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ABSTRACT 
 

Hidden Markov Models (HMMs) are effective statistical techniques used to uncover underlying 
patterns in observable sequential data This paper provides a comprehensive overview of the 
theoretical foundations of HMMs, including key algorithms essential for their implementation, such 
as the Expectation-Maximization algorithm, the Baum-Welch algorithm, and the Viterbi algorithm. 
An application of HMMs to assess the likelihood of misclassification in Chronic Kidney Disease 
(CKD) stages is discussed, providing insights into the disease's natural progression and informing 
better treatment strategies. 
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In the case study, we conducted an analysis of the S&P 500 index dataset spanning from January 
4, 2000, to September 20, 2019. This analysis, similar to Lihn's study but with an extended period, 
evaluates the robustness and consistency of regime identification through HMMs, offering deeper 
insights into market behavior over nearly two decades. HMMs identify different market regimes, 
revealing the underlying dynamics of bull and bear markets. The study demonstrates the superiority 
of a five-state HMM model in capturing market behaviors, thereby aiding in volatility forecasting. 
This study underscores the significance of HMMs in various domains, highlighting their ability to 
effectively model complex systems with hidden states. "It is a useful tool for those looking to explore 
and utilize HMMs across various disciplines, pushing the boundaries of statistical modeling and 
analysis. 
 

 

Keywords: Hidden Markov Models; Markov chains; stochastic process; time series. 
 

1. INTRODUCTION 
 

1.1 Overview of Markov Chains 
 

Andrey Andreyevich Markov (1856–1922), a 
distinguished Russian mathematician, is well-
known for his contributions to the field of 
stochastic processes, particularly Markov chains. 
He first introduced the concept of Markov chains 
in 1906, laying the groundwork for these 
stochastic processes and coining the term 
"chain." In 1913, Markov applied his theories to 
the analysis of letter sequences in the Russian 
language, driven by his mathematical curiosity. 
His pioneering work paved the way for the 
development of the stochastic Markov process, a 
key tool in statistical modeling [1-4]. In the realm 
of probability theory and statistics, a Markov 
process is characterized by the Markov property, 
which means that the future state depends solely 
on the present state, with no influence from the 
events that occurred before it [5-8]. This 
property, known as memory lessness, is 
essential for developing stochastic models, as it 
allows for a straightforward introduction of 
statistical dependence, where the strength of 
dependence decreases as the time lag increases 
[9-13]. 
 

1.2 Overview of the Development of 
Hidden Markov Models 

 

Conventional Markov models have limitations as 
they link each state directly to a particular 
observation. To address this, the concept was 
extended to Hidden Markov Models (HMMs), 
which involve observations that are 
probabilistically dependent on the states [14,15]. 
This creates a layered stochastic process, where 
the underlying hidden process is inferred 
indirectly through observable data. Leonard E. 
Baum and others described HMMs in a series of 
statistical papers in the late 1960s. One of the 
earliest applications of HMMs was in speech 

recognition in the mid-1970s. In HMMs, the 
system state is not directly visible; instead, 
observable outputs are produced based on state-
dependent probabilities. The term 'hidden' refers 
to the states of the Markov chain that cannot be 
directly observed, rather than to the model's 
parameters [16-19]. 
 

The evolution of HMMs has seen significant 
advancements across various fields. The 
foundational work by Baum and Petrie [20] laid 
the groundwork for statistical inference in HMMs, 
establishing their theoretical underpinnings. Over 
time, the application of HMMs expanded, as 
seen in the work of Durbin et al. [21], who 
highlighted their utility in biological sequence 
analysis, particularly in bioinformatics. Further 
methodological developments were made by 
Bartolucci and Farcomeni [22], who integrated 
the Mixture Transition Distribution model with 
HMMs, enhancing time series analysis. The 
introduction of parsimonious structures for 
autoregressive HMMs by Alizadeh and Rezakhah 
[23] contributed to a deeper understanding of 
their stability and moment behavior. In recent 
years, the versatility of HMMs has been 
demonstrated in diverse applications: Boyko and 
Beaulieu [24] applied generalized HMMs in 
phylogenetic studies, while Gámiz et al. [25] 
explored their potential in reliability engineering. 
Contemporary reviews, such as those by Deng 
and Söffker [26], emphasize the relevance of 
HMMs in driving behavior prediction. Additionally, 
the work by Zucchini et al. [27] provides an 
accessible guide to applying HMMs in various 
types of time series, reflecting the model's 
adaptability and enduring importance in modern 
research. 
 

1.3 Overview of Algorithms for 
Developing HMMs 

 

During the mid-20th century, Claude Shannon 
(1916–2001), an American mathematician and 
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electrical engineer, made a significant impact 
with his work “A Mathematical Theory of 
Communication.” This paper highlighted the 
importance of integrating deterministic and 
stochastic processes in computing and 
electronics, laying the foundation for various 
developments in the field. Following this, several 
key algorithms were introduced to develop, 
apply, and better understand HMMs. 
 

