

British Journal of Mathematics & Computer Science 4(1): 73-89, 2014

SCIENCEDOMAIN *international* www.sciencedomain.org

A General Inequality Related to Variational Inequalities and Its Consequences

B. B. Sahoo¹ and G. K. Panda2*

¹Department of Mathematics, Choudwar College, Choudwar, Cuttack – 754 071, Odisha, India. ²Department of Mathematics, National Institute of Technology, Rourkela - 769 008, Odisha, India.

Research Article

Received: 28 February 2013 Accepted: 07 September 2013 Published: 05 October 2013

Abstract

Let X be a Hausdorff topological vector space with dual X^* , K a nonempty subset of X, and $f: K \times K \rightarrow \mathbb{R}$ be any map. In this paper we study the following problem: "*Find* $x_0 \in K$ *such that* $f(x_0, y) \ge 0$ *for ally* ∈*K*". Some results on this problem have been studied by Takahasi, Park and Kim and Yen. Behera and Panda proved several results on this problem in the setting of a Banach space. This problem includes as special cases, many problems on variational inequalities and generalized variational inequalities studied by many authors. As a consequence of the main results, we also consider the problem, "*Find* $x_0 \in K$ *such that* $f(x_0, y) \ge 0$ *for all* $y \in S(x_0)$ " where $S: K \rightarrow 2^K$ is any point-to-set map which, includes as a special case, the classical quasivariational inequality problem. A generalization of Minty's Lemma is also studied.

Keywords: Partition of unity, upper and lower semi continuous point-to-set map, monotone operator.

1 Introduction

Let X be a Hausdorff topological vector space with dual X^* and K a nonempty closed and convexsubset of X. Let the value of $u \in X^*$ at $x \in X$ be denoted by (u, x) . Let $g: K \to \mathbb{R}$ be a map (possibly nonlinear). The classical minimization problem for the pair (g, K) is to find $x_0 \in K$ such that

$$
g(x_0) = \min_{y \in K} g(y).
$$

If we define a function $f: K \times K \to \mathbb{R}$ as $f(x, y) = g(y) - g(x)$ for all $x, y \in K$, then the above problem reduces to the problem of finding $x_0 \in K$ such that $f(x_0, y) \ge 0$ for all $y \in K$.

 \mathcal{L}_max and \mathcal{L}_max and \mathcal{L}_max and \mathcal{L}_max

^{}Corresponding author: gkpanda_nit@rediffmail.com;*

If $T: K \rightarrow X^*$, then the nonlinear variational inequality problem is to find $x_0 \in K$ such that $(Tx_0, y - x_0) \ge 0$ for all $y \in K$. If we define $f: K \times K \to \mathbb{R}$ as $f(x, y) = (Tx, y - x)$, then it reduces to the problem of finding $x_0 \in K$ such that $f(x_0, y) \ge 0$ for all $y \in K$.

Motivated by the above facts, Behera and Panda [3] considered the following problem:

P_{**1**}: *Givenf* : *K* × *K* → ℝ, *find* $x_0 \in K$ *such that* $f(x_0, y) \ge 0$ *for all* $y \in K$.

Certain variation of this problem is known as equilibrium problem. The readers are advised to refer [5], [6] and [13] for a detailed discussion on equilibrium problem and its generalization. Some similar results are also available in [20].

1.1 Special Cases

- 1. If $z \in K$ is fixed and $f(x, y) = (T((z + x)/2), y x)$, then P₁ reduces to the problem of finding $x_0 \in K$ such that $(T((z + x_0)/2), y - x_0) \ge 0$ for all $y \in K$, which is the *variational-type inequality problem* originally introduced by Behera and Panda [2].
- 2. If $f(x, y) = (Tx Ax, y x)$ for some maps $T, A : K \rightarrow X^*$, then P_1 reduces to the problem of finding $x_0 \in K$ such that $(Tx_0, y - x_0) \ge (Ax_0, y - x_0)$ for all $y \in K$ which is the *strongly nonlinear variational inequality problem* studied by Nanda[10] and Noor[11].
- 3. If $f(x,y) = (Tx Ax, g(y) g(x))$ for some maps $T, A: K \rightarrow X^*$, $g: K \rightarrow K$, then P_1 reduces to the problem of finding $x_0 \in K$ such that $(Tx_0, g(y) - g(x_0)) \ge (Ax_0,$ $g(y) - g(x_0)$ for all $y \in K$, which is the *strongly nonlinear implicit variational inequality problem* introduced and studied by Noor[12] in connection with the solution of the differential equations of odd order.

Some results on Problem P_1 are available in Takahasi [18] and Park and Kim [14]. Behera and Panda [3] proved several results on the existence of solution of this problem in the setting of Banach spaces. Many authors used results on Problem P_1 to prove the existence of solutions of variational and generalized variational inequality problems.

In this paper, we prove some results on the existence of solution of Problem P_1 under different assumptions in the setting of Hausdorff topological vector spaces. We also use a result on the existence of solution of Problem P_1 for the study the following problem, which is a generalization of the quasi-variational inequality problem introduced by Benoussan and Lions [4] in connection with impulse control and subsequently studied by Baicchi and Capello [1] and Mosco [9].

