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Abstract 
 

In this paper, we present a new integral transform called Alenezi-transform in the category of Laplace 
transform. We investigate the characteristic of Alenezi-transform. We discuss this transform with the 
other transforms like J, Laplace, Elzaki and Sumudu transforms. We can demonstrate that Alenezi 
transforms are near to the condition of the Laplace transform. We can explain the new Properties of 
transforms using Alenezi transform. Alenezi transform can be applied to solve differential, Partial and 
integral equations.  
 

 
Keywords:  Partial differential equations; integral equations; alenezi-transform; laplace transform; other 

transforms. 
 

1 Introduction 
 
Integral transforms techniques are kind of transform to simplify most utilize techniques that transaction with 
differential equations subject to specific boundary conditions. We can choose a suitable integral transform to 
convert both differential and integral equations into a solvable algebraic equation. There are some of 
transforms for solving the differential equations, and these transforms are necessary to solve these equations 
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to complete the solutions [1-5]. We can list some of these transformations as shown in tables [1,2] that can 
demonstrate the functions and those transforms. Many researchers drive some of the integral transforms in 
the category of Laplace transform like Elzaki, Sumudu, Natural, Pourreza, Aboodh, and J transforms [6-10]. 
In the Table (1), the definitions for these transforms are registered. These transforms can be utilized for 
disbanding the different kinds of ordinary, integral, partial and fractional differential equation as in [11-16]. 
Alenezi et all presented some mathimatical techniques for solving algebraic modules [17-22]. There are 
Hybrid of the previous transforms with other methods such as the perturbation and Adomian decomposition 
methods are utilized to find the exact solutions for the different kinds of differential equation [23-29]. 
 

Table 1. Definitions of different transforms 
 

Laplace Transform 
�{ħ(�)} = � ħ(�)������

∞

�

 

Elzaki transform  
�{ħ(�)} = � � ħ(�)��

�

���

∞

�

 

Sumudu transform  
�{ħ(�)} =

1

�
� ħ(�)��

�

���

∞

�

 

Natural transform  
�{ħ(�)} = �(�,�) = � � ħ(��)������

∞

�

 

�-Integral Laplace transform 
�� {ħ(�)} = � ħ(�)��

�

�
���,   � ∈ ��

�

∞

�

 

Aboodh transform  
�{ħ(�)} = � (�) =

1

�
� ħ(�)������

∞

�

 

Mohand transform  
�{ħ(�)} = �(�) = �� � ħ(�)������

∞

�

 

Pourreza transform 
��{ħ(�)} = � � ħ(�)������

∞

�

 

Kamal transform  
� {ħ(�)} = �(�) = � ħ(�)��

�

���

∞

�

 

Sawi transform 
�� {ħ(�)} =

1

��
= � ħ(�)��

�

���

∞

�

 

G-transform  
�{ħ(�)} = �(�) = �� � ħ(�)��

�

���

∞

�

 

 
In this paper, we introduced Alenezi integral transform to get the exact solutions of the differential 
equations. The paper is coordinated as follows. In part 2, we introduce Alenezi integral transform in the 
category of Laplace transform. In part 3, we match Alenezi integral transform with the other integral 
transforms in the category of Laplace transform. Alenezi integral transform is utilized to the differential and 
integral equations to get the exact solutions in part 4. Finally, we summarized the conclusions of my 
transform in part 4. 
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2 Alenezi Integral Transform 
 
In this portion, we display Alenezi integral transform that envelope a widely integral transform in the group 
of Laplace transform. 
 
Definition 1. Let ħ(�) become an integrable function realized for � ≥  0, �(�)  ��� �(�) ≠ 0  are favorable 
real functions, we explain Alenezi integral transform  ℐ(�) of ħ(�) by the formula 
 

ℐ(�) = �(�) ∫ ħ(�)�
�

�

� (�)��
∞

�
                                                                                                                          (1) 

 
Table 2. Table of alenezi transforms 

 
Function Alenezi integral transform 
1 �(�)

�(�)
 

T �(�)

�(�)�
 

��  Γ(� + 1) �(�)

�(�)� ��
 

cos t �(�)�(�)

�(�)� + 1
 

sin t �(�)

�(�)� + 1
 

sin (at) ��(�)

�(�)� + ��
 

�� �(�)

�(�) − 1
 

ħ′(�) �(�) ℐ(�) − �(�)ħ(0) 