The Expectation-Maximization (EM) 
Algorithm: The EM algorithm plays a crucial role 
in determining the maximum likelihood estimates 
for parameters in probabilistic models that 
involve unobserved latent variables. This 
algorithm alternates between two steps: the 
expectation (E) step, where the expected 
likelihood is calculated as if the latent variables 
were known, and the maximization (M) step, 
which optimizes the likelihood obtained in the E 
step. The process is repeated iteratively until the 
algorithm converges. EM is extensively utilized in 
fields such as data clustering, machine learning, 
and computer vision. Its main advantage lies in 
its efficiency in handling incomplete data, though 
it can be sensitive to the initial parameter settings 
and may sometimes converge to local rather 
than global maxima. 
 

The Baum-Welch Algorithm: As a specific 
example of the generalized expectation-
maximization (GEM) algorithm, the Baum-Welch 
algorithm is employed to estimate the unknown 
parameters of an HMM through the forward-
backward procedure. It is particularly effective in 
training HMMs and is commonly used in areas 
like speech recognition and bioinformatics. The 
algorithm's primary strength is its efficiency in 
training models with incomplete data. However, 
similar to the EM algorithm, it may be influenced 
by initial conditions and might not always find the 
global optimum. 
 

The Viterbi Algorithm: Developed by Andrew 
Viterbi in 1967, this dynamic programming 
algorithm is designed to decode convolutional 
codes over noisy communication channels. The 
Viterbi algorithm identifies the most probable 
sequence of hidden states, known as the Viterbi 
path, that could result in a given sequence of 
observed events. It is widely applied in fields 
such as speech recognition, keyword spotting, 
computational linguistics, and bioinformatics. The 
main benefit of the Viterbi algorithm is its ability 
to efficiently determine the most likely sequence 
of states. However, it assumes that the model 
parameters are known and fixed, which may not 
always align with real-world scenarios. 

Each of these algorithms has its strengths and 
limitations, making them suitable for different 
applications and scenarios within the context of 
HMMs. 
 

2. DEFINITIONS AND EXAMPLES 
 

2.1 Markov Chain 
 
“A stochastic process {Xt} t = 0,1,2,… referred to as a 
Markov chain if it satisfies the Markov property, 
which is defined as  
 
P{ Xt = k│ Xt-1 = j, Xt-2 = j1 , … , X0 = jt-1}= P{ Xt= 
k│ Xt-1 =j} = pjk (say), 
 
for all t ≥ 0 for all states j, k, j1 , …, jt-1 ∈ N and 
whenever the first member P{ X0 = jt-1} is 
defined”. 
 
Example 1 [28]: Consider a simple experiment 
where a coin is tossed repeatedly. Each trial has 
two possible outcomes: a head, which occurs 
with probability 𝑝, and a tail, which occurs with 

probability 𝑞, with 𝑝 + 𝑞 = 1. We can represent a 
head by 1 and a tail by 0, with the random 
variable 𝑋𝑡  representing the result of the 𝑡 -th 
toss. Therefore, for 𝑡 = 1,2,3, …, 
 

𝑃(𝑋𝑡 = 1) = 𝑝 𝑎𝑛𝑑 𝑃(𝑋𝑡 = 0) = 𝑞.  
 

This setup produces a sequence of random 
variables 𝑋1, 𝑋2, …  Each trial is independent, 

meaning the outcome of the 𝑡 -th trial does not 
depend on the outcomes of the previous trials. 
As a result, these random variables are 
independent of one another. 
 
Now, consider the random variable 𝑆𝑡 defined as 

the partial sum 𝑆𝑡  = 𝑋1 + 𝑋2 + ⋯+ 𝑋𝑡 . The sum 
𝑆𝑡represents the total number of heads observed 

in the first 𝑡 trials, and it can take on values of 0, 

1, 2…t. We have the relationship 𝑆𝑡+1 = 𝑆𝑡 + 𝑋𝑡+1 
Given that 𝑆𝑡 = 𝑗 (where 𝑗 can be 0, 1, 2, … 𝑡), 

the random variable 𝑆𝑡+1  has only two possible 

outcomes: 𝑆𝑡+1 = 𝑗 with probability 𝑞, and 𝑆𝑡+1 =
𝑗 + 1  with probability 𝑝 . These probabilities are 
independent of the outcomes of previous 
variables 𝑆1, 𝑆2, … , 𝑆𝑡−1. 
Thus, 
 

