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Abstract
In this paper, a new continuous probability distribution is developed by using a mixture of exponential and
Rayleigh distributions for modeling lifetime data. It has been developed to increase flexibility and shows it
can perform better than the existing mixture distributions. The forms of the probability density function
and cumulative distribution function along with statistical properties such as moments, incomplete moments,
survival function, hazard function, mean residual life, stochastic ordering, order statistics, and stress strength
reliability of the proposed distribution are explained. We also obtained the Bonferroni index and Lorenz curve
of the proposed distribution. The parameters of the proposed distribution are estimated using the maximum
likelihood technique. Finally, data analysis is performed using real-time data to illustrate the suitability of
the proposed distribution.
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1 Introduction
In statistics, data is expressed as a frequency distribution function that displays the range of potential values
for a variable together with its frequency. Practically speaking, not all real data sets can be well-fitted by
standard probability distributions. Such type of data sets creates a necessity for developing a new class of
flexible probability distributions. So, Statisticians created a variety of probability distributions that are more
flexible than traditional distributions in various methods. One conventional method is the mixing of probability
distributions. There are several other methods available for creating a new family of probability distribution
such as the transmutation method, α-power transformation, and so on; In this paper, we use the finite mixture
of probability models using exponential and Rayleigh distribution.

A proven method of statistical modeling of a large variety of random events has been made possible by a
finite mixture of probability distributions [1]-[13]. The data comes from a population that has two or more
different natures of sub populations and is modeled using a finite mixture of the model. Finite mixture models
have recently gained a lot of attention both theoretically and practically due to their versatility. Agriculture,
astronomy, biology, genetics, medicine, psychology, economics, engineering, and marketing are just a few fields
where mixture models have been successfully utilized. Finite mixture models underpin a variety of techniques
in the major area of statistics, including cluster and latent class analyses, discriminant analysis, image analysis,
and survival analysis, in addition to their more direct role in data analysis and inference of providing descriptive
models for distributions where a single component distribution is insufficient.

Let X = xi, i = 1, 2, ..., n be a random sample of size n from an m-component finite mixture.

f(xi; θ) =

m∑
i=1

wigi(xi, θ) (1.1)

where, gi(xi, θ) = probability density or mass function
wi are non negative quantities
such that w1 + w2 + ...+ wm = 1
(i.e) 0 ≤ wi ≤ 1 for i = 1, 2, ...,m

Further, the two-component finite mixture model is

f(x) = w1g1(x) + w2g2(x) (1.2)

One of the first significant analyses that used finite mixture models was given by Karl Pearson [14], a well-known
biometrician, who fitted a proportional mixture of two normal probability density functions with different means
µ1, and µ2 and different variances σ2

1 , and σ2
2 in proportions π1 and π2 to some crab data provided by his

colleague, the evolutionary biologist Weldon (1892, 1893). Many authors afterward used various distributions to
fit mixture distributions. In that way, Lindley [15, 16] provides a distribution that is a mixture of an exponential
distribution with a scale parameter of θ and a gamma distribution having a shape parameter of 2 and a scale
parameter of θ with their mixing proportions, θ

θ+1
, 1
θ+1

respectively, and the pdf and cdf of the Lindley
distribution is

f(x) =
θ2(1 + x)e−θx

θ + 1
;x > 0, θ > 0 (1.3)

F (x) = 1−
[
1 +

θx

θ + 1

]
e−θx;x > 0, θ > 0 (1.4)

Rama Shanker et al., [17] used the finite mixture model to propose the Sushila distribution for modeling lifetime
data, which is described in its pdf.

f(x, α, θ) =
θ2

α(θ + 1)

(
1 +

x

α

)
e−

θ
α
x;x > 0, θ > 0, α > 0 (1.5)
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When α = 1 it gives Lindley distribution. Where the mixing proportion for Sushila distribution is w1 = θ
θ+1

and
w2 = 1

θ+1
Here, g1(x) and g2(x) denotes pdf of exponential (θ/α) and gamma (2, (θ/α)) distributions respectively.

