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ABSTRACT 
 

The potential antifungal activity of different applications of biologically and chemically synthesized 
silica nanoparticles (NPs), orange oil NPs, and fungicide (Crwan® 25% EC) was investigated to 
control leaf rust disease of wheat. The obtained data showed that disease severity significantly 
decreased in all treated wheat plants compared to the control. Additionally, all applications 
enhanced the number of grains and grain weight /spike. The significant effects of different 
applications increased chlorophyll, carotenoid, phenolic, and protein contents. Moreover, they 
increased the activities of catalase and polyphenol oxidase enzymes compared to the control.  

Original Research Article 

https://doi.org/10.9734/ajraf/2024/v10i3297
https://www.sdiarticle5.com/review-history/117497


 
 
 
 

Gad et al.; Asian J. Res. Agric. Forestry, vol. 10, no. 3, pp. 21-33, 2024; Article no.AJRAF.117497 
 
 

 
22 

 

Finally, the fungicide, Crwan® and the bio-synthesized silica nanoparticles (400 ppm), yielded the 
best results in our study compared to other applications, while orange oil NPs (200 ppm) were the 
least effective. 
 

 
Keywords: Wheat; leaf rust; silica nanoparticles; orange oil NPs; fungicide. 
 

1. INTRODUCTION 
 
Wheat (Triticum aestivum L.) is an important 
cereal crop worldwide and a staple food for about 
one-third of the world's population. Leaf rust 
disease is caused by the fungus Puccinia triticina 
f.sp. tritici causes yield loss due to decreased 
kernel numbers per head and reduced kernel 
weights [1,2,3,4,5,6,7,8,9,10,11,12,13,14,15]. 
Leaf rust causes significant crop losses 
associated with geographical regions and 
locations [16,17]. 
 
Citrus plants belong to the Rutaceae family, 
which has several subtypes of plants, as 
mandarins, oranges, lemons, limes, grapefruits, 
and citrons. According to FAO, citrus wastes 
contain high-quality fiber, pectin, and their 
composition of many valuable bioactive 
compounds as polyphenols, hesperidin, 
carotenoids, flavonoids, and essential oils (EOs). 
Citrus have been used in different industrial 
products as food, cosmetics, pharmaceutical, 
and beverage [18,19]. Hesperidin (3', 5, 7-
trihydroxy-4'-methoxy flavanone-7-6-O-α-L-
rhamnosyl-D-glucose) is a flavonoid by-product 
found in citrus production, basically in lemon and 
sweet orange. Many reports showed that 
hesperidin displays different pharmaceutical 
effects as antioxidant, anti-inflammatory and anti-
allergic [20]. And also, it displayed cytotoxic 
activity against several rat model carcinogenesis, 
including the esophagus, tongue, urinary bladder 
and colon [21]. Citrus Eos, and flavonoids are 
widely known for their beneficial effects in 
possessing several biological activities, as 
antimicrobial, antioxidant and cytotoxic 
properties. They are used in food additives, and 
cosmetics [22]. These oils are studied for their 
potential uses in food industry. Their composition 
is a mixture of oxygenated compounds, 
hydrocarbons, and non-volatile residues, 
including sesquiterpenes, terpenes, aldehydes, 
esters, alcohols, and sterols [23,24]. 
 
Nano-technology is an important technique of 
modern science that has contributed to every 
part of life. Nano-particles have a size range from 
1 to 100 nm [25,26], physicochemical characters 
that differ from bulk materials, could be used as 

and as plant protection products, growth 
stimulator, and help to improve nutrients [27]. In 
recent years, nano-materials (NMs) have been 
investigated independently for their biological 
activities and pharmaceutical. Their potency is 
independent of size, physical properties, stability, 
surface charges, and others [28]. They are 
employed in a wide range of applications in 
different science, such as agriculture, biomedical, 
environmental remediation, and electronic 
information technology applications [29]. Several 
studies have confirmed the ability of 
nanomaterials to improve seed germination and 
growth [30,31,32]. Nanoparticles are 
environmentally friendly and have recently been 
used as a safe alternative to chemical                      
fertilizers and pesticides in agriculture farms to 
reduce infectious diseases and improve crop 
yield. Positive effects of several                    
nanoparticles, i.e. zinc oxide (ZnO), titanium 
dioxide (TiO2), chitosan (CS) and nickel (Ni) on 
the growth of wheat seedlings were confirmed 
[33,34]. 
 