P₂: *Find* x_0 ∈ *K* such that $f(x_0, y) \ge 0$ for all $y \in S(x_0)$ where $S: K \to 2^K$ is any point*to-set map*.

We also prove a theorem on the uniqueness of solution of Problem P_1 which would serve as a generalization of the well-known Minty's Lemma (see [7], p.6).

2 Priliminaries

In this section we recall some definitions and known results which will be needed in the sequel. Throughout this section, X is a real Hausdorff topological vector space with dual X^* and K a nonempty convex subset of X .

2.1 Definition

A mapping $T: K \rightarrow X^*$ is said to be monotone if $(Tx-Ty, x - y) \ge 0$ for all $x, y \in K$. T is said to be strictly monotone if strict inequality holds whenever $x \neq y$. T is said to be pseudo-monotone if $x, y \in K$ and $(Tx, x - y) \ge 0$ then $(Ty, x - y) \ge 0$.

2.2 Definition

A function $h: K \to \mathbb{R}$ is said to be upper semi-continuous, if for each real number λ , the set $\{x \in K : h(x) < \lambda\}$ is open; f is said to be lower semi-continuous if $-f$ is upper semi-continuous.

2.3 Definition

A function $h: K \to \mathbb{R}$ is said to be quasi-convex if for each real number λ , the set $\{x \in K : h(x)$ λ } is convex; function f is said to be quasi-concave if $-f$ is quasi-convex.

2.4 Definition

Let Mand N be two topological spaces, and $h: M \to 2^N$, a point-to-set map. Then h is said to be upper semi-continuous at $x_0 \in M$ if for each open set U of N with $h(x_0) \subset U$, there exists a neighborhood $n(x_0)$ of x_0 in Msuch thatif $x \in n(x_0)$ then $h(x) \subset U$; h is said to be lower semicontinuous at $x_0 \in M$ if for each open set U of N with $h(x_0) \cap U \neq \emptyset$, there exists a neighborhood $n(x_0)$ of x_0 in M such that if $x \in n(x_0)$ then $h(x) \cap U \neq \emptyset$; h is said to be upper semi-continuous (lower semi-continuous) on M if h is upper semi-continuous (lower semicontinuous) at each point of *M*.

2.5 Theorem

(Isac [8]) Let K be a nonempty compact convex subset of a Hausdorff topological vector space. Let f and g be two real valued functions on $K \times K$ having the following properties:

> (a) *For all* $x, y \in K$ *,* $f(x, y) \le g(x, y)$ *and* $g(x, x) \le 0$ *,* (b) For each fixed $y \in K$, $f(x, y)$ is a lower semicontinuous function of x on K , (c) For each fixed $x \in K$, $g(x, y)$ is a quasi-concave function of x on K .

Then there exists a point $\hat{x} \in K$ *such that,* $f(\hat{x}, y) \leq 0$ *for all* $y \in K$.

2.6 Theorem

(Shih and Tan [17]). Let *Xbe a Hausdorff topological vector space with dual X[∗] and <i>K* a nonempty $convex$ subset of X . Let $S: K \rightarrow 2^K$ be an upper semicontinuous point-to-set map such that for each $x \in K$, $S(x)$ is nonempty and bounded. Then for each $p \in X^*$, the map $f_p: K \to \mathbb{R}$ defined by $f_p(x) =$ $sup_{y \in S(x)}(p, y)$ is *upper semicontinuous*.

2.7 Theorem

(Takahasi [18])*Let be a nonempty compact convex subset of a locally convex Hausdorff topological vector space X and let F: K*×*K→R be a function such that*

- (a) *for each* $y \in K$, the map $x \mapsto F(x, y)$ is upper semicontinuous,
- (b) *for each* $x \in K$ *, the map* $y \mapsto F(x, y)$ *is convex,*
- (c) $F(x, x) \ge \alpha$ for all $x \in K$ with some real number α .

Then there exists $x_0 \in K$ *such that* $F(x_0, y) \ge \alpha$ *for all* $y \in K$.

2.8 Theorem

(Rudin [15]) Let *K* be a compact subset of a topological space and let $\{V_1, V_2, \dots, V_n\}$ be a finite *open covering of K. Then there exists a family* $\{\beta_1, \beta_2, \dots, \beta_n\}$ *of continuous real valued functions on K such that* $\beta_i(x) = 0$ *outside* $V_i, 0 \leq \beta_i(x) \leq 1$ *for all* $i \in \{1, 2, \dots, n\}$ *and for all* $x \in K$ *, and* $\sum_{i=1}^{n} \beta_i(x) = 1$ for all $x \in K$.