And also, Shanker [18] used the finite mixture model to propose the Akash distribution for modeling lifetime
data, which is described by its pdf and cdf.

f(x) =
θ3(1 + x2)e−θx

θ2 + 2
;x > 0, θ > 0 (1.6)

F (x) = 1−
[
1 +

θx(θx+ 2)

θ2 + 2

]
e−θx;x > 0, θ > 0 (1.7)

Where the mixing proportion for Akash distribution is w1 = θ2

θ2+2
and w2 = 2

θ2+2
. Here, g1(x) and g2(x)

denotes pdf of exponential (θ) and gamma (3, θ) distributions respectively.

Some other distributions which are made by mixture models are Janardan distribution- Shanker [19], Shanker
distribution-Shanker [20], Aradhana distribution- Rama Shanker [21], Sujatha distribution-Shanker [22], Garima
distribution -Shanker (2016), Amarendra distribution - Shanker [23], Devya distribution -Shanker (2016), Rani
distribution-Shanker (2017), Akshaya distribution -Shanker (2017), Rama distribution -Shanker [24], Ishita
distribution- Shanker and Shukla [25], Prakaamy distribution- Shukla (2018), Pranav distribution-Shukla [26],
Ram Awadh distribution- Shukla [27], Om distribution- Shanker and Shukla [28], Odama distribution- Odama
and Ijomath [29], Shukla distribution- Kamlesh Kumar Shukla and Rama Shanker [30], Rama Kamalesh
distribution – Shanker and Shukla [31], Darna distribution- Shraa and Al-Omari [32], Gharaibeh distribution-
Gharaibeh (2021), Alzoubi distribution- Benrabia and Alzoubi [33, 34].

The aforementioned distributions are a combination of gamma and exponential distributions in varying ratios.
Models take on different shapes, and the properties of the distribution change when we adjust the proportions of
each component. As a result, the main objective of this research is to suggest a novel combination of probability
distributions by altering the components and examining their fundamental properties. To model lifetime data,
a probability distribution is created in this study using a combination of exponential and Rayleigh distributions.

This paper is also structured in the following way. Section 2 introduces the Exp-Rayleigh distribution. Section
3 presents the standard moments and other measurements for the Exp-Rayleigh distribution. Section 4 is
concerned with reliability analysis. Section 5 derives the log-odds Rate of the proposed distribution. Section 6
takes a look into Entropy. Section 7 contains the stochastic ordering. Section 8 gives the order statistics for the
Exp-Rayleigh distribution. The Bonferroni and Lorenz curves are seen in Section 9. Section 10 computed stress-
strength reliability. In section 11, the parameters of the Exp-Rayleigh distribution were estimated using the
maximum likelihood technique. Finally, in section 12, real-time data was employed for the suggested distribution
as an application.

2 Exp-Rayleigh Distribution
The probability density function and cumulative distribution function for the Exp-Rayleigh distribution are

f(x) = θλe−λx + (1− θ) x
σ2
e
− x2

2σ2 (2.1)

F (x) = (θ − 1)e
− x2

2σ2 + e−λx
(
eλx − θ

)
(2.2)

for, x ≥ 0, 0 ≤ θ ≤ 1, λ ≥ 0, σ ≥ 0 The following figures illustrate some of the possible shapes of the pdf and cdf of
a Rayleigh distribution for chosen values of parameters. The exponential and Rayleigh distributions are special
cases of the Exp-Rayleigh distribution when θ=1 and θ=0 respectively. According to Fig 1, the Exp-Rayleigh
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distribution can capture a variety of pdf patterns, including right-skewed, unimodal, and reversed-J-shaped,
pdfs, depending on the parameter values. The limitation of the suggested distribution is: it will not be suitable
for left-skewed data. And the shape parameter (θ) value should lie between 0 and 1. The remaining portion of
the paper discussed all of the properties of the suggested distribution.[35]-[48].