Silicone cation (Si) can stimulate the resistance 
mechanisms of plants against biotic agents and 
improve plant growth [35,36] and abiotic stress 
[31,32]. Also (Si) can inhibit several plant 
diseases, as brown spot, stem rot, bacterial 
blight, leaf scald, grain discolouration, sheath 
blight, leaf and panicle blast in rice, as well as 
powdery mildew in cucumber and wheat [37]. In 
wheat crop, (Si) significantly suppressed many 
fungal diseases as powdery mildew caused by 
Blumeria graminis [35,38], Septoria leaf blotch 
and eyespot caused by Oculimacula yallundae 
[39], leaf blast caused by Magnaporthe oryzae 
[40], and spot blotch Bipolaris sorokiniana [41], 
leaf rust disease caused by Puccinia triticina 
tritici and yellow spot caused by Drechslera tritici-
repentis [36]. Therefore, a nano level of Silicone 
could increase the positive influence on plant 
resistance and suppress plant pathogenic fungi 
and growth. Similarly, Suriyaprabha et al. [42] 
approved that SiO2 Nanoparticles are used as 
an alternative potent antifungal agent against 
phyto-pathogens. Thus, this study aims to 
evaluate the efficiency of SiO2 NPs and orange 
oil as safe alternatives to synthetic fungicides 
against leaf rust disease under field conditions. 
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And also, assess their impacts on some 
biochemical targets and the crop yield. 
 

2. MATERIALS AND METHODS  
 

2.1 Chemicals Used 
 
-  Fungicide: Crwan® 25% EC (30cm3/100L 

H2O) (Common name: propiconazole) was 
obtained from Central Agricultural Pesticides 
Laboratory (CAPL), ARC, Egypt.  

-  Orange oil NPs and bio and chemi-silica NPs 
were obtained from Agricultural Research 
Station, Sakha, Egypt. 

 
The characterisation of nanoparticles was 
described in our previous study by Masoud et al. 
[43] and used in the current study. 
 

2.2 Field Assessments 
 
Experimental design: The present study was 
conducted at El-Gemmeiza Agricultural 
Research Station, El-Gharbya governorate, 
Egypt, during the 2022 and 2023 wheat growing 
seasons. Wheat seeds (Gemmeiza-7) of the 
tested materials were sown in the last week of 
November. The highly susceptible wheat 
genotype (Morocco cv.) was sown on the border 
of the experimental area for the development and 
spread of the disease. Artificial inoculation of leaf 
rust was carried out during mid-February to 
create leaf rust epidemics. The cultural practices 
were performed as recommended. Different 
applications of SiONPs, orange oil NPs (200 and 
400 ppm), and fungicides have been applied at 
wheat plants' 7-8 leaf growth stage. All 
applications were done three times for three 
weeks as foliar spray. 
 
Disease assessment &yield parameters: Once 
rust symptoms were sufficiently matured and the 
spreader plants were 50% infected, leaf rust 
infections were examined. At weekly intervals, 
adult plants' leaf rust response data were graded 
four times as rust severity using Cobb's scale 
[44].  
 
According to [45], plant response was expressed 
in five infection types:  
 
-  Immune (0): No uredia or other macroscopic 

infection indication 
-  Resistant (R): Small uredia surrounded by 

necrosis 
-  Moderately Resistant (MR): Small to medium 

uredia surrounded by chlorosis or necrosis 

-  Susceptible (S): Large uredia without 
chlorosis or necrosis 

-  Moderately Susceptible (MS): Medium-sized 
uredia with chlorosis 

 
Other data recorded included “area under 
disease progress curve” (AUDPC), the number of 
grains, and grain weight per spike (g).  
 