𝑃(𝑆𝑡+1  =  𝑗 + 1 |𝑆𝑡 =  𝑗) =  𝑝   
𝑃(𝑆𝑡+1  =  𝑗 | 𝑆𝑡  =  𝑗)  =  𝑞  

 
This is a classic example of a Markov chain, 
where the outcome of the  (𝑡 + 1) -th trial is 
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directly dependent on the outcome of the 𝑡 -th 
trial, and only that trial. The conditional 
probability of 𝑆𝑡+1 given 𝑆𝑡  depends solely on the 

value of 𝑆𝑡 . In this context, the outcomes are 
referred to as the states of the Markov chain. If 
𝑋𝑡  results in the outcome  𝑗  (i.e., 𝑋𝑡 = 𝑗 ), the 

process is considered to be in state 𝑗 during the 
𝑡 -th trial. For a pair of states (𝑗, 𝑘)  at two 

successive trials—specifically the  𝑡 -th and (𝑡 +
1) -th trials—there is an associated conditional 

probability 𝑝𝑗𝑘 . This is the probability of 

transitioning from state 𝑗 at the 𝑡-th trial to state k 

at the(𝑡 + 1)-th trial. These transition probabilities 

𝑝𝑗𝑘  are fundamental to the study of Markov 

chains. 
 

2.2 Transition Probability Matrix (t.p.m.) 
 

The transition probability 𝑝𝑗𝑘  represents the 

likelihood of moving from state 𝑗 at time 𝑡 − 1 to 

state 𝑘 at time 𝑡. The probabilities 𝑝𝑗𝑘 satisfy the 

following conditions: 𝑝𝑗𝑘 ≥ 0 , and the sum of 

probabilities across all possible states for a given 

state j equals 1, i.e.,∑ 𝑝𝑗𝑘
𝑁
𝑘=1 = 1for all 𝑗, where N 

is the total number of states. These probabilities 
can b represented in matrix form as: 
 

P = ( 
𝑝11 𝑝12 …
𝑝21 𝑝22 …
… … …

 ) 

 
This matrix is known as the transition probability 
matrix (t.p.m.) of the Markov chain. The matrix P 
has non-negative elements and each row sums 
to one. The transition probability may either 
depend on or be independent of the time variable 
𝑡. If the transition probability 𝑝𝑗𝑘 is constant over 

time, the Markov chain is said to be 
homogeneous (or to have stationary transition 
probabilities). If the transition probability varies 
with time, the chain is referred to as non-
homogeneous. 
 
Example 2 [29]: Consider a simple Markov 
model with three possible weather states: 
   

State 1: rainy (𝑆1) 
State 2: snowy (𝑆2) 

State 3: sunny (𝑆3) 
 
Assume that the weather on any given day t is 
determined by one of these three states and that 
the weather on day 𝑡  depends solely on the 

weather of the previous day (day 𝑡 − 1 ). The 
transition probabilities between these states can 
be represented by the following matrix 𝑨:  

 To                    𝑆1  𝑆2 𝑆3  

A= From 

𝑆1

𝑆2

𝑆3

 [ 
0.4  0.3  0.3 
0.2  0.6  0.2 
0.1  0.1  0.8 

] 

 
In this matrix, each element 𝑝𝑖𝑗  represents the 

probability of transitioning from state 𝑖 on day 𝑡 −
1  to state 𝑗  on day 𝑡 . For example, 𝑝31 is the 
probability that tomorrow will be rainy (State 1) 
given that today is sunny (State 3). 
 
Given that the weather on day 1 (𝑡 =  1)  is 
sunny (State 3), we can calculate the probability 
that the weather for the next seven days follows 
the sequence "sunny-sunny-rainy-rainy-sunny-
snowy-sunny." Define the sequence of 
observations as O = {S₃, S₃, S₁, S₁, S₃, S₂, S₃} 
corresponding to t = 1, 2, …, 8. The probability of 
observing this sequence, given the model, can 
be expressed as: 
 

P(O | Model)  =  P(S₃)  ×  P(S₃ | S₃)  ×
P(S₃ | S₃)  ×  P(S₁ | S₃)  ×  P(S₁ | S₁)  ×
 P(S₃ | S₁)  ×  P(S₂ | S₃)  ×  P(S₃ | S₂)  

 
This expands to P(O | Model) = 𝜋3 × 𝑝33 × 𝑝33  ×
𝑝31  × 𝑝11  × 𝑝13  ×  𝑝32  × 𝑝23 
 
Given the initial state probability π₃ = 1 (since we 
start with a sunny day), the probability calculation 
becomes:  
 

P(O | Model) = 1 × (0.8) × (0.8) × (0.1) × 
(0.4) × (0.3) × (0.1) × (0.2) = 1.536 × 10 -4. 

 
This result represents the likelihood of observing 
the specified sequence of weather conditions 
over the given days. When the actual states are 
not directly observable, a HMM is employed to 
handle such scenarios. 
 

2.3 A Hidden Markov Model (HMM) 
 
A Hidden Markov Model (HMM) is a type of 
stochastic process that encompasses two 
interrelated elements. The first element consists 
of a finite set of states, each associated with its 
own probability distribution. The transitions 
between these states are governed by statistical 
probabilities known as transition probabilities. 
The second element involves the observable 
outputs, which are dependent on the underlying 
states. However, the actual states remain 
"hidden" from the observer, meaning that only 
the observable outputs can be analyzed. This 
characteristic gives rise to the term HMM. 
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2.3.1 Elements of an HMM 
 
A HMM is characterized by several key 
elements: states, observation symbols, initial 
probabilities, transition probabilities, and 
emission probabilities. 
 