Fig. 1. Visual displays of pdf of an Exp- Rayleigh distribution for different parameter values

Fig. 2. Visual displays of cdf of an Exp- Rayleigh distribution for different parameter values
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3 Moments and Related Measures
The rth Moment about the origin (raw moments) has been obtained as

E (Xr) =

∫ ∞
0

xrf(x)dx

=

∫ ∞
0

xr
(
θλe−λx + (1− θ) x

σ2
e
− x2

2σ2

)
dx

E (Xr) = 2r/2Γ

(
r + 2

2

)
σr −

(
λr2r/2Γ

(
r+2
2

)
σr − Γ(r + 1)

)
θ

λr

(3.1)

when r = 1, 2, 3, 4 then the results follow,

The Exp-Rayleigh distribution’s first four moments are:

Mean(µ) = E(X) =

√
π(
√

2λσ −
√

2λσθ)− 2θ

2λ

E
(
X2) = 2σ2 −

(
2λ2σ2 − 2

)
θ

λ2

E
(
X3) =

√
π
(
3
√

2λ3σ3 − 3
√

2λ3σ3θ
)
− 12θ

2λ3

E
(
X4) = 8σ4 −

(
8λ4σ4 − 24

)
θ

λ4

Thus, the variance of the Exp-Rayleigh distribution is obtained as

V ar =
8λ2σ2(1− θ)− 8θ −

(
2πλ2σ2(1− θ)2 + 4θ2 − 2(

√
π
√

2λσ(1− θ))
4λ2

Using the above moments, the coefficient of variation and index of dispersion of the Exp-Rayleigh distribution
are obtained in closed-form expressions, and also, we can obtain the coefficient of skewness and kurtosis. The
index of dispersion (DI) is defined as the variance-to-mean ratio. If the DI value is less than 1 , then the
model is suitable for underdispersed datasets. If the DI value is greater than 1 , then the model is suitable for
over-dispersed datasets.

CV =
σ

µ1
1

=

(
8λ2σ2(1− θ)− 8θ −

(
2πλ2σ2(1− θ)2 + 4θ2 − 2(

√
π
√

2λσ(1− θ))
) 1

2

(
√
π(
√

2λσ −
√

2λσθ)− 2θ)

DI(γ) =
σ2

µ1
1

=
8λ2σ2(1− θ)− 8θ −

(
2πλ2σ2(1− θ)2 + 4θ2 − 2(

√
π
√

2λσ(1− θ))
2λ(
√
π(
√

2λσ −
√

2λσθ)− 2θ)

The rth Incomplete moment for Exp- Rayleigh distribution has been obtained as

φr(x) =

∫ t

0

xrf(x)dx

=

∫ t

0

xr
(
θλe−λx + (1− θ) x

σ2
e

−x2
2σ2

)
dx

=

[
λr2r/2

(
Γ
(
r+2
2
, t2

2σ2

)
− Γ

(
r+2
2
, 0
))
|σ|r − Γ(r + 1, λt) + Γ(r + 1, 0)

]
θ

λr

− 2r/2
(

Γ

(
r + 2

2
,
t2

2σ2

)
− Γ

(
r + 2

2
, 0

))
|σ|r

(3.2)
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The first incomplete moment of the Exp- Rayleigh distribution is

φ1(x) =
θ

λ
−
e

−t2
2σ2
−λt

[
√
π(
√

2λσθ −
√

2λσ)e
t2

2σ2
+λt

erf
(

t√
2σ

)
+ (2λθt+ 2θ)e

t2

2σ2 + (2λ− 2λθ)teλt
]

2λ

(3.3)

The moment-generating function of the Exp- Rayleigh distribution

MX(t) = E
(
etX
)

=

∫ ∞
0

etXf(x)dx

=

∞∑
i=0

ti

i!

2i/2Γ

(
i+ 2

2

)
σi −

(
λi2i/2Γ

(
i+2
2

)
σi − Γ(i+ 1)

)
θ

λi

 (3.4)

The characteristic function of the Exp- Rayleigh distribution

φX(t) = E
(
eitX

)
=

∫ ∞
0

eitXf(x)dx

=

∞∑
i=0

itk

k!

2k/2Γ

(
k + 2

2

)
σk −

(
λk2k/2Γ

(
k+2
2

)
σk − Γ(k + 1)

)
θ

λk

 (3.5)

The corresponding cumulant generating function of the Exp-Rayleigh distribution

KX(t) = logeMX(t)

=

∞∏
i=0

loge

(
ti

i!