2.9 Theorem

(Tarafdar [19]) Let *K* be a nonempty subset of a Hausdorff topological vector space *X* and let $F: K \rightarrow 2^K$ be a point-to-set map such that

- (a) *for each* $x \in K$, $F(x)$ *is nonempty*,
- (b) for each $y \in K$, $F^{-1}(y) = \{x \in K : y \in F(x)\}$ contains a relatively open subset A_y of $K(A_y$ may be empty for some y),
- (c) $\bigcup_{x \in K} A_x = K$,
- (d) *K* contains a nonempty set K_0 contained in a compact convex subset K_1 of K such *that* $D = \bigcap_{x \in K_0} A_x^C$ *is compact* (*D may be empty*).

Then there exists $x_0 \in K$ such that $x_0 \in F(x_0)$.

2.10 Theorem

([17], p. 34). Let *X* be a Hausdorff topological vector space with dual *X*^{*} and *K* a nonempty *convex subset of X. Let* S: K→2^K be a point-to-set upper semi-continuous map such that for each $x \in K$, $S(x)$ is nonempty and bounded. Then for each $p \in X^*$ the map $f_p: K \to \mathbb{R}$ defined by $f_p(x) = \sup_{x \in \mathbb{R}^n} (p, y)$ is upper semi-continuous. $y \in S(x)$

2.11 Theorem

([16], p.201). Let *X* be a locally convex Hausdorff topological vector space with dual *X*^{*} and *K* a *nonempty closed and convex subset of X. Let* x^* *be a point of X not in K. Then there exists* $p \in X^*$ $\text{such that } (p, x^*) > \sup_{x \in K} (p, x).$

3 Existence of Solution

The following theorems on the existence of solution of problem P_1 are the main results of this paper.

3.1 Theorem

Let *K* be a nonempty compact convex subset of a Hausdorff topological vector space *X* and let $f: K \times K \to \mathbb{R}$ be a map such that

- (a) $f(x,x) \geq 0$ for each $x \in K$,
- (b) the map $y \mapsto f(x, y)$ of K into R is quasi-convex for each $x \in K$,
- (c) for each $y \in K$, the set $\{x \in K : f(x, y) < 0\}$ is open in K.

Then there exists $x_0 \in K$ *such that* $f(x_0, y) \ge 0$ *for all* $y \in K$ *.*

*Proof.*Same as the proof of Theorem 2.7. Indeed Takahasi [18] assumed that for each $y \in K$, the map $x \mapsto f(x, y)$ of K into ℝ is upper semi-continuous and for each $x \in K$, the map $y \mapsto$ $f(x, y)$ of K into ℝ is convex which are stronger then hypotheses (b) and (c) of this theorem.

The following theorem generalizes Theorem 3.1 to an arbitrary nonempty convex subset K of X .

3.2 Theorem

Let *K* be a nonempty convex subset of a Hausdorff topological vector space *X* and let $f: K \times K \rightarrow$ ℝ *be a map such that*

- (a) $f(x, x) \ge 0$ for each $x \in K$,
- (b) the map $y \mapsto f(x, y)$ of K into R is quasi-convex for each $x \in K$,
- (c) for each $y \in K$, the set $\{x \in C : f(x, y) < 0\}$ is open in K for every compact $subset C$ of K ,
- (d) *there exists a nonempty compact subset L of K such that for each* $x \in K L$, *there exists* $u \in L$ *for which* $f(x, u) < 0$.

Then there exists $x_0 \in L$ *such that* $f(x_0, y) \ge 0$ *for all* $y \in K$.

Proof. For each $y \in K$, let

$$
A(y) = \{x \in L : f(x, y) \ge 0\}.
$$

From hypothesis (c) it follows that $A(y)$ is a nonempty compact subset of K. The conclusion of the theorem follows if $\bigcap_{y \in K} A(y) \neq \emptyset$. To ascertain this, it is sufficient to show that the family $\{A(y) : y \in K\}$ has the finite intersection property.

Let y_1, y_2, \dots, y_n be arbitrary elements of K and K_0 , the convex hull of $L \cup \{y_1, y_2, \dots, y_n\}$. Then K_0 is a nonempty compact convex subset of K. By Theorem 3.1, there exists $\tilde{x}_0 \in K_0$ such that

$$
f(\tilde{x}_0, y) \ge 0 \tag{1}
$$

for all $y \in K_0$. We claim that $\tilde{x}_0 \in L$; for if $\tilde{x}_0 \notin L$, then, $\tilde{x}_0 \in K_0 - L \subset K - L$ and by hypothesis (d), there exists $u \in L$ such that $f(\tilde{x}_0, u) < 0$ which contradicts (1) when $y = u$. Thus $\tilde{x}_0 \in L$, and in particular, $\tilde{x}_0 \in A(y_i)$ for $i=1,2,\dots,n$; that is $\tilde{x}_0 \in \bigcap_{i=1}^n A(y_i)$. Hence, $\bigcap_{i=1}^n A(y_i) \neq \emptyset$ which proves that the family $\{A(y) : y \in K\}$ has the finite intersection property. This completes the proof.

If X is a normed linear space and K is locally compact, we have the following result.