The AUDPC was calculated using the following 
formula: 
 
AUDPC = D [½ (Y1 + Yk) + (Y2 + Y3 +…… + Yk-1)] 

 
Where: 
 
- D = days between two consecutive records 
(time intervals) 
- Y1 + Yk = Sum of the first and last disease 
scores 
- Y2 + Y3 +…….. + Yk-1 = Sum of all in-between 
disease scores 
 
The area under the disease progress curve was 
classified into three categories based on their 
values:  
 
-  Score 1: The lowest AUDPC values ranged 

from 0 to 49 and referred to race-specific 
resistance 

-  Score 2: The moderate AUDPC values are 
less than 300 and refer to partial resistance 
(slow rusting resistance) 

-  Score 3: The high AUDPC values of more 
than 300 refer to fast rusting (highly 
susceptible wheat variety) [10]. 

 

2.3 Laboratory Assessments 
 
Scanning electron microscope examination: 
The scanning electron microscope (SEM) was 
utilized to examine the effects of the applied 
treatments on the development of spores and the 
growth of P. triticina on wheat leaves. As 
described by [46], sample preparation for SEM 
examination was carried out using the JEOL 
model (SEM, Quanta FEG250, National 
Research Centre, Cairo, Egypt), interaction spots 
were noted, and disc blocks of 1cm² were 
obtained for SEM observation. Changes in the 
morphological fungal structures between treated 
and untreated samples were examined and 
photographed. 

 
Determination of carotenoids: Fresh wheat 
leaves (0.25 g) were homogenized with acetone 
until the leaves were decolourized entirely and 
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the extract was filtered. Then, the filtrate was 
completed to 50 ml with acetone, and a 
spectrophotometer measured the absorbance (A) 
at 450 nm according to the method of [47]. 
 
Determination of chlorophyll: An aliquot 
(0.25g) of wheat leaves was homogenized with 
5ml of acetone 80% using a hand glass 
homogenizer and filtered using Whatman filter 
paper. Then, the filtrate was completed to a 
volume of 50 ml with acetone and measured at a 
spectrophotometric instrument at 663 and 645 
nm, according to [48]. Chlorophyll a, b, and total 
(mg chlorophyll/g fresh weight) were calculated 
using the following equations: 
 
-  Chlorophyll a (Ch a) = ((12.7 × O.D663) - 

(2.69 × O.D645)) × 0.2 
-  Chlorophyll b (Ch. b) = ((22.9 × O.D645) - 

(4.68 × O.D.663)) × 0.2 
-  Total Chlorophyll (Ch T) = Ch a + Ch b 
 
Determination of protein content: The protein 
content was measured according to the method 
of [49]. Wheat leaves (0.5g) were homogenized 
with 30ml of 0.1M sodium hydroxide in 3.5% 
sodium chloride. The homogenates were 
incubated for 90 min at 60°C before 
centrifugation for 30 min at 6000 rpm under 
cooling. After that, the extracts were diluted to 
1ml with H2O and 0.9ml of solution A before 
incubating for 10min at 50°C. Then, 1ml of 
solution B was added and left for 10min. Finally, 
3ml of solution C was added before incubation 
for 10min at 50°C. The absorbance was 
measured at 650nm. 
 
Determination of total phenolic content: 
Wheat leaves (2 g) were homogenized in 80% 
ethanol and centrifuged at 10,000 rpm for 15 min 
under cooling, and the supernatant was saved. 
The residue was again extracted twice with 80% 
ethanol, and the supernatants were pooled and 
evaporated to dryness. After that, it was 
dissolved in 5 ml of distilled water. Hundred µl of 
the extract was added to 0.5 ml of Folin-
Ciocalteu reagent and 3 ml of water. After 3 min, 
2 ml of 20% sodium carbonate was added, and 
then the absorbance was measured at 650 nm 
according to the method of [50]. 
 