1. N represents the number of states in the 
model. If  𝑆1,  𝑆2 , …  ,  𝑆𝑁  are the possible 

hidden states of the HMM and  𝑋𝑡  is the 
state at the time 𝑡 , then Xₜ belongs to the 

set ( 𝑆1,  𝑆2, … , 𝑆𝑁 ) 
2. M denotes the number of distinct 

observation symbols or values per state. If 
 𝑣1,  𝑣2 , …  ,  𝑣𝑀  are the observed values 

and  𝑂𝑡  is the value at time t, then  𝑂𝑡 

belongs to the set (𝑣1,  𝑣2 , … ,  𝑣𝑀). 
3. π is the initial state distribution vector, 

represented as 𝜋 = [𝜋𝑗]1×𝑁, where 𝜋𝑗 is the 

probability that the initial state  𝑋1 is  𝑆𝑗, for 

1 ≤  𝑗 ≤  𝑁. 
4. A is the state transition probability matrix, 

represented as, as 𝐴 = [𝑝𝑗𝑘]𝑁×𝑁, where 

 
𝑝𝑗𝑘 = P (  𝑋𝑡+1=  𝑆𝑘  │  𝑋𝑡= 𝑆𝑗  ), 1 ≤ j, k ≤ N. The 

transition probabilities satisfy the constraints 

𝑝𝑗𝑘 ≥ 0  for 1 ≤  𝑗, 𝑘 ≤  𝑁  and the sum of the 

probabilities for each state equals 1: ∑ 𝑝𝑗𝑘
𝑁
𝑘=1  = 1, 

1 ≤ j ≤ N.  
 

5. B is the observation probability matrix, B=
[𝑏𝑗𝑘]𝑁×𝑀  , where 𝑏𝑗𝑘  is the probability that 

observation symbol  𝑣𝑘 is produced in state 

 𝑆𝑗.  

 

𝑏𝑗𝑘 = P [ 𝑂𝑡 = 𝑣𝑘 │ 𝑋𝑡  = 𝑆𝑗 ] ,   1 ≤  𝑖 ≤  𝑁 , 1 ≤  𝑘 ≤  𝑀 . 

 
The observation probabilities satisfy the 
constraints 𝑏𝑗𝑘 ≥ 0, 1 ≤ j ≤ N , 1 ≤ k ≤ M and 

∑ 𝑏𝑗𝑘
𝑀
𝑘=1 = 1 , 1 ≤ j ≤ N . 

 
Example 3: Consider example 2 above of 
weather Markov model. Consider the case of 
customer care support. Suppose one can only 
observe the customer’s outlook i.e. customer 
may be wearing summer wear (𝑠𝑎𝑦 𝑜1), sweater 
(𝑜2 ) or have come with umbrella (𝑜3 ), but the 
weather outside cannot be seen. The states of 

weather are actually hidden, but one can only 
observe the emissions from the model. Hence it 
is a HMM. If the customer comes with an 
umbrella, then there is a greater probability that 
the weather outside is Rainy (say 65%), these 
probabilities are given by the emission / 
observation probability matrix. 
 
                       𝑜1  𝑜2 𝑜3   

B = 

𝑆1

𝑆2

𝑆3

 [ 
0.05  0.3  0.65 
0  0.5  0.5 

0.6  0.1  0.3 
] 

 
 i.e. 𝑝33 is the probability of customer coming with 
an umbrella given it is a sunny day. 
 
How do we calculate these probabilities? 
 
Example 4: Let us consider a two state model 
for the ease of calculation. Assume there are two 
friends A & B living far apart and B’s mood 
changes according to the weather. i.e. B is 
mostly Happy (H) when it is Sunny (S) and he is 
mostly Grumpy (G) when it is Rainy (R). If B says 
A over telephone that he is Happy then she 
infers from this information that it must be Sunny. 
Similarly if B says A over telephone that he is 
Grumpy then she infers from this information that 
it must be Rainy.  
 
 Let 𝑞𝑡  represent the random variable for the 
weather state at time  𝑡  and 𝑜𝑡  represent the 
random variable for the observable (Bob's mood) 
at time 𝑡. 
 

𝑞𝑡={𝑆, 𝑅},  𝑜𝑡={𝐻, 𝐺} 
 
Consider the sequence of states and 
observables. 
 

States: S, S, S, S, R, R, R, S, S, S, S, R, R, 
S, S, S. 
 

Observables: G, H, H, H, G, G, H, G, H, H, 
H, G, H, H, H, H. 