3.3 Theorem

Let *K* be a nonempty locally compact convex subset of a real normed linear space X with $0 \in K$. *and let* $f: K \times K \to \mathbb{R}$ *be a map such that*

- (a) the map $y \mapsto f(x, y)$ of K into R is quasi-convex for each $x \in K$,
- (b) *for all* $y \in K$ *and* $r > 0$ *, the set* $\{x \in K_r : f(x, y) < 0\}$ *is open in* K, *where* $K_r = \{x \in K: ||x|| \leq r\},\$
- (c) $f(x, x) = 0$ for each $x \in K_r$ and for each $r > 0$,
- (d) there exists $r > 0$ such that $f(x, 0) < 0$ whenever $||x|| = r$.

Then there exists $x_0 \in K$ *such that* $f(x_0, y) \geq 0$ *for all* $y \in K$ *.*

Proof. For each $r > 0$, the set K_r is a nonempty compact and convex subset of K. Hence by Theorem 3.1 there exists $x_r \in K_r$ such that

$$
f(x_r, y) \ge 0 \tag{2}
$$

for all $y \in K_r$. We claim that $||x_r|| < r$; for if $||x_r|| = r$, then by hypothesis (d), $f(x_r, 0) < 0$ which contradicts (2) when $y = 0$. Now let $x \in K$ be arbitrary and choose $\lambda > 0$ sufficiently small so that

$$
y_r = \lambda x + (1 - \lambda)x_r \in K_r.
$$

Now by hypotheses (a) and (b)

$$
0 \le f(x_r, y_r) = f(x_r, \lambda x + (1-\lambda)x_r)
$$

$$
\le \lambda f(x_r, x) + (1-\lambda) f(x_r, x_r) = \lambda f(x_r, x).
$$

Since $\lambda > 0$, it follows that $f(x_r, x) \ge 0$. Since x is arbitrary, the proof is complete.

If X is a reflexive Banach space then local compactness of K can be relaxed from the above theorem.

3.4 Theorem

Let K be a nonempty closed and convex subset of a reflexive real Banach space X *with* $0 \in K$ *and* $f: K \times K \to \mathbb{R}$ be a map such that

- (a) $f(x, x) = 0$ for each $x \in K$,
- (b) *the map* $y \mapsto f(x, y)$ *of* K *into* \mathbb{R} *is convex for each* $x \in K$ *,*
- (c) the set $\{x \in C : f(x, y) < 0\}$ is weakly open in K for each $y \in K$, and for each *weakly compact subset C of K.*

Then there exists $x_0 \in K$ such that $f(x_0, y) \ge 0$ for all $y \in K$ under each of the following *conditions*:

- (i) *is bounded*,
- (ii) *there exists* $r > 0$ *such that* $f(x, 0) < 0$ *whenever* $||x|| = r$.

 $Proof.$ Equip K with the weak topology. If K is bounded, then it becomes weakly compact and in this case, the proof follows from Theorem 3.1.

If K is not bounded let

$$
K_r = \{x \in K : ||x|| \le r\}.
$$

Then K_r is a nonempty closed, convex and bounded subset of K . By the first part of the theorem, there exists $x_r \in K_r$ such that $f(x_r, y) \ge 0$ for all $y \in K_r$. The remaining part of the proof follows from the proof of Theorem 3.3 and hence it is omitted.

The following theorem generalizes Theorem 3.4 to a Hausdorff topological vector space.

3.5 Theorem

Let *K* be a nonempty convex subset of a Hausdorff topological vector space *X* and *L*, a nonempty *compact and convex subset of K. Let* $f: K \times K \to \mathbb{R}$ *be a map such that*

- (a)
(b) $f(x, x) = 0$ for each $x \in L$,
- (b) the map $y \mapsto f(x, y)$ of K into $\mathbb R$ is convex for each $x \in K$,
- (c) for each $y \in K$, the set $\{x \in L : f(x, y) < 0\}$ is open in L,
- (d) for every x in the boundary of L , there exists $u \in L$ such that $f(x, u) < 0$.

Then there exists $x_0 \in L$ *such that* $f(x_0, y) \ge 0$ *for all* $y \in K$.

Proof. By theorem 3.1 there exists $x_0 \in L$ such that

 $f(x_0)$ $(y) \ge 0$ (3)

for all $y \in L$. We claim that $x_0 \in \text{int}L$ (where intL stands for the interior of L), for if $x_0 \notin \text{int}L$, then by hypothesis (d) there exists $u \in L$ such that $f(x_0, u) < 0$ which contradicts (3) when $y =$ \mathfrak{u} .

Now let $x \in K$ be arbitrary and choose $\lambda > 0$ sufficiently small so that

 $y_{\lambda} = \lambda x + (1 - \lambda)x_0 \in L.$

By hypotheses (a) and (b)

$$
0 \le f(x_0, y_\lambda) \le \lambda f(x_0, x) + (1 - \lambda)f(x_0, x_0) = \lambda f(x_0, x).
$$

Since $\lambda > 0$, it follows that $f(x_0, x) \ge 0$. This completes the proof.