Determination of catalase activity: 
Determination of catalase (CAT) activity was 
done by homogenizing 1 g of wheat leaves with 
100 mM phosphate buffer (pH 7.5), 1% PVP-40, 
and 1 mM EDTA. Afterwards, the homogenates 

were centrifuged at 4500 rpm and 5˚C for 15 min. 
The supernatants were collected and centrifuged 
at 10,000 rpm for 10 min. The activity was 
determined at 240nm and expressed as U/mg 
protein [51]. 
 
Polyphenol oxidase (PPO): To determine 
Polyphenol oxidase (PPO) activity, the wheat leaf 
sample was ground with 0.2 mM phosphate 
buffer at pH 7. The extract was transferred to a 
volumetric flask, and 0.05 mM phosphate buffer 
was added. After that, it was kept at 4°C for 2 h. 
The extract was mixed with a catechol solution 
(0.07 mM) and phosphate buffer solution (0.05 
mM), and then the absorbance was measured at 
420 nm.  
 

2.4 Statistical Analysis 
 
The experiment was set up in a completely 
randomized design. The obtained data were 
analyzed using Analysis of Variance (ANOVA). 
The analysis was done using Costat 6.3111 
software 1998-2005, and Duncan's multiple 
range test at P < 0.05 level was used for means 
separation [52]. 
 

3. RESULTS 
 

3.1 Disease and Yield Assessments 
 

Effects of different applications to control infested 
leaf rust in wheat during the growing seasons 
2022 and 2023. The data presented in (Table 1) 
showed that all treatments resulted in a 
significant decrease in leaf rust disease severity 
compared to untreated plants. Moreover, 
untreated wheat plants significantly reduced 
grain yield compared to treated plants (Fig. 1). 
Among the treatments, the fungicide Crwan® 
demonstrated the highest effectiveness, with 
mean values of 95.38% for disease control, an 
area under disease progress curve (AUDPC) of 
44, and 74.33 grains per spike with a grain 
weight of 3.27g. The biologically synthesized 
silica nanoparticles at a concentration of 400 
ppm exhibited an efficiency of 84.62%, an 
AUDPC of 160, 71.67 grains per spike, and a 
grain weight per spike of 2.98g. 
 

On the other hand, the nano-orange oil at a 
concentration of 200 ppm showed a lower 
reduction in disease severity with an                  
efficiency of 36.54%, an AUDPC of 625, 55.67 
grains per spike, and a grain weight per spike of 
2.48g. 
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Table 1. Effect of different nano-materials on leaf rust in the wheat during 2022 and 2023 
growing seasons 

 

Treatment Disease Severity 
% 

Efficiency % AUDPC 

Crwan® 4.00 95.38 44.00 
Biologically synthesized silica 
nanoparticles (400 ppm) 

13.33 84.62 160.00 

(400 ppm) 16.67 80.76 210.00 
Biologically synthesized silica 
nanoparticles (200 ppm) 

21.66 74.99 245.00 

Chemically synthesized silica 
nanoparticles (200 ppm) 

31.67 63.46 355.00 

Orange oil nanoparticles (400 ppm) 41.66 51.92 465.00 
Orange oil nanoparticles (200 ppm) 55.00 36.54 625.00 
Control 86.67 - 940.00 
F test ** - ** 
LSD 0.05 14.785 - 3.782 

 

 
 
Fig. 1. Effect of different treatments on number of grains and grain weight /spike (g) during the 

growing seasons of 2022 and 2023 
 

3.2 Scanning Electron Microscope  
 
Examination of the interaction among the 
most promising treatments and Puccinia 
triticina on leaves of wheat: Different fungal 
morphological properities were examined from 
the leaf rust spots on the treated plants, 
compared to infected-untreated plants (control). 
 