 
Theorem 1. Let ħ(�) is differentiable and �(�) and �(�) are positive real functions, then 
 

(I) ��ħ′(�);��= �(�) ℐ(�) − �(�)ħ(0)                                                                                                    (2) 
 

(II) ��ħ′′(�);��= ��(�) ℐ{ħ(�);�) − �(�)�(�)ħ(0) − �(�) ħ′(0)                                                             (3) 
  

(III) ��ħ(�)(�);��= ��(�) ℐ{ħ(�);�) − �(�) ∑ ���������
�� � (�)ħ�(0)                                                           (4) 

 
Proof. (I). In view of (1) we have 
 

ℐ�ħ′(�);��= �(�) �  ħ′(�)���(�)��� = �(�) ����(�)�ħ(�) �
∞

0
+ �(�) �  ħ(�)���(�)��� 

∞

�

��

∞

�

 

= �(�)ℐ{ħ(�);�} − �(�)ħ(0),                                                                                                                        (5) 
 

To proof (II), we assume �(�)  =  ħ′(�) so ħ′′(�) = �′(�) now 
 

�{�′(�);�} = �(�) ∫  �′(�)���(�)��� = �(�)
∞

�
ℐ{�(�);�} − �(�)�(0)                                                           (6) 

 

= �(�)ℐ�ħ′(�);��− �(�)ħ′(0) = �(�)[�(�)ℐ{ħ(�);�} − �(�)ħ(0)]− �(�)ħ′(0),                                     (7) 
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Theorem 2. (Convolution) Let ħ�(�) and ħ�(�) have new integral transform �(�). Then the new integral 
transform of the Convolution of  ħ� and ħ� is 
 

ħ� ∗ ħ� = ∫  ħ�(�) ∗ ħ��� − ���� =
�

�(�)
ℱ�(�) ∗ ℱ�(�).

∞

�
                                                                               (8) 

 
Proof.  
 

�{ħ
�

∗ ħ�} = �(�) � ���(�)� � ħ�(�) ∗ ħ��� − ����

∞

�

∞

�

 

= �(�) � ħ������� ���(�)� ∗ ħ��� − ����

∞

�

∞

�

 

= �(�) � ���(�)� � ħ�(�) ∗ ħ��� − ����

∞

�

∞

�

 

= �(�) � ���(�)�ħ������ � ���(�)� ħ�(�)��

∞

�

∞

�

 

  =
�

�(�)
ℱ�(�).ℱ�(�)                                                                                                                                        (9) 

 

3 Solving IVP and Integral Equations by New Transform 
 
In this section, we apply this new integral transform for solving high order IVP with constant 
coeffi cient. Also, we applied it to obtain the exact solution of a few types of integral equations and FDE. 
 

4 Solving IVP with Constant Coeffi cient 
 
Consider the following IVP: 
 

�(�)(�) + ���(�)(�) + ⋯ + ���(�) = �(�)                                                                                                 (10) 
 

�(0) = ��, �′(0) = ��,… .,�(���)(0) = ����.                                                                                          (11) 
 
Now we apply a new integral transform, we have: 
 

ℐ{�(�)(�) + ���(�)(�) + ⋯ + ���(�)} = ℐ{�(�)}                                                                                       (12) 
 

ℐ��(�)(�)�+ �� ℐ{�(�)(�)} + ⋯ + ℐ{���(�)} = ℐ{�(�)}                                                                            (13) 
 
Example 1. Consider the following third-order ODE 
 
�′′′ + �′′ − 6� = 0                                                                                                                                         (14) 
 
�(0) = 1, �′(0) = 0, �′′(0) = 5.                                                                                                                (15) 
 
By applying T on both sides, we have 
 
ℐ{�′′′ + �′′ − 6�} = ℐ{(0)}                                                                                                                           (16) 
 
ℐ{�′′′} + ℐ{�′′} − ℐ{6�} = ℐ{(0)}                                                                                                                 (17) 
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We have; 
 
 ��(�) ℐ(�) − �(�)( ��(�) �� + �(�)�� + ��)+  ��(�) ℐ(�) −  
 
�(�)(�(�) �� + �� − 6 ℐ(�) = 0                                                                                                                 (18) 
 
by replacing the initial conditions in above equation, we have 
 
 [��(�) +  ��(�) − 6�(�)] ℐ(�) = �(�) ��(�)  − �(�) + �(�) �(�).                                                        (19) 
 