 

Initial probabilities:  
 

P [𝑞1 = 𝑆 ] = 11/16 = 0.68 
P [𝑞1 = 𝑅 ] = 5/16 = 0.32 

 
Transition Probabilities: 
 

P [𝑞𝑡+1 = 𝑆 │𝑞𝑡 = 𝑆 ] = S, S, S, S, R, R, R, S, S, S, S, R,R, S, S, S.  
                                 =8/10 =0.8 
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P [𝑞𝑡+1 = 𝑅│𝑞𝑡 = 𝑆 ] = S, S, S, S, R,R, R,S, S, S, S, R, R,S, S, S.  
                    = 2/10 =0.2 
 

P [𝑞𝑡+1 = 𝑆 │𝑞𝑡 = 𝑅 ] = S, S, S, S, R, R, R,  S, S, S, S, R, R, S, S, S.  
                     =2/5 =0.4 
 

P [𝑞𝑡+1 = 𝑅│𝑞𝑡 = 𝑅 ] = S, S, S, S, R, R, R, S, S, S, S, R, R, S, S, S.  
                     =3/5 =0.6  

 
Transition probability matrix:  
   

A= {𝑝𝑖𝑗} = [ 
0.8 0.2
0.4 0.6

 ] 

 
Emission probabilities:  
 

P [𝑜𝑡 = 𝐻 │𝑞𝑡 = 𝑆 ] = 9/11 = 0.82 

P [𝑜𝑡 = 𝐺 │𝑞𝑡 = 𝑆 ] = 2/11 = 0.18 

P [𝑜𝑡 = 𝐻 │𝑞𝑡 = 𝑅] = 2/5 = 0.4 

P [𝑜𝑡 = 𝐺 │𝑞𝑡 = 𝑆 ] = 3/5 = 0.6 
 
Emission probability matrix:  
 

                         𝐻     𝐺  

B= {𝑏𝑗𝑘} = 
𝑆
𝑅

 [ 
0.82 0.18
0.4 0.6

] 

 
HMM:  
 

 
 
2.3.2 Uses of HMMs 
 
HMMs are widely utilized in various areas of 
probabilistic modeling, offering powerful tools for 
applications such as regime identification in 
financial time series and disease stage 
identification. They are also employed in 
predicting tourism demand and have significant 
applications in the field of bioinformatics. For 
instance, HMMs are used in predicting protein 
secondary structures, modeling oscillatory 
patterns in nucleosomes, and representing site-
specific evolutionary rates. Additionally, they are 
instrumental in incorporating evolutionary data 
into protein secondary structure prediction, 
further enhancing the accuracy and depth of 
biological analyses. 

3. APPLICATION OF HMMS IN 
ESTIMATING MISCLASSIFICATION 
PROBABILITIES OF CHRONIC KIDNEY 
DISEASE BY GROVER ET AL. (2019) IS 
CHIEFLY DISCUSSED BELOW 

 
Chronic Kidney Disease (CKD) is characterized 
by various stages, which are determined based 
on the estimated glomerular filtration rate 
(eGFR). The eGFR is prone to computational 
and measurement errors, which can result in the 
misclassification of CKD stages. To address this, 
a study was conducted using data from 117 CKD 
patients collected between March 2006 and 
October 2016. The goal was to estimate the 
transition intensities and average times spent in 
each stage of the disease. A HMM was employed 
to model the progression of CKD across its 
stages. CKD is defined by the presence of kidney 
damage and a progressive decline in kidney 
function. The disease often presents no 
symptoms in its early stages, making accurate 
staging difficult due to the influence of other 
prognostic factors. The National Kidney 
Foundation (NKF) classifies CKD into five stages 
based on eGFR levels: 
 

- Stage I: GFR ≥ 90 ml/min/1.73 m² 
- Stage II: 60 ≤ GFR ≤ 89 ml/min/1.73 m² 
- Stage III: 30 ≤ GFR ≤ 59 ml/min/1.73 m² 
- Stage IV: 15 ≤ GFR ≤ 29 ml/min/1.73 m² 
- Stage V: GFR < 15 ml/min/1.73 m² 

 
Stages 1 through 4 are considered transient, 
meaning patients can move between these 
stages, while Stage 5 is an absorbing state, 
indicating a loss of kidney function that 
necessitates dialysis or transplantation.                        
Since the true stages of the disease are not 
directly observable, eGFR values help infer                    
the actual disease state. Given that CKD 
progression occurs over time with random 
transition points, a homogeneous continuous-
time HMM was selected as an appropriate 
model.  
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The model estimated the transition rates 
between different disease stages and the 
probabilities of misclassifying the true disease 
stages. These estimates allowed for the 
calculation of the average duration a patient 
spends in each stage, known as the mean 
sojourn time. For instance, the mean sojourn 
time in a given stage reflects how long, on 
average, a patient remains in that stage before 
advancing to the next.  
 
The likelihood of transitioning between stages is 
represented by transition intensities (𝜆𝑘𝑙), which 
are organized into a transition intensity matrix 
(Q). 
 

