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ABSTRACT 
 

The present study aims to estimate Above-Ground Biomass (AGB) in the moist deciduous forests 
of Mundgod Taluk, Uttara Kannada district, Karnataka, India using a combination of field sampling 
and remote sensing techniques. AGB was assessed using Sentinel-2A satellite imagery with a 
spatial resolution of 10 meters. Field data were collected using the Point-Centered Quarter (PCQ) 
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method, it includes measuring tree girth at breast height (GBH), tree height, and canopy density.  
AGB was calculated using artificial form factor and specific gravity of tree species and further 
modelled using the Normalized Difference Vegetation Index (NDVI) derived from satellite data. The 
results showed a significant correlation between canopy density and biomass, with very dense 
forests exhibiting the highest AGB values. The field-measured AGB was 436.96 t/ha for very dense 
forests, 259.89 t/ha for moderately dense forests, and 161.67 t/ha for open forests. A linear 
regression model developed between AGB and NDVI showed a high R² value of 0.91 for open 
forests, 0.87 for moderately dense forests, and 0.85 for very dense forests. The total area-weighted 
biomass for the study area was estimated at 8.87 million tons, with 4.79 million tons in very dense 
forests, 3.44 million tons in moderately dense forests, and 0.76 million tons in open forests. The 
regression model validation indicated low Root Mean Square Error (RMSE) values, with the 
moderately dense forests 8.81 t/ha and the in very dense forests 7.54 t/ha. This study highlights the 
effectiveness of integrating field measurements with remote sensing for rapid, reliable AGB 
estimation. The approach offers valuable insights into biomass distribution and carbon 
sequestration potential, providing a scalable method for carbon inventories at state and national 
levels, contributing to forest management and climate change mitigation efforts. 
 

 
Keywords: Above ground biomass; NDVI; optical data; Regression equation model. 
 

1. INTRODUCTION 
 
Forest biomass represents the total dry weight of 
all living components of trees within a given area, 
encompassing both aboveground parts (leaves, 
branches, and stems) and belowground 
components (fine and coarse roots) [1]. Forest 
Aboveground Biomass (FAGB) refers specifically 
to the biomass of the aboveground components, 
excluding the belowground roots, which typically 
require labour-intensive excavation for accurate 
quantification [2]. Due to its ease of 
measurement, FAGB is often preferred over total 
biomass in ecological studies. The most accurate 
method for ground-based biomass estimation 
involves destructive sampling, wherein selected 
trees are felled, and their biomass is measured 
by drying samples from the fresh components 
(e.g., leaves, branches, and stems). This process 
allows for the derivation of species-specific 
allometric equations based on parameters such 
as tree height and diameter at breast height 
(DBH). These allometric models are then applied 
to the remaining trees in a sampling plot to 
estimate their biomass, and the cumulative 
biomass of all trees within the plot provides a 
reliable, area-based estimate [1].  
 
Over the years, extensive research has focused 
on developing species-specific allometric 
equations for various forest types [3], which are 
essential for biomass estimation at local scales. 
However, despite the existence of allometric 
equations for most dominant tree species across 
different countries, these equations are limited in 
their applicability over large areas. This limitation 
arises because variables such as DBH, height, 

and species type cannot be spatially and 
continuously measured for each individual tree 
across extensive regions. Although remote 
sensing (RS) data cannot directly utilize these 
equations, the variables used in allometry (e.g., 
DBH and height) can guide the selection of 
remote sensing-derived features for accurate 
biomass estimation over broad landscapes. 
Several global and regional biomass products 
have been developed using remote sensing 
techniques [4-6], yet many do not incorporate 
species-specific allometric considerations, 
leading to uncertainties in biomass                    
estimates [7]. Thus, precise estimation of forest 
biomass over large areas remains a challenging 
task. 
 
This study aims to estimate Above-Ground 
Biomass (AGB) in the moist deciduous forests of 
Mundgod Taluk in Uttara Kannada district using 
an optical remote sensing technique. This 
approach will be used to develop a regression 
model tailored to the moist deciduous forests. 
Once validated, the regression model will 
facilitate AGB prediction in similar forest types 
across different geographic regions. Accurate 
estimation of forest biomass is critical for 
ecological research, carbon budgeting, and 
sustainable forest management, as well as for 
supporting national development strategies [8]. 
Biomass estimation plays a vital role in 
understanding the global carbon cycle, especially 
in the context of climate change and greenhouse 
gas (GHG) dynamics. Forest biomass data have 
been increasingly used to estimate GHG pools 
and fluxes from terrestrial ecosystems, 
particularly under changing land use and land 
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cover conditions. The Kyoto Protocol 
underscores the significance of terrestrial 
vegetation and soils as vital carbon sinks [9]. 
 
