Biases 95%  
Lower CI  

95% 
Upper CI 

50 ̂  
0.4114 0.0623 0.0114   0.2893  0.5335 

 ̂  0.7852 1.7147 02852  -2.5756  4.1460 

 ̂  
0.5067 0.5019 0.0067 - 0.4770  1.4904 

       
100 ̂  

0.4251 0.0600 0.0251   0.3075   0.5427 

 ̂  2.3680 4.7580 1.8680  -6.9577 11.6937 

 ̂  
0.7811 0.5942 0.2811  -0.3835   1.9457 

 Set 2: 0.5  , 0.5  , 0.5     

50 ̂  
0.4987 0.0610 0.0013   0.3791   0.6183 

 ̂  0.3195 0.6229 0.1805  -0.9014   1.5404 

 ̂  
0.3667 0.3543 0.1333  -0.3277   1.0611 

       
100 ̂  

0.5121 0.0500 0.0121   0.4141   0.6101 

 ̂  1.0311 1.3301 0.5311  -1.5759   3.6381 

 
 

̂  
0.5771 0.3325 0.0771  -0.0746   1.2288 

 Set 3: 0.6  , 0.5  , 0.5     

50 ̂  
0.6039 0.0657 0.0039   0.4751   0.7327 

 ̂  0.3581 0.5564 0.1419  -0.7324   1.4486 

 ̂  
0.3960 0.3001 0.1040  -0.1922   0.9842 

       
100 ̂  

0.6090 0.0557 0.0090   0.4998   0.7182 

 ̂  1.6027 1.6169 1.1027  -1.5660   4.7718 

 ̂  
0.7769 0.3300 0.2769   0.1301   1.4237 
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10 Application of Generalized Weighted Rama Distribution 
 
In this section, we use a real data to demonstrate the usefulness of the GWR distribution. The data set which 
was reported in (Gross and Clark [41]) relates to relief (in minutes) of receiving analgesic of 20 patients. The 
data are given below: 
1.1, 1.4, 1.3, 1.7, 1.9, 1.8, 1.6, 2.2, 1.7, 2.7, 
 
4.1, 1.8, 1.5, 1.2, 1.4, 3.0, 1.7, 2.3, 1.6, 2.0 
 
The GWR distribution is fitted to the data set by using the method of maximum likelihood and the results are 
compared with the following competitive models: 
 
Two parameter Rama distribution (Umeh et al. [31]) with pdf: 
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Two-parameter weighted Rama distribution (Eyob and Shanker [20]) with pdf:   
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Weighted Two-parametric Rama distribution (Vijayakumar et al. [28]) with pdf: 
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Next, some criteria like the Akaike information criterion (AIC), Bayesian information criterion (BIC), and 
Akaike information criterion corrected (AICC) are used to verify which of the aforementioned distributions 
fits the research data better. The formulae for (AIC), (BIC) and (AICC) are respectively given by 
 

2 2AIC k l                     (72) 

 

 ln 2BIC k n l                    (73) 

 

 2 1

1

k k
AICC AIC

n k


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 
                 (74) 

 
where l  denotes the log-likelihood function evaluated at the maximum likelihood estimates, k  is the 
number of model parameters, n  is the sample size. For calculation of the analytical measures, the optimum () 
R-function with the argument method= “BFGS” in R (R Development Core Team [42]) 
 
A distribution is said to provide the best fit to the data if among all the distributions under consideration, it 
corresponds to minimum values of AIC, AICC, BIC and the log-likelihood respectively.  The maximum 
likelihood estimates with the standard error of the fitted models and the 95 percent approximate confidence 
intervals are presented in Table 7. Also, the corresponding model selection criteria for the data set are 
presented in Table 8. Based on the results displayed in Table 8 respectively, it is evident that the GWRD has 
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the smallest AIC, AICC, BIC and log-likelihood values among all competing models, and so it could be 
chosen as the best model among all the distributions which have been fitted to the real data set. 
 
 

Table 7. Maximum likelihood estimates of parameters, standard errors and approximate confidence 
intervals 

 
  Standard 95% Approximate Confidence 

Interval 
Distribution MLE Error Lower CI Upper CI 
GWRD 5.5819̂   1.8111 2.0321 9.1317 

 47.9980̂   123.2140 -193.5010 289.4974 

 10.1780̂   3.0937 4.1143 16.2417 

     
WTPRD 

       
ˆ 1.7390   0.19237 1.3620 2.1160 

 ˆ 1.3147   
       ˆ 1.2153c   

0.1593 
0.1384 

1.0025 
0.9440 

1.6269 
1.4866 

     
TPRD ˆ 1.6331   0.7723 0.1193 3.1468 

 ˆ 0.5212   0.2655 0.0008 1.0416 

     
 

Table 8. Model selection criteria 
 

Model Log-lik AIC AICC BIC 
GWRD 17.7119 41.4238 42.9238 44.4110 
WTPRD 21.1572 48.4257 48.4753 53.3258 
TPRD 28.3827 59.5643 59.7934 72.5474 

 

11 Conclusion 
 
In this paper, we introduced a new three-parameter Rama distribution called the generalized weighted Rama 
(GWR) distribution and derived some of its properties like moments, mean, variance, coefficient of 
variation, skewness, kurtosis, index of dispersion, harmonic mean, moment generating function, 
characteristic function, Bonferroni and Lorenz curves, quantile function, Rényi entropy, stochastic ordering 
and the pdf of order statistics. In addition, some functions commonly used in reliability analysis, such as 
survival, hazard, reversed, cumulative hazard, mean residual life and odds functions respectively have been 
derived. The parameters of the GWR distribution were estimated by using the maximum likelihood 
estimation procedure and the asymptotic confidence intervals were estimated. The stability of the maximum 
likelihood estimates of model parameters was assessed through a simulation. Finally, the GWR distribution 
was fitted to a real-life data set and was compared with estimates from some extensions of the Rama 
distribution. The GWR distribution was found to provide a better fit than the competing distributions 
considered in this study. It is hoped that the GWR distribution will serve as an alternative model for 
modelling data sets exhibiting positive skewness and upside-down bathtub shape hazard rate. 
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