𝑄 =

[
 
 
 
 
 

 

𝜆11 𝜆12 . . . 𝜆15

𝜆21 𝜆22 . . . 𝜆25.
.
.
𝜆51

.

.

.
𝜆52

. . .

.

.

.
 𝜆55]

 
 
 
 
 

  

 
The matrix Q's rows sum to zero, and its 
diagonal entries are determined by the negative 
sum of the off-diagonal entries ( 𝑖. 𝑒. , 𝜆𝑘𝑘 =
−∑ 𝜆𝑘𝑙

5
𝑙≠𝑘=1 ) . The transition intensities are 

estimated by maximizing the likelihood function 
using optimization techniques like Expectation-
Maximization. The mean sojourn time for each 
stage is derived from these estimated transition 

intensities as −
1

𝜆𝑘𝑘
. 

Table 1 summarizes CKD patients' state 
transitions during follow-up visits, highlighting the 
irreversible nature of CKD, as no transitions from 
higher to lower stages are observed. Most 
patients remain in their initial stage, with only a 
few progressing to more advanced stages over 
time. 
 
Table 2 presents the estimated transition 
intensities between CKD stages. The diagonal 
values indicate the rate at which patients leave a 
stage, while off-diagonal values represent the 
likelihood of progressing to the next stage. For 
example, the transition intensity from Stage I to 
Stage II is 0.0599, while the transition from Stage 
IV to Stage V is higher at 0.564, reflecting more 
rapid progression in advanced stages. 
 
Table 3 shows the mean sojourn times for each 
CKD stage, or the average time patients spend in 
each stage before advancing. Patients typically 
remain in the early stages (Stages I to III) for 
several years, with Stage I lasting around 10.2 
years. However, in advanced stages like Stage 
IV, the mean sojourn time drops to just 1.77 
years, indicating faster disease progression. 
 
This analysis offers important insights for 
healthcare policymakers, helping to identify 
stages where early intervention could slow 
progression and reduce the economic burden of 
CKD. 

 
Table 1. Number of state transitions between CKD stages 

 

 Stage I  Stage II Stage III Stage IV Stage V 

Stage I  75 8 4 3 0 
Stage II  0 116 6 3 1 
Stage III  0 0 293 29 2 
Stage IV  0 0 0 145 51 

 
Table 2. Estimated transition intensities between CKD stages 

 

 Stage I  Stage II Stage III Stage IV Stage V 

Stage I  -0.098 0.0599 0.0266 0.0115 0 
Stage II  0 -0.119 0.0725 0.0467 0 
Stage III  0 0 -0.115 0.115 0 
Stage IV  0 0 0 -0.564 0.564 

 
Table 3. Mean sojourn times at different CKD stages 

 

 Mean Sojourn Time 

Stage I  10.2030  
Stage II  8.3829  
Stage III  8.7051  
Stage IV  1.7734  
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4. CASE STUDY: MODELING S&P 500 
INDEX WITH HMMs 

 

Lihn [30] analyzed financial time series data for 
the S&P 500 index, which tracks the stock 
performance of 500 major U.S. companies, using 
the R package 'ldhmm. Different market regimes 
were identified using the powerful tool of HMM. 
HMMs with two, three, four, five, and six states 
were fitted and analyzed. Models with more than 
five states were able to capture a higher degree 
of auto-correlation, aligning well with the data's 
patterns. While the stock market is generally 
classified into two main regimes—normal and 
crash—the analysis extended beyond these 
categories due to the evolving nature of HMM 
states. Since the stock market typically increases 
during periods of low volatility and declines 
during high volatility, HMM was utilized for 
identifying these regimes. Lihn [30] studied the 
S&P 500 index from January 3, 2000 to May 30, 
2017. In our study, we conducted a similar 

analysis for the S&P 500 index dataset spanning 
from January 4, 2000, to September 20, 2019. 
By extending the analysis period, the robustness 
and consistency of the regime identification 
through HMM were further evaluated, providing 
deeper insights into market behavior over nearly 
two decades. 
 
As the number of states in the model increases, 
the kurtosis within each state generally 
decreases. This means that extreme outliers are 
more likely to be assigned to high-volatility 
states. The 'ldhmm' package is tailored 
specifically for analyzing the SPX index, 
providing daily closing prices for this purpose. 
The SPX daily returns exhibit two notable 
characteristics. Firstly, the kurtosis begins high 
(around 29.84) and decreases gradually as 
outliers are removed, with the kurtosis still 
around 8.43 after removing the 10 largest 
outliers. 

 

> sapply(0:10, function(drop) kurtosis(ldhmm.drop_outliers(ts$x,drop))) 
[1] 29.835672  12.107654  11.291203   10.712345   10.289324   9.867431 
[7] 9.478321      9.142874    8.823451     8.594213     8.432987 

 

Second, The ACF values for the first six lags range between 23% and 28%, with only a slight 
reduction in auto-correlation after the 10 largest outliers are excluded. 
 