Forests, through photosynthetic processes, 
capture atmospheric carbon dioxide and store it 
in their biomass. The evaluation of biomass 
typically involves three primary approaches: field 
measurements, remote sensing, and Geographic 
Information Systems (GIS) [10]. While field 
measurements offer high accuracy, they are 
cost-prohibitive and time-consuming for large-
scale applications. In contrast, RS and GIS 
technologies provide opportunities for efficient 
and reliable biomass estimation and monitoring 
at multiple spatial scales. Satellite platforms such 
as NOAA AVHRR, SPOT, MODIS, and ASTER 
are well-suited for estimating terrestrial biomass 
and carbon stocks over extensive areas. 
Vegetation indices, particularly the Normalized 
Difference Vegetation Index (NDVI), serve as 
reliable indicators of the Leaf Area Index (LAI), 
which is strongly correlated with biomass and 
productivity [11]. Previous studies, such as that 
by Dadhwal et al [12], have utilized state-based 
remote sensing data combined with field 
inventory data to estimate India’s phytomass 
carbon pool (4,017 Tg C) and phytomass carbon 
density (63.6 Mg C ha⁻¹). 
 
The present study focuses on estimating AGB 
across different canopy density classes in the 
moist deciduous forests of Mundgod Taluk using 
an integrated approach of satellite-based remote 
sensing and ground-based field measurements. 
The primary objective is to develop a robust 
regression model that integrates remotely 
sensed metrics with field-derived biomass data to 
generate a geospatial distribution of biomass for 
the region. The resulting model will serve as a 
reliable tool for AGB estimation and carbon stock 
assessment in similar ecosystems, contributing 
to a better understanding of forest carbon 
dynamics and supporting climate change 
mitigation strategies. 
 

2. MATERIALS AND METHODS 
 
Study area: The study was conducted in the 
moist deciduous forests of Mundgod Taluk, 
located in the Uttara Kannada district of 
Karnataka, India in the year 2022. The study 
area is geographically positioned between 
14°41'45'' N to 15°01'30'' N latitudes and 
74°51'45'' E to 75°05'00'' E longitudes, 
encompassing an area of 39,142.54 hectares, 
with an average elevation of 564 meters above 

mean sea level (MSL). The spatial extent of the 
study area is depicted in Fig. 1.  
 
Climatic conditions: The climate of the study 
area is characterized by four distinct seasons: 
Summer (March to May): Characterized by rising 
temperatures. South-West Monsoon (June to 
September): Dominated by heavy rainfall, 
particularly over the Western Ghats and Malnad 
regions. Post-Monsoon Season (October to 
November): A transitional phase with diminishing 
rainfall. Winter (December to February): Marked 
by low humidity and cooler temperatures. The 
average rainfall of 11.2 - 13.4 inches. 
 
Forest types and major flora: Based on the 
classification by Champion and Seth [13], the 
study area comprises three primary forest types:  
 

1. Southern Moist Mixed Deciduous Forests 
(3B/C2),  

2. Southern Secondary Moist Mixed 
Deciduous Forests (3B/C2/2S1), and  

3. Moist Teak-Bearing Forests (3B/C1). 
 
These moist deciduous forests are dominated by 
various tree species, including Tectona grandis, 
Terminalia alata, Lagerstroemia lanceolata, 
Lannea coromandelica, Pterocarpus marsupium, 
Dalbergia latifolia, Anogeissus latifolia, Mitragyna 
parviflora, Terminalia bellarica, Bombax ceiba, 
Grewia tiliaefolia, Terminalia paniculata, 
Madhuca spp., Schleichera oleosa, Adina 
cordifolia, Xylia xylocarpa, and Diospyros spp., 
among others. 
 
Ancillary data: The primary reference data 
included Survey of India (SOI) toposheets 
(numbers: 48I/16, 48M/4, 48N/1, 48J/13, 48J/14, 
and 48N/2) at a scale of 1:50,000, and a forest 
cover map of moist deciduous forest of Mundgod 
was developed by Ramachandra et al. [14].  
 