The following theorem is a variant of Theorem 3.1 in which, the hypotheses (a) and (b) of Theorem 3.1 have been replaced by a single generalized condition.

3.6 Theorem

Let *K* be a nonempty compact convex subset of a Hausdorff topological vector space *X* and let $f: K \times K \to \mathbb{R}$ be a map such that

- (a) *for each* $y \in K$, the set $\{x \in K : f(x, y) < 0\}$ is open in K,
- (b) *for any finite* subset $\{y_1, y_2, \dots, y_n\}$ of *K* and
	- $u \in \text{conv } (\{y_1, y_2, \cdots, y_n\})$, max $\{y_i \leq f(u, y_i) \geq 0$.

Then there exists $x_0 \in K$ *such that* $f(x_0, y) \ge 0$ for all $y \in K$.

Proof. Assume that the assertion is false. Then for each $x \in K$, there exists $y \in K$ such that $f(x, y) < 0$. For each $y \in K$, let

$$
A(y) = \{x \in K : f(x, y) < 0\}.
$$

Then by hypothesis (a), $A(y)$ is open for every $y \in K$. Further $K = \bigcup_{y \in K} A(y)$. Since K is compact, there exists $\{y_1, y_2, \dots, y_n\} \subset K$ such that $K = \bigcup_{i=1}^n A(y_i)$. Let $\{\beta_1, \beta_2, \dots, \beta_n\}$ be a partition of unity subordinate to the covering $\{A(y_i): i = 1, 2, \dots, n\}$ and let $S = \text{conv}(\{y_1, y_2, \dots, y_n\})$. Then S is a compact convex subset of K. Define a continuous map $p: K \to K$ as $p(x) = \sum_{i=1}^{n} \beta_i(x) y_i$. Since $p(x)$ is a convex linear combination of points of the set $S, p(x) \in S$ for each $x \in K$. In particular, p maps S into S. By Browuer's fixed point theorem p has a fixed point; that is, there exists $\hat{x} \in K$ such that $\hat{x} = p(\hat{x})$.

Since $\{\beta_1, \beta_2, \dots, \beta_n\}$ is a partition of unity, $\beta_i(\hat{x}) > 0$ for at least one *i*. But $\beta_i(\hat{x}) > 0$ implies that $\hat{x} \in A(y_i)$ so that

$$
f(\hat{x}, y_i) < 0. \tag{4}
$$

If

$$
J = \{i : 1 \le i \le n \text{and} \beta_i(\hat{x}) > 0\}
$$

then

$$
\hat{x} = p(\hat{x}) = \sum_{i=1}^{n} \beta_i(\hat{x}) y_i = \sum_{i \in J} \beta_i(\hat{x}) y_i
$$

so that $\hat{x} \in \text{conv}\{y_i : i \in J\}$. Now by hypothesis (b), there exists $i_0 \in J$ such that $f(\hat{x}, y_{i_0}) \ge 0$ which contradicts (4). This contradiction proves the theorem.

The following theorem generalizes Theorem 3.6 to an arbitrary nonempty convex subset K of X .

3.7 Theorem

Let *X* be a locally convex Hausdorff topological vector space, *K* a nonempty convex subset of *X*, K_0 a nonempty compact convex subset of K, and L a nonempty compact subset of K. Let $f: K \times$ $K \to \mathbb{R}$ be a map such that

- (a) *for each* $y \in K$, the set $\{x \in L : f(x, y) \ge 0\}$ is closed in K,
- (b) *for any finite subset* $\{y_1, y_2, \dots, y_n\}$ of K, and
- $u \in \text{conv}(\{y_1, y_2, \cdots, y_n\}), \max_{1 \le i \le n} f(u, y_i) \ge 0.$ (c) *for each* $x \in K - L$ *, there exists* $u \in \text{conv}(K_0 \cup \{x\})$ such that $f(x, u) < 0$.

Then there exists $x_0 \in L$ *such that* $f(x_0, y) \ge 0$ *for all* $y \in K$.

Proof. For each $y \in K$, let

$$
A(y) = \{x \in L : f(x, y) \ge 0\}.
$$

From (b) it follows that $A(y)$ is closed and consequently compact for each $y \in K$. The assertion of the theorem follows if $\bigcap_{y\in K} A(y) \neq \emptyset$. For this, it is sufficient to prove that the family $\{A(y): y \in$ K } has the finite intersection property.

Let $\{y_1, y_2, \dots, y_n\} \subset K$ and $S = \text{conv}(K_0 \cup \{y_1, y_2, \dots, y_n\})$. Clearly S is a non-empty compact convex subset of K. By Theorem 3.6 there exists $\hat{x} \in S$ such that

$$
f(\hat{x}, y) \ge 0 \tag{5}
$$

for all $y \in S$. We claim that $\hat{x} \in L$; for if $\hat{x} \notin L$, that is, $\hat{x} \in S - L \subset K - L$, then there exists $u \in \text{conv}(K_0 \cup \{\hat{x}\})$ such that $f(\hat{x}, y) < 0$ which contradicts (5) when $y = u$. Thus $\hat{x} \in L$, and in particular, $\hat{x} \in A(y_i)$ for each $i \in \{1, 2, \dots, n\}$, that is, $\tilde{x}_0 \in \bigcap_{i=1}^n A(y_i)$. Hence, $\bigcap_{i=1}^n A(y_i) \neq$

 \emptyset showing that the family $\{A(y) : y \in K\}$ has the finite intersection property. This completes the proof.