 ℐ(�) =
�(�)( ��(�)��(�)��(�)�(�)

 [��(�)� ��(�)���(�)]
=

�(�)

 ��(�)
 +

�(�)

 ��(�)��
+

�(�)

 ��(�)��
                                                                              (20) 

 
by applying ℐ�� we find the exact solution as: 
 

�(�) =
�

�
ℐ��{

�(�)

 �(�)
} +ℐ��{

�(�)

 ��(�)��
}+ℐ��{

�(�)

 ��(�)��
}=

�

�
+

�

�
���� +

�

�
���                                                            (21) 

 
Example 2. Consider the following third-order ODE 
 
�′′′ + 2�′′ + 2�′ + 3� = sin � + cos �                                                                                                          (22) 
 
�(0) = 1, �′(0) = 1, �′′(0) = 0.                                                                                                                (23) 
 
By applying  ℐ we have 
 
ℐ{�′′′ + 2�′′ + 2�′ + 3�} = ℐ{sin � + cos �}                                                                                                (24) 
 
ℐ{�′′′} + 2ℐ{�′′} − ℐ{6�} = ℐ{(0)}                                                                                                               (25) 
 
 ��(�) ℐ(�) − �(�)( ��(�) �� + �(�)�� + ��) +2[��(�) ℐ(�) − �(�)(�(�) �� + ��]+ 2[�(�) ℐ(�) −
���0+3 ℐ�=��  �2�+1 + ����  �2�+1                                                                                                         
(26) 
 
by replacing the initial conditions in above equation, we have 
 

 [��(�) +  2��(�) + 2�(�) + 3] ℐ(�) =
�(�)

  ��(�) + 1
+

�(�) �(�)

  ��(�) + 1
+ �(�) �(�) + 2 �(�). 

 
by simplification we got. 
 

ℐ(�) =
�(�)

  ��(�)��
.                                                                                                                                             (27) 

 
by applying  ℐ�� , we find the exact solution as 
 

 �(�) =  ℐ��{
�(�)

  ��(�)��
}=sin (�)                                                                                                                        

(28) 
 
We compare my transform with the laplace transform and found that my transform satisfies the exact 
solution and give an accurate result like the laplace transform as showen in the next example that 
demonstrate that my transform satisfies the same results of laplace transform. 
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Example 3.  Solve the Partial differential equation 
 

2�
��

��
+

��

��
= 2�                                                                                                                                             (29) 

 
Given that �(�,0) = 1,   �(0,�) = 1  
 
Writing the above equation in the form 
 
2���(�,�) + ��(�,�) = 2�                                                                                                                            (30) 
 

2�[��(�,�) − �(�,0)]+ ��(�,�) =
��

�
                                                                                                         (31) 

 

2�[��(�,�) − 1]+ ��(�,�) =
��

�
                                                                                                                  (32) 

 
��

��
+ 2��� = 2� +

��

�
                                                                                                                                     (33) 

 

= 2�(1 +
�

�
)                                                                                                                                                   (34) 

 
This is linear differential equation of the first order. The integrating factor is  
 

�∫ ����� = ����
                                                                                                                                               (35) 

 

����
= � 2� �1 +

1

�
� ����

�� + � 

 

=
�

�
�1 +

�

�
� ����

+ �                                                                                                                                      (36) 

 

�(�,�) =
1

�
�1 +

1

�
� + � �����

 

 

  
�

�
=

�

�
�1 +

�

�
� + �                                                                                                                                         (37) 

 

� = −
1

��
 

 

�(�,�) =
1

�
�1 +

1

�
� −

1

��
 �����

 

 

=
1

�
+

1

��
−

1

��
 �����

 

 

�(�,�) = �
1 + �            0 ≤ � ≤ ��

1 + ��                 � ≥ ��
�                                                                                                                (38) 

 

5 Conclusion 
 
In this paper, we present Alenezi integral transform. we demonstrate the old integral transforms and 
compared with Alenezi transform. It has demonstrated that Alenezi integral transform accurate than and 
satisfy the exact solution like Elzaki , Sumudu, and Laplace transforms for various value of m(s) and n(s). 
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We demonstrate Alenezi transform for the solutions of ODE, and integral equations. Some examples are 
used to demonstrate the effi ciency of this technique. 
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