Field data collection: Field sampling was 
carried out using randomly laid transects across 
the entire study area. Within each transect, the 
Point-Centered Quarter (PCQ) method was 
employed [15]. Each transect was 100 meters 
long, with sampling points established at 25-
meter intervals (i.e., at 0 m, 25 m, 50 m, 75 m, 
and 100 m). At each of these five sampling 
points, four trees (one in each quarter) were 
measured, totalling 20 trees per transect. 
 
Only trees with a diameter at breast height (DBH) 
of ≥30 cm were included in the measurements. 
The parameters recorded at each sampling point 
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included tree species, girth at the base (10cm 
above ground level), girth at breast height (GBH, 
1.37 m above the ground), and height (in 
meters). A girth tape was used for measuring 
GBH, while height was determined using a 
hypsometer. Additionally, geographical 
coordinates (latitude, longitude, and elevation) 
were documented using a Garmin eTrex 10 GPS 
device. 
 
Canopy density classification: Forest types 
with canopy cover greater than 10% were 
selected for sampling based on measurements 
using a spherical crown densiometer. The 
canopy density classes were categorized as 
follows [16]: 
 

- Very Dense Forest: Canopy density >70%. 
- Moderately Dense Forest: Canopy density 

between 40-70%. 
- Open Forest: Canopy density between 10-

40%. 
 
For each canopy class, fifteen sampling plots 
were enumerated. In those 10 plots was used for 
testing and 5 plots for the validation. The mean 
distance of trees within each PCQ transect was 
calculated, and the area of each transect was 
computed as the square of the mean distance 
multiplied by 20. This calculated area was then 
used to determine biomass estimates for each 
class. 
 
Above ground biomass estimation: Field data 
was used to estimate Above-Ground Biomass 
(AGB) by applying artificial form factor and 
specific gravity. Area-weighted AGB was 
calculated by multiplying the biomass of each 
canopy density class by the area it occupies 
within the forest. These values was then 
aggregated to determine the total AGB for the 
study area, providing a spatial distribution of 
biomass across different canopy density classes 
within the study area. 
 
The biomass estimates, combined with remote 
sensing data, were used to develop a regression 
model for predicting AGB in similar moist 
deciduous forests. This model contributes to a 
better understanding of biomass distribution and 
carbon sequestration potential, aiding in forest 
management and climate change mitigation 
efforts. 
 
Volume (m3) = Basal area (m2) ×Height (m) × 
Artificial form factor  

Basal area (m2) =d2 /4 

Where d is the diameter at breast height 

Artificial form factor =  
Biomass (t) = Volume (m3) × Specific gravity  
 
The specific gravity of different trees was 
obtained from the list given by Forest Research 
Institute (FRI), Dehradun Regression models 
were developed to estimate biomass using 
satellite-derived parameters, including red and 
infrared band reflectance, as well as the 
Normalized Difference Vegetation Index (NDVI). 
A Sentinel-2A surface reflectance image was 
utilized for this analysis. In ArcGIS, an NDVI map 
of the entire moist deciduous forest of Mundgod 
was generated using raster tools. NDVI 
reflectance values were then recorded for each 
ground truth location across different canopy 
density classes (Fig. 2).  
 
Spectral modeling was performed using a 
satellite image from January 2022 to establish a 
regression relationship between area-weighted 
biomass and satellite-derived parameters. The 
best-fit model was selected based on the 
coefficient of determination (R²). The regression 
analysis was conducted between the NDVI value 
of each canopy density class and the 
corresponding above-ground biomass (t/ha), 
following methods outlined by Devagiri et al. [17]. 
The final best-fit model was applied to estimate 
biomass for the entire study area.The linear 
regression equation for optical data is: - 
 
Y= a+bx        
                            
Where a and b are constants and x are the NDVI 
value 
 
The NDVI was calculated using the formula given 
by Jensen [18].  
 
Normalized Difference Vegetation Index =

. 
 

Where NIR is the reflectivity of the near-infrared 
band and RED is the reflectivity of the red band.  
 

The 5 plots were used to validate the linear 
regression equation model. The RMSE and R2 
were used to evaluate the equation [19]. 
 