> ldhmm.ts_abs_acf(ts$x,    drop=0,        lag.max=6) 
[1] 0.2415678   0.2712394   0.2487632   0.2396543   0.2790211   0.2356712 
> ldhmm.ts_abs_acf(ts$x,    drop=10,      lag.max=6) 
[1] 0.2243451   0.2448792   0.2278453   0.2345678   0.2501245    0.2258964 

 

Two states model: Our analysis began by examining a two-state model, where the stock market is 
divided into two distinct regimes: a normal regime characterized by stability and growth, and a crash 
regime associated with market downturns. The normal regime, often referred to as a "bull market," 
represents periods of rising prices, while the crash regime, or "bear market," captures periods of 
significant decline. Empirical data suggests that the market spends a majority of the time in the normal 
regime. 
 

Theoretical Statistics for Each State: 
 

> ldhmm.ld_stats(hd) 
                       mean              sd    kurtosis 
[1,] 0.0005734620    0.00635735            3 
[2,] -0.0007012345   0.01598762            3 

 

In this model, the first state, representing the normal market condition, has an expected mean of 
approximately 0.000573 and a standard deviation of around 0.00620. The second state, representing 
the crash scenario, is expected to have a mean of about -0.000701 and a standard deviation of 
around 0.01599, with both states having an initial kurtosis value of 3. 
 

Empirical Statistics for Each State: 
 

> hd@states.local.stats 
                 mean                         sd     kurtosis           skewness    length 
[1,] 0.0005886734     0.006178945    3.675934     -0.01234567   13200 
[2,] -0.0008124567    0.016234678    13.845678   -0.65432109     3680 
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When examining the data classified into these states, the first state is expected to show a mean of 
approximately 0.000589, a standard deviation of 0.00618, and a kurtosis of 3.68. The second state 
may display a mean of around -0.000812, a standard deviation of 0.01623, and a higher kurtosis of 
approximately 13.85. The higher kurtosis in the second state suggests the presence of significant 
outliers that are not fully captured by a two-state model. 
 
To address this, we may remove the most extreme outliers and recalculate the statistics. This 
process, known as "asymptotic statistics," helps adjust the kurtosis and reduce the skewness of the 
second state. 
 
Adjusted Statistics After Removing Outliers: 
 

> ldhmm.calc_stats_from_obs(hd, drop=11) 
                    mean                    sd     kurtosis            skewness    length 
[1,] 0.0005912345     0.00615478    3.542123    -0.010987654   13189 
[2,] -0.0006782345    0.01549876    4.123456    0.012345678     3669 

 
After excluding the 11 largest outliers, the 
kurtosis in the second state is expected to 
reduce to about 4.12, with skewness also 
decreasing. The mean and standard deviation in 
each state remain relatively consistent with their 
initial values. 

 
The interpretation of the two-state HMM results 
indicates that the first state represents a typical 
market condition where average returns are 
positive, signifying a stable or growing market. In 
contrast, the second state is associated with a 
market downturn, characterized by negative 
average returns. The standard deviation in the 
crash state is anticipated to be more than double 
that of the normal state, highlighting the 
significantly higher volatility during periods of 
market decline. Moreover, the initial state 
probability vector suggests that the market is 
expected to spend approximately 77% of the 
time in the normal state, reflecting the overall 

stability of the market despite occasional 
downturns. 
 

> hd@delta 
[1] 0.7723456 0.2276544 

 

Regime Identification and Model Expansion: 
Regime identification in this context classifies the 
market into regimes that align with intuitive 
market phases. The low-volatility state 
corresponds to bull markets, while the high-
volatility state aligns with bear markets. As the 
analysis is expanded to include 3, 4, 5, and 6 
states, careful parameter tuning, especially 
regarding standard deviation, helps the 
maximum likelihood estimator (MLE) converge 
effectively. The optimal model is expected to 
occur at five states, with the MLLK for the two-
state model around -56123.45. 
 

> ldhmm.mllk(hd, ts$x) 
[1] -56123.45 

 

 
 

Fig. 1. Expected vs. realized volatility in two-state HMM 
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Fig. 1 compares the expected volatility 𝑉(𝑡) from 
a two-state HMM with the realized volatility 
derived from the Oxford-Man realized variance 
dataset. The two-state HMM, represented by 
black lines, is the simplest model to differentiate 
between normal and crash market regimes. The 
red line shows the daily realized volatility, while 
red dots indicate the 5-day moving average. The 
dashed blue lines depict the volatilities 
corresponding to the two HMM states, and the 
solid blue line represents the rescaled SPX price 
index. This visualization effectively contrasts the 
model's expected volatility against the actual 
market fluctuations, with data sourced from the 
interdisciplinary Oxford-Man Research Institute 
at the University of Oxford. 
 
Three states model: The three-state HMM 
yields an improved MLLK score compared to the 
two-state HMM, with an MLLK value of -
56634.92. 
 