2i/2Γ

(
i+ 2

2

)
σi −

(
λi2i/2Γ

(
i+2
2

)
σi − Γ(i+ 1)

)
θ

λi

) (3.6)

4 Reliability Analysis

4.1 Survival function
The survival function S(x) is the likelihood that an item will not fail before x.

S(x) = 1− F (x)

= 1−
{

(θ − 1)e
−−x2

2σ2 + e−λx(eλx − θ)
}

= θe−λx − (θ − 1)e
−x2
2σ2

(4.1)
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Fig. 3. Visual displays of the survival function of an Exp- Rayleigh distribution for different
parameter values

4.2 Hazard rate function

The hazard function and the mean residual life function of X are

h(x) =
θλe−λx + (1− θ) x

σ2 e
−x2
2σ2

θe−λx − (θ − 1)e
−x2
2σ2

(4.2)

4.3 Mean residual life function

m(x) = E[X − x/X > x] =
1

1− F (x)

∫ ∞
t

[1− F (t)]dt

=
1

θe−λx − (θ − 1)e
−x2
2σ2

∫ ∞
t

(
θe−λt − (θ − 1)e

−t2
2σ2

)
dt

=

√
2λ
√
πσ(θ − 1)(erf( t√

2σ
)− 1) + 2θe−λt

2λ

(
θe−λx − (θ − 1)e

− x2

2σ2

)
(4.3)

The Exp-Rayleigh distribution’s hazard function can capture different patterns: decreasing HF, unimodal HF,
constant HF, and increasing HF. Furthermore, the Mean residual life Function is an increasing function.
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Fig. 4. Visual displays of the hazard function of an Exp- Rayleigh distribution for different
parameter values

4.4 Mean inactivity time

The mean inactive time is the amount of time that has passed after the failure of an item on the assumption
that the failure happened in (0, t).

ψx(t) = E(X − t/X < t) = t− φ1(t)

F (t)

= t−

[
2θ − e

−t2
2σ2
−λt

[
√
π(
√

2λσθ −
√

2λσ)e
t2

2σ2
+λt

erf
(

t√
2σ

)
+ (2λθt+ 2θ)e

t2

2σ2 + (2λ− 2λθ)teλt
]]

2λ

(
(θ − 1)e

− x2

2σ2 + e−λx (eλx − θ)
)

4.5 Cumulative hazard

The cumulative hazard function is given by

H(x) = − log(1− F (x))

= − log

(
θe−λx − (θ − 1)e

− x2

2σ2

)

31



Sakthivel and Vidhya; Asian J. Prob. Stat., vol. 23, no. 2, pp. 24-41, 2023; Article no.AJPAS.101236

Fig. 5. Visual displays of mean residual life function of an Exp- Rayleigh distribution for
different parameter values

4.6 Reversed hazard rate
Reversed Hazard Rate is given by

τ(x) =
f(x)

F (x)

=
θλe−λx + (1− θ) x

σ2 e
− x2

2σ2

(θ − 1)e
− x2

2σ2 + e−λx (eλx − θ)

5 Log-Odds Rate
Wang et al. (2003) presented a model for time to failure based on the log-odds rate, as well as some characterization
of failure time distributions using the log-odds rate. The model may be used to examine the distribution of time
to failure by modeling the failure process in terms of the log odds rate.
The odds function is given by

π0(x) =
F (x)

S(x)

=
(θ − 1)e

− x2

2σ2 + e−λx(eλx − θ)

θe−λx − (θ − 1)e
−x2
2σ2

(5.1)

The log-odds function is given by
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LO(x) = log
F (x)

1− F (x)

= log

(
(θ − 1)e

− x2

2σ2 + e−λx(eλx − θ)
)
− log

(
θe−λx − (θ − 1)e

−x2
2σ2

) (5.2)

The log-odds rate is defined as

LOR(x) =
h(x)

1− F (x)

=
θλe−λx + (1− θ) x

σ2 e
−x2
2σ2(

θe−λx − (θ − 1)e
−x2
2σ2

)2

(5.3)

6 Entropy
Entropy is a measure of uncertainty in a random variable X for the probability density function derived from
the lifetime distribution.