3. RESULTS AND DISCUSSION  
 
The tree density in the moist deciduous forests of 
Mundgod Taluk, Karnataka, varied significantly 
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across different canopy density classes. In very 
dense forests, tree density was 451 stems ha-¹, 
while in moderately dense forests it was 363 
stems ha-¹, and in open forests, it dropped to 125 
stems ha-¹. These values are consistent with 
those reported by Verghese and Menon [20], 
who documented tree density of 535 stems ha-¹ 
in the moist deciduous forests of the 
Agastyamalai region in Kerala. The field-
measured wood biomass was 436.96 t ha-¹ for 
very dense forests, 259.89 t ha-¹ for moderately 
dense forests, and 161.67 t ha-¹ for open forests 
(Table 1). The total biomass, calculated as area-
weighted biomass, was estimated at 4.79 million 
tons for very dense forests, 3.44 million tons for 
moderately dense forests, and 0.76 million tons 
for open forests, resulting in a total biomass 
estimate of 8.99 million tons (Table 1) for the 
entire study area. These biomass estimates are 
comparable to those reported by Hojas et al. [21] 
for tropical forests in Malaysia, where very dense 
forests ranged from 427 to 569 t ha⁻¹, 
moderately dense forests ranged from 168 to 
414 t ha⁻¹, and open forests ranged from 130 to 

155 t ha⁻¹. 

 
The NDVI values, derived from Sentinel-2A 
satellite data, varied across canopy density 
classes, ranging from 0.32 to 0.73. Higher NDVI 
values were recorded in very dense forests, 
corresponding to higher biomass estimates, 
whereas lower NDVI values in open forests 
aligned with lower biomass estimates. These 
results demonstrate a clear relationship between 
NDVI, forest type, and biomass. Similar findings 
were reported by Koppad et al. [22] for the Joida 
region of Uttara Kannada district, where NDVI 
values ranged from 0.64 to 0.74 for very dense 
forests, 0.54 to 0.64 for moderately dense 
forests, 0.46 to 0.54 for sparse forests, and 0.39 
to 0.46 for scrub forests (Table 2). Additionally, 
Hashim et al. [23] reported NDVI values from -1 
to 0.199 for non-vegetated areas, 0.2 to 0.5 for 
low vegetation areas, and 0.50 to 1 for high 
vegetation areas, consistent with this study's 
findings. 
 
The predicted AGB for very dense forests was 
434.87 t ha⁻¹, for moderately dense forests was 
253.1 t ha⁻¹, and for open forests was 159.50 t 

ha⁻¹. The regression analysis between NDVI and 
AGB yielded the highest R² value (0.91) for open 
forests, followed by moderately dense forests (R² 
= 0.87) and very dense forests (R² = 0.85) (Table 

4). The Root Mean Square Error (RMSE) values 
were highest in moderately dense forests (8.81 t 
ha⁻¹), followed by open forests (7.87 t ha⁻¹), with 

the lowest RMSE observed in very dense forests 
(7.54 t ha⁻¹). These results are in agreement with 

Askar et al. [24], who estimated AGB using 
Sentinel-2 imagery and found an R² value of 0.74 
in their regression analysis between observed 
and predicted AGB. The differences in biomass 
estimates between observed and predicted 
values may be attributed to variations in crown 
density, tree phenology, and vegetation types, as 
remote sensing data are highly sensitive to 
seasonal changes, phenological characteristics, 
and canopy closure [12]. 
 
The analysis of validation results for Above 
Ground Biomass for three forest density classes 
as follows. For Very Dense Forest: The observed 
AGB ranged from 436.5 t/ha to 509.1 t/ha, with a 
mean of 455.94 t/ha and a standard deviation of 
29.94 t/ha. Predicted AGB values averaged 
444.78 t/ha (SD = 27.83 t/ha). The mean 
difference was 11.14 t/ha, and the mean 
percentage difference was 2.42%, indicating 
slight underestimation by the model. For 
Moderate Dense Forest Observed AGB values 
ranged from 228.3 t/ha to 265.7 t/ha, with a 
mean of 250.54 t/ha (SD = 15.86 t/ha). Predicted 
values averaged 257.25 t/ha (SD = 20.98 t/ha). 
The mean difference was -6.71 t/ha, and the 
mean percentage difference was -2.59%, 
suggesting slight overestimation by the model. 
Open Forest: Observed AGB values ranged from 
153.8 t/ha to 198.8 t/ha, with a mean of 179.64 
t/ha (SD = 17.00 t/ha). Predicted AGB values 
averaged 179.89 t/ha (SD = 15.53 t/ha). The 
mean difference was -0.27 t/ha, and the mean 
percentage difference was -0.03%, (Table 4) 
indicating a close match between observed and 
predicted values. 
 