The investigation focused on the growth density 
of conidiophores and the disintegration of 
mycelium and conidia as key fungal 
morphological traits. The results revealed that 
the density of fungal mycelium was significantly 
reduced by the fungicide Crwan® (Fig. 2), 
particularly on leaves treated with orange oil 
nanoparticles   at a concentration of 200 ppm. 
Moreover, the ability of fungus to produce 
conidiophores and conidia was impaired, with 

Puccinia triticina exhibiting a lower production of 
conidia. Furthermore, plasmolysis and 
breakdown of Puccinia triticina's mycelium and 
conidia were observed. Interestingly, on the 
treated leaves, conidia, mycelium, and 
conidiophores showed signs of incompleteness 
and exhibited twisted forms during their 
formation. 
 
An important observation is the disappearance of 
most stomata in the wheat leaf under fungal 
infection in the control group. Conversely, in the 
remaining treatments, the appearance of stomata 
was observed. 
 
This observation highlights the impact of fungal 
infection on stomatal presence and emphasizes 
the potential influence of the tested treatments 
on this phenomenon. 
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Fig. 2. Micrograph of scanning electron microscopy findings that are promising foliar 
application on the wheat, (A) Crwan®, (B) orange oil nanoparticles (200 ppm), and (C) Control 

(untreated), which visualized at 800X 
 

 
 

Fig. 3. Effect of different treatments on carotenoid and chlorophyll contents during 2022 and 
2023 seasons 

 
Effect of different treatments on carotenoid 
and chlorophyll contents in wheat leaves 
growing under field conditions during winter 
2022 and 2023: The data from the analyses 
conducted on wheat leaves revealed a diverse 
range of carotenoid and chlorophyll content, 
including chlorophyll a, b, and total chlorophyll. 
The measurements were performed on fresh 
leaves and are presented in (Fig. 3). 

Furthermore, the results demonstrated that 
applying different treatments impacted the 
concentrations of carotenoids and chlorophyll in 
the wheat leaves. 
 
The highest carotenoid content was observed 
after the application of Crwan® and biologicaly 
synthesized silica nanoparticles at a 
concentration of 400 ppm. Conversely, the 
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lowest carotenoid content was recorded in the 
treatment involving nano-orange oil at a 
concentration of 200 ppm.  
 

Effect of different applications on protein and 
phenolic contains in wheat leaves growing 
under field conditions during 2022 and 2023 
seasons: Table 2 presents the protein analysis 
results in the wheat leaf samples. A common 
observation was a decrease in protein content in 
most diseased plants. The soluble protein 
content in the leaves was lower in control 
compared to the treated ones. Among the 
different applications, the Crwan® treatment 
exhibited the highest protein content, followed by 
the biologically synthesized silica nanoparticles 
at a concentration of 400 ppm. Wheat treated 
with various applications showed slightly higher 
protein content than the control. Table 2 also 
presents the phenolic content in wheat leaves 
after treatment with nano-materials. Overall, all 
treatments significantly impacted the total 
phenolic content in wheat compared to the 
control (untreated plants). The statistical analysis 
revealed higher concentrations of total phenols in 

wheat treated with Crwan® and biologically 
synthesized silica nanoparticles at a 
concentration of 400 ppm. Conversely, the 
lowest concentration of total phenols was 
observed in wheat treated with orange oil 
nanoparticles at a concentration of 200 ppm. 
 

Effect of different treatments on catalase 
(CAT) and polyphenol oxidase (PPO) activity 
in the wheat leaves growing under field 
conditions during 2022 and 2023 growing 
seasons: Table 3 displays the enhanced activity 
of enzymes in wheat leaves following various 
treatments. The activity of CAT (catalase) and 
PPO (polyphenol oxidase) enzymes significantly 
increased with different applications. Among the 
treatments, the highest activity of CAT and PPO 
enzymes was observed in wheat leaves treated 
with Crwan®, followed by biologically 
synthesized silica nanoparticles at a 
concentration of 400 ppm, compared to the 
untreated plants. On the other hand, wheat 
plants treated with nano-orange oil at a 
concentration of 200 ppm exhibited the lowest 
activity of these enzymes. 