The following theorem also deals with the existence of solution of Problem P_1 under pseudomonotonicity type assumptions.

3.8 Theorem

Let *K* be a nonempty closed and convex subset of a Hausdorff topological vector space *X* and let $f: K \times K \to \mathbb{R}$ be a map such that

- (a) $f(x, x) \ge 0$ for each $x \in K$,
- *(b)* the map $y \mapsto f(x, y)$ of K into $\mathbb R$ is convex and lower semicontinuous for each $x \in K$,
- *(c)* the map $x \mapsto f(x, y)$ of K into $\mathbb R$ is lower semicontinuous from the line segments *of to the usual topology of* ℝ*,*
- *(d)* $x \in K$, $y \in K$ and $f(x, y) \ge 0$ implies $f(y, x) \le 0$,
- (e) there exists a nonempty set K_0 contained in a compact convex subset K_1 of K such that $D = \bigcap_{y \in K_0} \{y \in K : f(x, y) \leq 0\}$ is either compact or empty.

Then there exists $x_0 \in K$ *such that*

$$
f(x_0, y) \ge 0 \tag{6}
$$

For all $y \in K$.

Note: If we set $f(x, y) = (Tx, y - x)$ for some operator $T: K \to X^*$ then condition (d) of the above theorem is equivalent to the fact that T is pseudo-monotone.

To prove the above theorem, we need the following lemma.

3.9 Lemma

Let *K* be a nonempty closed and convex subset of a Hausdorff topological vector space X and *let* $f: K \times K \to \mathbb{R}$ *be a map such that*

- (a) $f(x, x) \geq 0$ *for each* $x \in K$,
- (b) *the map* $y \mapsto f(x, y)$ *of K into* \mathbb{R} *is convex for each* $x \in K$,
- (c) the map $x \mapsto f(x, y)$ of K into R is lower semicontinuous from the line segments of *to the usual topology of* ℝ*,*
- (d) $x \in K$, $y \in K$ and $f(x, y) \ge 0$ implies $f(y, x) \le 0$.

Then the following are equivalent:

- (A) $x_0 \in K$ *and* $f(x_0, y) \ge 0$ *for all* $y \in K$.
- (B) $x_0 \in K$ *and* $f(y, x_0) \leq 0$ *for all* $y \in K$.

Note: If we set $f(x, y) = (Tx, y - x)$ for some operator $T: K \to X^*$, then Lemma 3.9 reduces to Minty's Lemma ([7], p. 6).

Proof. Assume that (A) holds. Then for some $x_0 \in K$ and for all $y \in K$, $f(x_0, y) \ge 0$. By hypothesis (d), $f(y, x_0) \le 0$ for all $y \in K$ from which (B) follows.

Now assume that (B) holds. Then for some $x_0 \in K$, $f(y, x_0) \leq 0$ for all $y \in K$. Fix $y \in K$, $t \in (0,1)$ and set $y_t = (1-t)x_0 + ty$. Then $y_t \in K$ and by (B), $f(y_t, x_0) \le 0$ for each $t \in (0,1)$. Now it follows from hypotheses (a) and (b) that

Thus

$$
0 \le f(y_t, y_t) \le (1 - t)f(y_t, x_0) + tf(y_t, y).
$$

$$
f(y_t, y) \ge -\frac{1-t}{t} f(y_t, x_0) \ge 0
$$

for each $t \in (0,1)$. Since the map $x \mapsto f(x, y)$ of K into $\mathbb R$ is lower semicontinuous from the line segments of K to the usual topology of \mathbb{R} , taking limit $t \to 0^+$ in the above inequality, we get $f(x_0, y) \ge 0$. Since $y \in K$ is arbitrary (B) follows. This completes the proof of the lemma.

3.10 Proof of Theorem 3.8

Assume that inequality (6) has no solution. Then, for each $x \in K$, there exists $u \in K$ such that

$$
f(x, u) < 0 \tag{7}
$$

and by Lemma 3.9, there exists $v \in K$ such that

$$
f(v,x) > 0. \tag{8}
$$

Thus for each $x \in K$, it follows from (7) that the set

$$
F(x) = \{ y \in K : f(x, y) < 0 \}
$$

is nonempty, which is also convex by hypothesis (b) of the theorem. Again for each $y \in K$, since

$$
F^{-1}(y) = \{x \in K : f(x, y) < 0\},
$$

it follows that

$$
[F^{-1}(y)]^{C} = \{x \in K : f(x, y) \ge 0\}
$$

\n
$$
\subset \{x \in K : f(y, x) \le 0\} \text{ (by (d))}
$$

\n
$$
= G(y) \text{ (say)}.
$$

Thus

$$
F^{-1}(y) \supset [G(y)]^C = A(y)
$$
 (say).