Overall, this study demonstrates that remote 
sensing, when integrated with field data, provides 
an efficient and reliable method for estimating 
vegetation biomass and carbon stocks over large 
areas. The alignment between predicted and 
observed AGB values underscores the potential 
of spectral modeling for biomass estimation. 
However, the discrepancies between predicted 
and observed values highlight the importance of 
accounting for differences in crown density and 
phenological conditions when interpreting remote 
sensing data. 
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Table 1. Predicted AGB based on NDVI value in different canopy density classes of moist deciduous forest 
 

Sl. No Latitude Longitude NDVI value Observed AGB (t/ha) Predicted AGB (t/ha) 

Very dense forest 

1 14°50'17"N 74°58'19"E 0.455 405.5 412.77 
2 14°48'06"N 75°01'04"E 0.458 408.7 413.79 
3 14°52'18"N 74°56'17"E 0.487 414.5 423.71 
4 14°55'32"N 74°55'34"E 0.480 417.5 421.32 
5 14°42'07"N 74°59'06"E 0.492 427.1 425.42 
6 14°44'03"N 75°00'19"E 0.489 427.8 424.40 
7 14°49'08 "N 75°01'04"E 0.508 430.2 430.90 
8 14°45'53"N 74°58'57"E 0.510 430.8 431.58 
9 14°47'58"N 75°01'20"E 0.513 443.7 432.61 
10 14°54'33"N 74°56'22"E 0.660 467.0 482.89 
Mean 0.51 427.28 424.06 
S. D 0.06 18.10 7.24 

Moderate dense forest 

1 14°42'30"N 74°59'45"E 0.377 221.6 221.10 
2 15°00'49"N 74°53'50"E 0.380 225.3 223.92 
3 14°42'27"N 74°59'02"E 0.387 228.3 230.51 
4 14°50'23"N 75°00'53"E 0.388 229.4 231.45 
5 14°55'16"N 74°55'50"E 0.396 239.6 238.98 
6 14°46'24"N 74°59'24"E 0.416 242.2 257.82 
7 14°52'44"N 74°58'53"E 0.427 259.2 268.17 
8 14°53'01"N 74°57'30"E 0.436 265.7 276.65 
9 14°52'07"N 74°58'15"E 0.439 272.2 279.47 
10 14°55'48"N 75°00'04"E 0.442 298.7 282.30 
Mean 0.41 248.22 251.04 
S. D 0.03 25.04 24.41 

Open forest 

1 14°47'05"N 75°00'31"E 0.281 115.6 116.09 
2 15°00'32 "N 74°53'26"E 0.293 117.7 129.21 
3 14°56'22"N 74°57'31"E 0.295 121.7 131.23 
4 14°56'13"N 74°57'21"E 0.305 146.0 141.33 
5 14°58'49"N 74°56'11"E 0.318 147.6 154.45 
6 14°55'01"N 74°57'06"E 0.320 150.7 156.47 
7 14°50'03"N 75°01'28"E 0.325 162.8 161.52 
8 14°52'11"N 75°01'28"E 0.327 174.3 163.54 
9 14°59'08"N 74°53'52"E 0.333 182.8 169.59 
10 14°56'54"N 74°57'21"E 0.350 185.0 186.76 
Mean 0.31 150.42 151.02 
S. D 0.02 26.04 21.37 
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Table 2. Validation of a model for SAR-derived above-ground biomass 
 

Sl.no Latitude Longitude Observed AGB (t/ha) Predicted AGB(t/ha) Difference (t/ha) % Difference 

Very dense forest 

1 14°47'58"N 75°01'20"E 443.7 422.34 21.34 4.81 
2 14°54'05"N 74°56'13"E 509.1 492.47 16.59 3.26 
3 14°47'42"N 74°56'03"E 444.5 436.71 7.74 1.74 
4 14°47'47"N 74°56'06"E 436.5 428.84 7.63 1.75 
5 14°46'11"N 75°01'25"E 445.9 443.55 2.38 0.53 
Mean 455.94 444.78 11.14 2.42 
S. D 29.94 27.83 7.65 1.65 