 

Table 2. Effect of different treatments on total protein and phenol in the wheat leaves growing 
under field conditions during 2022 and 2023 seasons 

 

Treatments Total protein 
(mg/g) 

Total phenol 
(mg/g fresh weight) 

Crwan® 3.187 3.090 
Biologically syntheziedsilica nanoparticles (400 ppm) 3.127 3.047 
Chemically syntheziedsilica nanoparticles (400 ppm) 3.050 2.883 
Biologically synthezied silica nanoparticles (200 ppm) 2.857 2.857 
Chemically synthezied silica nanoparticles (200 ppm) 2.683 2.647 
Orange oil nanoparticles (400 ppm) 2.653 2.640 
Orange oil nanoparticles (200 ppm) 2.247 2.443 
Control 2.067 2.170 
F test ** ** 
LSD 0.05 0.2114 0.1642 

 

Table 3. Effect of different treatments on catalase (CAT) and polyphenol oxidase (PPO) in the 
wheat leaves during the 2022 and 2023 growing seasons 

 

Treatments Catalase 
(CAT) (U/mg 
protein)  

Polyphenol oxidase 
(PPO) (ΔE 420 nm 
min-1 g-1) 

Crwan® 0.201 0.790 
Biologically synthezied silica nanoparticles (400 ppm) 0.194 0.785 
Chemically synthezied silica nanoparticles (400 ppm) 0.189 0.757 
Biologically synthezied silica nanoparticles (200 ppm) 0.186 0.755 
Chemically synthezied silica nanoparticles (200 ppm) 0.184 0.741 
Orange oil nanoparticles (400 ppm) 0.181 0.733 
Orange oil nanoparticles (200 ppm) 0.175 0.726 
Control 0.165 0.685 
F test ** ** 
LSD 0.05 9.41 0.0208 
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4. DISCUSSION  
 
All treatments resulted in a significant decrease 
in leaf rust disease severity compared to 
untreated plants. Among the treatments, the 
fungicide Crwan® and the bio-synthesized silica 
nanoparticles at a concentration of 400 ppm 
demonstrated the highest effectiveness, for 
disease control, grains per spike and a grain 
weight. On the other hand, the nano-orange oil at 
a concentration of 200 ppm showed a lower 
reduction in disease severity, grains per spike, 
and a grain weight per spike. These findings are 
consistent with the results obtained by [53], who 
found that using silver NPs (AgNPs) reduced 
disease severity in pumpkin and cucumber 
leaves. Taha et al. [54] also discovered that 
treating lettuce plants with aqueous extracts of 
moringa, neem, basil, garlic, and the fungicide 
DiathineM-45® significantly decreased disease 
incidence and severity compared to untreated 
plants.  
 
The applying different treatments impacted the 
concentrations of carotenoids and chlorophyll in 
the wheat leaves. The highest carotenoid content 
was observed after the application of Crwan® 
and bio-synthesized silica nanoparticles at a 
concentration of 400 ppm. It is worth noting that 
chlorophyll concentration was higher than that of 
carotenoids in all treatments, consistent with the 
findings of [55, 56]. Additionally, "Mancozeb" had 
a less pronounced effect on the chlorophyll and 
carotenoid content, suggesting their relatively 
stable photosynthetic characteristics [57]. In 
contrast [58] reported decreased pigment content 
following treatment with fludioxonil and 
carbendazim. These findings align with our 
observations of reduced chlorophyll content in 
infected plants, such as lime crops [59], Chinese 
jujube [60], and lettuce leaves [61]. Fatma and 
Nafady [62] also demonstrated a significant 
enhancement in chlorophyll and carotene 
contents in wheat leaves treated with AgNPs. 
 