Since for each $x \in K$, the map $y \mapsto f(x, y)$ is lower semicontinuous, it follows that $G(y)$ is closed in *K*. Thus for each $y \in K$, $A(y)$ is open in *K*.

Now, let $x \in K$ be arbitrary. By (8) there exists $v \in K$ such that $f(v, x) > 0$, so that $x \in A(v)$. Thus $\bigcup_{y \in K} A(y) = K$. Finally, $D = \bigcap_{y \in K_0} G(y) = \bigcap_{y \in K_0} [A(y)]^C$ is either empty or compact by hypothesis (e), so that all the conditions of Theorem 2.9 are fulfilled by F . Thus there exists $x_0 \in K$ such that $x_0 \in F(x_0)$, which is tantamount to $f(x_0, x_0) < 0$, a contradiction to hypothesis (a) of the theorem. Hence the conclusion of the theorem follows.

4 Uniqueness of Solutions

The following theorem characterizes the uniqueness of solution of the Problem P_1 under certain conditions.

4.1 Theorem

Let *K* be a nonempty subset of a topological vector space *X* and let $f: K \times K \to \mathbb{R}$ a map such *that*

- (a) for all $x, y \in K$, $f(x, y) + f(y, x) \le 0$,
- (b) *equality does not hold in* (a) *unless* $x = y$.

Then, if Problem P_1 *is solvable, it has a unique solution.*

Proof. If possible let x_1 , x_2 be two solutions of P_1 . Then

and
$$
f(x_1, y) \ge 0
$$

$$
f(x_2, y) \ge 0
$$

for all $y \in K$. Putting $y = x_1$ in the former inequality and $y = x_2$ in the latter, we get

and

$$
f(x_1, x_2) \ge 0
$$

$$
f(x_2, x_1) \ge 0.
$$

Adding the last two inequalities we get,

$$
f(x_1, x_2) + f(x_2, x_1) \ge 0.
$$

This inequality combined with hypothesis (a) gives

$$
f(x_1, x_2) + f(x_2, x_1) = 0.
$$

Now an application of hypothesis (b) yields $x_1 = x_2$. This completes the proof.

Note: If we set $f(x, y) = (Tx, y - x)$ for some operator $T: K \to X^*$ then condition (a) of the above theorem is equivalent to the fact that T is monotone.

The following examples illustrate Theorem 4.1. Example 1 shows that the fulfillment of conditions (a) and (b) does not guarantee the existence of a solution to problem P_1 . Examples (2) and (3) show that if conditions (a) and (b) are fulfilled and problem P_1 is solvable, then it has a unique solution.

Example 1. Let $X = \mathbb{R}$, $K = [0, \infty)$, and define $f: K \times K \to \mathbb{R}$ as

$$
f(x,y) = -|x-y|.
$$

Then

$$
f(x, y) + f(y, x) = -2|x - y|
$$

and

$$
f(x,y) + f(y,x) = 0
$$

if $|x-y| = 0$, that is $x = y$. Thus hypotheses (a) and (b) of Theorem 4.1 are fulfilled by f. But $f(x_0, y) \ge 0$ for all $y \in K$ is equivalent to $|x_0 - y| \le 0$ for all $y \ge 0$. Thus in this case no solution exists.

Example 2. Let $X = \mathbb{R}$, $K = [0, \infty)$, and define $f: K \times K \to \mathbb{R}$ as

$$
f(x,y)=x(y-x).
$$

Then

$$
f(x, y) + f(y, x) = -(x - y)^2 \le 0
$$

and

$$
f(x,y)+f(y,x)=0\\
$$

if and only if $(x - y)^2 = 0$ i.e. $x = y$. Furthermore, $f(x_0, y) \ge 0$ forall $y \in K$ is equivalent to $x_0(y - x_0) \ge 0$ for all $y \ge 0$, so that $x_0 = 0$ is the only solution in this case.

Example 3. Let $X = K = \mathbb{R}$, and define $f: K \times K \to \mathbb{R}$ as

$$
f(x,y) = -x^2|x-y|.
$$

Then

$$
f(x, y) + f(y, x) = -(x^2 + y^2)|x - y| \le 0
$$

and

$$
f(x, y) + f(y, x) = 0
$$

if and only if $|x-y| = 0$ i.e. $x = y$. Furthermore, $f(x_0, y) \ge 0$ for all $y \in K$ is equivalent to $|x_0^2 | x_0 - y| = 0$ for all $y \in \mathbb{R}$ so that $x_0 = 0$ is the only solution in this case also.

5 Some Consequences

In this section, we discuss some consequences of the theorems proved in Section 3.

The following theorem deals with the existence of solution of Problem P₂.