6.1 Renyi Entropy
Renyi entropy of a random variable Exp-Rayleigh (θ, λ, σ) with pdf is defined as

IR(η) =
1

1− η log

∫ ∞
0

fη(x)dx; η > 0, η 6= 1

=
1

1− η log

∫ ∞
0

(
θλe−λx + (1− θ) x

σ2
e
− x2

2σ2

)η
dx

(6.1)

6.2 Shannon Entropy
The Shannon Entropy of Exp-Rayleigh (θ, λ, σ) is given by

E[− log f(X)] = E

[
− log

(
θλe−λx + (1− θ) x

σ2
e
− x2

2σ2

)]
= −E

[
log

(
θλe−λx + (1− θ) x

σ2
e
− x2

2σ2

)] (6.2)

6.3 Generalized Entropy
The Generalized Entropy of Exp-Rayleigh (θ, λ, σ) is given by

GE(w, δ) =
(2λ)δ

δ(δ − 1)(
√
π(
√

2λσ −
√

2λσθ)− 2θ)δ

×
[∫ ∞

0

xδ
(
θλe−λx + (1− θ) x

σ2
e
− x2

2σ2

)
dx

]
− 1

(6.3)
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7 Stochastic Ordering
The use of stochastic ordering to judge the comparative behavior of positive continuous random variables is very
useful. A random variable X is smaller than a random variable Y .

• Stochastic order ( X ≤st Y ) if FX(x) ≥ FY (y) for all x.

• Hazard rate order ( X ≤hr Y ) if hX(x) ≥ hY (y) for all x.

• Mean residual life order ( X ≤mrl Y ) if mX(x) ≥ mY (y) for all x.

• Likelihood ratio order (X ≤lr Y ) if fX (x)
fY (y)

decreases in x.

Shaked and Shanthi Kumar (1994) established the stochastic ordering of distributions with the following
conclusions.

X ≤lr Y ⇒ X ≤hr Y ⇒ X ≤mrl Y
⇓

X ≤st Y

The Exp-Rayleigh distribution is sorted according to the strongest ’likelihood ratio’. Let X ∼ Exp-Rayleigh
(θ1, λ1, σ1) and Y ∼ Exp-Rayleigh (θ2, λ2, σ2). If, σl ≥ σ2,, then X ≤lr Y hence X ≤hr Y,X ≤mlr Y and
X ≤st Y . we have

fX(x)

fY (x)
=
θ1λ1e

−λ1x + (1− θ1) x
σ2
1
e
− x2

2σ21

θ2λ2e−λ2x + (1− θ2) x
σ2
2
e
− x2

2σ22

log
fX(x)

fY (x)
= log

[
θ1λ1e

−λ1x + (1− θ1) x
σ2
1
e
− x2

2σ21

θ2λ2e−λ2x + (1− θ2) x
σ2
2
e
− x2

2σ22

]

= log

[
θ1λ1e

−λ1x + (1− θ1)
x

σ2
1

e
− x2

2σ21

]
− log

[
θ2λ2e

−λ2x + (1− θ2)
x

σ2
2

e
− x2

2σ22

]

d

dx
log

fX(x)

fY (x)
=

θ2λ
2
2e
−λ2x − (1−θ2)

σ2
2

e− x2

2σ22 − x2e
− x2

2σ22

σ2
2


[
θ2λ2e−λ2x + (1− θ2) x

σ2
2
e
− x2

2σ22

] −

θ1λ
2
1e
−λ1x − (1−θ1)

σ2
1

e− x2

2σ21 − x2e
− x2

2σ21

σ2
1


[
θ1λ1e−λ1x + (1− θ1) x

σ2
1
e
− x2

2σ21

] (7.1)

Now if θ1 = θ2 = θ, λ1 = λ2 = λ, σl ≥ σ2, then it implies d
dx

log fX (x)
fY (x)

≤ 0. This means that X ≤lr Y and hence
X ≤hr Y,X ≤mlr Y and X ≤st Y .

8 Order Statistics
If X(1) ≤ X(2) ≤ . . . ≤ X(n) denotes the order statistic of a random sample X1, X2, . . . , Xn from a continuous
population with cdf FX(x) and pdf fX(x) then the pdf X(r) is given by
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fX(r)
(x) =

n!