Moderate dense forest 

1 14°53'01"N 74°57'30"E 265.7 276.65 -10.99 -4.14 
2 14°42'27"N 74°59'02"E 228.3 230.51 -2.21 -0.97 
3 14°45'20"N 74°53'25"E 259.9 271.94 -12.04 -4.63 
4 14°52'44"N 74°58'53"E 259.2 268.17 -8.96 -3.46 
5 14°55'16"N 74°55'50"E 239.6 238.98 0.64 0.27 
Mean 250.54 257.25 -6.71 -2.59 
S. D 15.86 20.98 5.61 2.13 

Open forest 

1 14°53'38"N 75°01'21"E 198.8 199.88 -1.11 0.56 
2 14°52'24"N 75°00'45"E 182.5 175.65 6.83 3.74 
3 14°55'29"N 75°00'11"E 174.3 172.62 1.72 0.99 
4 14°52'23"N 74°58'13"E 153.8 160.51 -6.75 -4.39 
5 14°53'15"N 75°01'04"E 188.8 190.79 -2.02 -1.07 
Mean 179.64 179.89 -0.27 -0.03 
S. D 17.00 15.53 5.00 2.99 
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Fig. 1. Study area- a moist deciduous forest of Mundgod taluk 
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Fig. 2. NDVI Map of Moist deciduous forest of Mundgod 
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Fig. 3. Relationship between optical predicted biomass plotted against field measured biomass 
a. Very dense forest, b) Moderate dense forest c) open forest 
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Table 3. MLR models developed for the different canopy density classes using optical data 
 

Canopy density classes Regression equation model R2 RMSE(t/ha) 

Very dense forest Y=257.12+342.08×X 0.85 7.54 

Moderate dense forest Y=-133.869+941.55×X 0.87 8.81 

Open forest Y=-166.57+1009.5×X 0.91 7.54 

 
Table 4. Observed and predicted above-ground biomass from different density classes of moist deciduous forest of Mundgod taluk from optical 

data 
 

Classes Observed biomass 
(t/ha) 

Predicted AGB(t/ha) Area(ha) Area weighted Observed 
biomass (Million tons) 

Area weighted predicted 
biomass (Million tons) 

Very dense forest 436.96 434.87 10983.76 4.79 4.77 

Moderate dense forest 259.89 253.10 13237.47 3.44 3.35 

Open forest 161.67 159.50 4713.18 0.76 0.75 

Total 8.99 8.87 
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4. CONCLUSION 
 

This study aimed to estimate Above-Ground 
Biomass (AGB) in the moist deciduous forests of 
Mundgod Taluk, Uttara Kannada district, 
Karnataka, using a combination of field data and 
remote sensing techniques. The study 
demonstrated the effectiveness of integrating 
satellite-derived indices such as NDVI with field 
measurements to predict biomass across 
different canopy density classes. The results 
revealed a clear relationship between canopy 
density and biomass, with very dense forests 
showing the highest AGB and corresponding 
NDVI values, while open forests exhibited lower 
biomass and NDVI values. The regression 
models developed using Sentinel-2A surface 
reflectance data provided a robust method for 
predicting AGB across the study area, with high 
R² values, particularly for open forests (R² = 
0.91). The model validation indicated a relatively 
low Root Mean Square Error (RMSE) across all 
canopy density classes, further confirming the 
reliability of the predictions. Moreover, the area-
weighted biomass estimates revealed that the 
Mundgod moist deciduous forests harbor 
significant biomass, totaling approximately 8.99 
million tons.Remote sensing proved to be a 
valuable tool for large-scale biomass estimation 
and carbon assessment, offering rapid, cost-
effective, and reliable results. The study 
highlighted the critical role of forest density in 
influencing biomass distribution and underscored 
the utility of spectral modeling in understanding 
forest structure and function. These findings 
contribute to broader efforts aimed at quantifying 
biomass and carbon sequestration potential in 
tropical forests, providing essential data for forest 
management, conservation, and climate change 
mitigation strategies. The integration of 
geospatial techniques with field data can help 
improve the accuracy and scalability of biomass 
estimation, making it a valuable approach for 
similar studies in other forest types. 
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