These findings contribute to understanding the 
variations in carotenoid and chlorophyll content 
in wheat leaves under different treatments. 
 
The soluble protein content in the leaves was 
significantly lower in untreated plants compared 
to the treated ones. The Crwan® treatment 
exhibited the highest protein content, followed by 
the biosynthesized silica nanoparticles at a 
concentration of 400 ppm. Wheat treated with 
various applications showed slightly higher 
protein content than the control group. Similar 

results were reported for protein deficiency in 
infected lettuce leaves by [63,64], who observed 
a decrease in protein content in infected 
chickpea plants. Masoud et al. [65] found that 
spraying potato plants with Bio-Arc increased 
protein content. 
 
Meanwhile, all treatments significantly impacted 
the total phenolic content in wheat compared to 
the control group. The higher concentrations of 
total phenols in wheat treated with Crwan® and 
biosynthesized silica nanoparticles at a 
concentration of 400 ppm. Phenolic acids are 
considered secondary metabolites and act as 
natural antioxidants in plants. These compounds 
possess various biological activities, including 
anticancer, antioxidant, cytotoxic, antidepressant, 
and anti-inflammatory properties [66]. Moreover, 
increased levels of polyphenolic compounds can 
contribute to the strengthening of cell walls, 
which play a crucial role in protecting plants 
against microbial penetration [67]. Sularz et al. 
[68] also reported increased polyphenolic 
compound concentration in lettuce leaves after 
applying iodo-salicylic acid. 
 
These findings shed light on the protein and 
phenolic content variations in wheat leaves under 
different treatments, emphasizing the potential 
benefits of specific applications in enhancing 
these parameters. 
 
The activity of CAT (catalase) and PPO 
(polyphenol oxidase) enzymes significantly 
increased with different applications. The highest 
activity of CAT and PPO enzymes was observed 
in wheat leaves treated with Crwan®, followed by 
biosynthesized silica nanoparticles at a 
concentration of 400 ppm, compared to the 
untreated plants. On the other hand, wheat 
plants treated with nano-orange oil at a 
concentration of 200 ppm exhibited the lowest 
activity of these enzymes. The activity of the CAT 
enzyme was found to elevate in response to 
pathogen attacks in plants [69]. CAT is an 
enzyme capable of protecting biological systems 
against free radical attacks [70] by reducing 
H2O2 into H2O and O2 [71]. In a similar context, 
the application of iodide increased CAT activity in 
lettuce [72,73]. Lei et al. [74] observed that TiO2 
nanoparticles (NPs) decreased oxidative damage 
by increasing the activity of superoxide 
dismutase, ascorbic peroxidase (APX), and CAT 
in spinach chloroplast. Krishnaraj et al. [75] 
reported increased activity of POX and CAT 
enzymes in leaf samples of plants treated with 
silver nanoparticles (AgNPs). Furthermore, 
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Farrag [76] observed increased CAT activity in 
tested plants after treatment with AgNPs. 
 
These findings highlight the impact of different 
treatments on enzyme activity in wheat leaves, 
particularly the enhanced activity of CAT and 
PPO enzymes. 
 

5. CONCLUSION 
 
Spraying wheat leaves with SiONPs and orange 
oil nanoparticles has decreased the infection of 
leaf rust disease. These different applications 
have significant effects on reducing disease 
severity and enhancing the contents of 
chlorophyll, carotenoids, phenolics, and proteins 
compared to the control. Moreover, the activities 
of CAT and PPO enzymes increased in the 
treated samples compared to their respective 
controls. 
 
Based on these findings, it can be concluded that 
these biologically synthesized silica 
nanoparticles at a concentration of 400 ppm are 
highly effective in combating wheat rust disease. 
However, further investigations are urgently 
needed to establish their practices as eco-
friendly alternatives. 
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