(r − 1)!(n− r)!fX(x) [FX(x)](r−1) [1− FX(x)](n−r)

For, r = 1, 2, . . . , n. The pdf of the rth order statistic for the ExpRayleigh distribution is calculated, and the
pdf of the largest order statistic X(n) and smallest order statistic X(1) are given below.

nth order statistics

fX(n)
(x) = nfX(x) [FX(x)](n−1)

= n

(
θλe−λx + (1− θ) x

σ2
e
− x2

2σ2

)[
(θ − 1)e

− x2

2σ2 + e−λx
(
eλx − θ

)](n−1) (8.1)

1st order statistics

fX(1)
(x) = nfX(x) [1− FX(x)](n−1)

= n

(
θλe−λx + (1− θ) x

σ2
e
− x2

2σ2

)[
θe−λx − (θ − 1)e

− x2

2σ2

](n−1) (8.2)

The pdf of median order statistics

fm+1:n(x) =
(2m+ 1)

m!m!
fX(x) [FX(x)]m [1− FX(x)]m

=
(2m+ 1)

m!m!

(
θλe−λx + (1− θ) x

σ2
e
− x2

2σ2

)[
(θ − 1)e

− x2

2σ2 + e−λx
(
eλx − θ

)]m
×[

θe−λx − (θ − 1)e
− x2

2σ2

]m (8.3)

9 Bonferroni and Lorenz curve
The Bonferroni and Lorenz curves (Bonferroni, [49]) are used in a variety of sectors, including economics,
demography, insurance, and medicine. The Bonferroni and Lorenz curves of Exp-Rayleigh distributions are
calculated as follows:

Bo(x) =
1

µF (x)

∫ t

0

xf(x)dx

=
Lo(x)

F (x)

=

2θ − e
−t2
2σ2
−λt

[
√
π(
√

2λσθ −
√

2λσ)e
t2

2σ2
+λt

erf( t√
2σ

) + (2λθt+ 2θ)e
t2

2σ2 + (2λ− 2λθ)teλt
]

2λµ

(
(θ − 1)e

−x2
2σ2 + e−λx(eλx − θ)

)
(9.1)
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Lo(x) =
1

µ

∫ t

0

xf(x)dx

=
φ1(x)

E(x)

=
1

µ

 θλ −
e

−t2
2σ2
−λt

[
√
π(
√

2λσθ −
√

2λσ)e
t2

2σ2
+λt

erf
(

t√
2σ

)
+ (2λθt+ 2θ)e

t2

2σ2 + (2λ− 2λθ)teλt
]

2λ


(9.2)

10 Stress Strength Reliability
The life span of a component with an uncertain strength (X) and uncertain stress (Y ) is described by stress-
strength reliability. The component will work as intended until X > Y , at which point it will break immediately
when the applied stress exceeds the component’s strength. The stress strength parameter in particular is
measured by R = P (Y < X) in the statistical literature as a measure of component reliability. It is widely used
in virtually every field of knowledge, particularly engineering, where it is used to study things like structures,
the aging of concrete pressure vessels, the degeneration of rocket motors, static fatigue of ceramic components,
etc.

AssumeX and Y be independent stress and strength random variables, with Exp-Rayleigh distribution parameters
of θ1 and θ2, respectively. The stress strength reliability R is then calculated as

R = P (Y < X) =

∫ ∞
0

P (Y < X|X = x)fX(x)

=

∫ ∞
0

f1(x)F2(x)dx

=
1

2
3
2

((
2
√
πλσe

λ2σ2

2 erf

(
λσ√
(2)

)
+

((
2Γ

(
1

2
,
λ2σ2

2

)
− 2
√
π

)
λσ − 2

3
2 Γ

(
1,
λ2σ2

2

))
e
λ2σ2

2 + 2
3
2

)
θ1+

(
2

3
2 Γ

(
1,
λ2σ2

2

)
− 2Γ

(
1

2
,
λ2σ2

2

)
λσ

)
e
λ2σ2

2 −
√

2

)
θ2

+

(
−2
√
πλσe

λ2σ2

2 erf

(
λσ√

2

)
+ 2
√
πλσe

λ2σ2

2 −
√

2

)
θ1 −

√
2

(10.1)

11 Estimation of Parameters
In this section, the parameters θ, λ, and β are estimated using the MLE method. Let x1, x2, . . . , xn be a random
sample from the Exp-Rayleigh distribution with pdf. Then the log-likelihood function takes the form.

g(x) = θλe−λx + (1− θ) x
σ2
e
− x2

2σ2

L (xi, θ, λ, σ) =

n∏
i=1

g (xi, θ, λ, σ)