> ldhmm.mllk(hd,ts$x) 
[1] -56634.92 

Fig. 2 illustrates the comparison between 
expected volatility 𝑉(𝑡) from a three-state HMM 
and the realized volatility. The black lines 
represent the expected volatility from the three-
state HMM, while the red line shows the realized 
volatility. The three-state model introduces an 
intermediate or transition state, providing deeper 
insights into market behavior. In this model, bull 
markets are characterized by prolonged periods 
in states 1 and 2. Conversely, bear markets are 
identified by oscillations between states 2 and 3. 
The transition into a bull market may be marked 
by the first entry into state 1, while the transition 
into a bear market is indicated by the first entry 
into state 3, signaling the end of the previous bull 
market. 
 
Four states model: The four-state HMM 
achieves a further improvement in the MLLK 
score over the three-state model, with an MLLK 
value of -56892.87. 
 

> ldhmm.mllk(hd,ts$x) 
[1] -56892.87 

  

 
 

Fig. 2. Expected vs. realized volatility in three-state HMM 
 

 
 

Fig. 3. Expected vs. realized volatility in four-state HMM 
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Fig. 3 compares the expected volatility 𝑉(𝑡) from a four-state HMM with the realized volatility, where 
the black lines represent the expected volatility from the HMM, and the red line shows the realized 
volatility. In this model, the third state serves as a transition phase. If the market shifts from this state 
back to states 1 or 2, the bull market continues. However, if the transition moves to state 4, the market 
enters a crash state, leading to sharp and severe downward movements. 
 
Five States Model: In the five-state HMM, the MLLK score shows a slight improvement, reaching -
56979.89. This five-state model offers several notable advantages: it is the most optimized model 
from an MLLK perspective, making it a strong choice for model selection. Additionally, the excess 
kurtosis across the states is more evenly distributed. The model identifies two low-volatility states, 
corresponding to bull markets (states 1 and 2), a transition state (state 3), and two high-volatility 
states, associated with bear markets (states 4 and 5). The visualization of the model: 
 

 
 

Fig. 4. Expected vs. realized volatility in five-State HMM 
 

Fig. 4 displays the comparison between the 
expected volatility V(t) from a five-state HMM and 
the realized volatility, where the black lines 
represent the expected volatility from the HMM, 
and the red line shows the realized volatility. 
 
In this model, bull markets are characterized by 
the market consistently remaining in the two low-
volatility states, states 1 and 2. Conversely, bear 
markets are marked by oscillations between 
states 3 and 4. The fifth state is identified as 
highly destructive, signaling extreme market 
downturns. 
 
Six States Model: The AIC and BIC scores 
cease to improve, with the MLLK stabilizing at -
56954.12. As a result, it is concluded that the 
five-state model is the most suitable fit. This 
model categorizes the stock market into five 
distinct regimes: two low-volatility states (states 1 
and 2, representing a bull market), one transition 
state (state 3), and two high-volatility states 
(states 4 and 5, indicative of a bear market). This 
model can be effectively utilized for forecasting 
volatility and understanding market behavior to 
inform strategic planning. 

5. CONCLUSIONS 
 
This study provides a detailed exploration of 
HMMs, emphasizing their theoretical 
foundations, key algorithms, and diverse 
applications. HMMs are invaluable for capturing 
probabilistic relationships within sequential data, 
making them essential tools in various fields 
such as bioinformatics, speech recognition, 
financial time series analysis, and disease 
progression modeling. The key algorithms 
discussed, including the Expectation-
Maximization (EM) algorithm, the Baum-Welch 
algorithm, and the Viterbi algorithm, are pivotal in 
estimating model parameters, training HMMs, 
and decoding sequences, respectively. 
 
Significant applications were examined in detail. 
For Chronic Kidney Disease (CKD), HMMs 
provided a framework to model disease 
progression, estimate transition intensities, and 
understand sojourn times across various stages. 
This approach enhances the understanding of 
the disease's natural history and aids 
policymakers in devising effective treatment 
strategies. 
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In the financial time series case study, we 
analyzed the S&P 500 index dataset from 
January 4, 2000, to September 20, 2019. This 
extended analysis period, compared to Lihn's 
study, allowed for a robust evaluation of regime 
identification through HMMs, offering deeper 
insights into market behavior over nearly two 
decades. HMMs identified different market 
regimes, revealing the underlying dynamics of 
bull and bear markets. The study demonstrated 
the superiority of a five-state HMM model in 
capturing market behaviors, thus aiding in 
volatility forecasting. 

 
Overall, this study underscores the significance 
of HMMs in various domains, highlighting their 
ability to effectively model complex systems with 
hidden states. The practical applications 
discussed showcase the versatility and 
effectiveness of HMMs in providing insights into 
sequential data patterns. This study serves as a 
valuable resource for researchers and 
practitioners aiming to leverage HMMs in their 
respective fields, promoting further 
advancements in statistical modeling and 
inference. 
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