L (xi, θ, λ, σ) =

n∏
i=1

(
θλe−λxi + (1− θ) xi

σ2
e
−
x2i
2σ2

)
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The respective sample log-likelihood function is

logL (xi, θ, λ, σ) =

n∑
i=1

log

(
θλe−λxi + (1− θ) xi

σ2
e
−
x2i
2σ2

)

Now, by differentiating w.r.t. θ, λ, and, σ we can write

∂ logL

∂θ
=

n∑
i=1

λe−λxi − xi
σ2 e
−
x2i
2σ2(

θλe−λxi + (1− θ) xi
σ2 e
−
x2
i

2σ2

) = 0

∂ logL

∂λ
=

n∑
i=1

e−λxi − λxie−λxi(
θλe−λxi + (1− θ) xi

σ2 e
−
x2
i

2σ2

) = 0

and

∂ logL

∂σ
=

n∑
i=1

(1− θ)xi
(
x2i − 2σ2

)
e
−
x2i
2σ2

σ5

(
θλe−λxi + (1− θ) xi

σ2 e
−
x2
i

2σ2

) = 0

This nonlinear system of equations is solved to obtain the MLEs. Nonlinear optimization procedures are
frequently more convenient to use to numerically optimize the sample likelihood function. To solve these
equations numerically, we can utilize statistical tools like R programming (maxLik package).

12 Application
The data set contains the survival times (in days) of guinea pigs given various tubercle bacilli doses (72
observations). This data was analyzed by Kundu and Howlader (2010), Singh, and Sharma (2013), and Sankudey
et al. (2014). Sankudey et al. (2017) gave the data after eliminating the ties. In this paper, we compared the
Exp-Rayleigh, Rayleigh, Transmuted Rayleigh, Weibull, and Gamma distributions for the same data set. This
section also provides a density comparison graphic.

To compare the goodness of fit we use -2lnL, AIC (Akaike Information Criterion), BIC (Bayesian Information
Criterion), K-S (Kolmogorov-Smirnov) Statistic, CVM (Cramer-von-Mises), and AD (Anderson-Darling’s). For
the dataset, the above measures are computed and presented in Table 2.

Table 1. Estimated parameter values of the distributions

Model Parameter Estimate Log-Lik
Exp-Rayleigh θ̂=0.3088, σ̂=0.0547 λ̂=5.9327 91.48
Rayleigh θ̂=0.0913 95.85
Akash θ̂=10.2896 92.984
Transmuted Rayleigh σ̂=0.1035, λ̂=0.6476 99.83
Weibull λ̂=1.4058, k̂=0.1118 102.83
Gamma α̂=2.1239, β̂=21.0731 105.23
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Table 2. Criteria for comparison

Distribution AIC BIC K-S(p) AD(p) CVM(p)

Rayleigh -178.96 -174.41 0.25
(0.00)

6.15
(0.00)

1.28
(0.001)

Akash -183.692 -181.69 0.24
(0.00)

5.572
(0.00)

1.16
(0.00)

Transmuted Rayleigh -187.70 -183.15 0.22
(0.00)

5.2561
(0.00)

1.02
(0.0021)

Weibull -195.66 -191.10 0.15
(0.88)

2.36
(0.59)

0.41
(0.067)

Gamma -201.66 -197.11 0.99
(0.00)

781.6
(0.00)

23.99
(0.00)

Exp-Rayleigh -204.46 -197.63 0.14
(0.14)

1.429
(0.19)

0.23
(0.22)

The good of fit of the relatively better probability distribution is that one corresponds to the lowest values
of -2lnL, AIC, AICC, BIC, and K-S Statistics for modeling lifetime data. From Table 2, it is concluded that
the Exp-Rayleigh distribution provides a better fit to the dataset better than Rayleigh, Transmuted Rayleigh,
Weibull, and Gamma distributions.

Fig. 6. Comparison of fit for the five distributions of the guinea pig survival time data

13 Conclusions
This paper develops a new weighted three-parameter probability distribution for modeling lifetime data. We
derive the expressions for important statistical measures such as mean, variance, moments, and moment-
generating functions, etc. Further, the estimation of Exp-Rayleigh distribution parameters is obtained using
the maximum likelihood estimation procedure and the study of Exp-Rayleigh distribution characteristics using
hazard and reliability functions. Finally, Real-time data is used to illustrate the suitability of the proposed
distribution.
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