5.1 Theorem

Let *X* be a locally convex Hausdorff topological vector space with dual X^* , K a nonempty compact *convex subset of X, f: K* \times *K* $\rightarrow \mathbb{R}$ *a point-to-point map, and S : K* \rightarrow *2^K, <i>a point-to-set upper semicontinuous map such that*

- a) $f(x, x) \ge 0$ for each $x \in K$,
- b) the map $y \mapsto f(x, y)$ of Kinto Representation *onvex for each* $x \in K$,
- c) the set $\{x \in K : inf_{y \in S(x)} f(x, y) < 0\}$ is empty or open in K.

Then there exists $x_0 \in K$ such that $x_0 \in S(x_0)$ and $f(x_0, y) \ge 0$ for all $y \in S(x_0)$.

Proof. Assume that the assertion is false. Then for each $x \in K$ either $x \notin S(x)$, or there exists $y \in S(x)$ such that $f(x, y) < 0$. If $x \notin S(x)$, then by Theorem 2.11, there exists $p \in X^*$ such that

$$
(p,x)-\sup_{y\in S(x)}(p,y)>0.
$$

Let

$$
V_0 = \left\{ x \in K : \inf_{y \in S(x)} f(x, y) < 0 \right\},
$$
\n
$$
V(p) = \left\{ x \in K : (p, x) - \sup_{y \in S(x)} (p, y) > 0 \right\}.
$$

and for each $p \in X^*$ let

Then by hypothesis (c),
$$
V_0
$$
 is open in K . By Theorem 2.6, since the map $x \mapsto \sup_{y \in S(x)}(p, y)$ is
upper semicontinuous for each $p \in X^*$, it follows that the map $x \mapsto (p, x) - \sup_{y \in S(x)}(p, y)$ is
lower semicontinuous. Hence $V(p)$ is open in K for each $p \in X^*$. Further, $K = V_0 \cup [\bigcup_{p \in X^*} V(p)]$.
Since K is compact, there exists $\{p_1, p_2, \dots, p_n\} \subset X^*$ such that $K = V_0 \cup [\bigcup_{i=1}^n V(p_i)]$. Let
 $\{\beta_0, \beta_1, \dots, \beta_n\}$ be a partition of unity subordinate to the covering $\{V_0, V(p_1), \dots, V(p_n)\}$, and
define $g: K \times K \to \mathbb{R}$ as

$$
g(x,y) = \beta_0(x)f(x,y) + \sum_{i=1}^n \beta_i(x)(p_i, y - x).
$$

Then it is clear that for each $x \in K$, $g(x, x) \ge 0$, the map $y \mapsto g(x, y)$ is quasi-convex, for each $y \in K$, the map $x \mapsto g(x, y)$ is upper semicontinuous so that the set $\{x \in K : g(x, y) < 0\}$ is open in K. Thus all the conditions of Theorem 3.1 are fulfilled. Hence there exists $\hat{x} \in K$ such that

$$
g(\hat{x}, y) \ge 0 \tag{9}
$$

for all $y \in K$, which is equivalent to

$$
\beta_0(\hat{x})f(\hat{x}, y) + \sum_{i=1}^n \beta_i(\hat{x})(p_i, y - \hat{x}) \ge 0.
$$

Since $\{\beta_0, \beta_1, \dots, \beta_n\}$ is a partition of unity $\beta_i(\hat{x}) > 0$ for at least one *i*. If $\beta_0(\hat{x}) > 0$ then $\hat{x} \in V_0$ so that in $f_{y \in S(\hat{x})} f(\hat{x}, y) < 0$. Let $\hat{y} \in S(\hat{x})$ be such that $f(\hat{x}, \hat{y}) < 0$. If $\beta_i(\hat{x}) > 0$ then $\hat{x} \in V(p_i)$ so that

$$
(p_i, \hat{x}) - \sup_{y \in S(\hat{x})} (p_i, y) > 0
$$

from which it follows that

$$
(p_i, \hat{x}) > \sup_{y \in S(\hat{x})} (p_i, y) > (p_i, \hat{y})
$$

which implies that $(p_i, \hat{y} - \hat{x}) < 0$. Thus,

$$
g(\hat{x}, \hat{y}) = \beta_0(\hat{x}) f(\hat{x}, \hat{y}) + \sum_{i=1}^{n} \beta_i(\hat{x}) (p_i, \hat{y} - \hat{x}) < 0
$$

which contradicts (9) when $y = \hat{y}$. This contradiction proves the theorem.

The following result on the existence of solution of the quasi-variational inequality problem is a direct consequence of the above theorem.

5.2 Corollary

Let *X* be a locally convex Hausdorff topological vector space with dual X^* , K a nonempty compact *convex subset of* $X, T: K \to X^*$ *an operator and* $S: K \to 2^K$ *a point-to-set upper semi-continuous map such that the set* $\{x \in K : inf_{y \in S(x)}(Tx, y - x) < 0\}$ *is empty or open in K. Then there exists* $x_0 \in K$ such that $x_0 \in S(x_0)$ and $(Tx_0, y - x_0) \ge 0$ for all $y \in S(x_0)$.

Proof. Follows directly from Theorem 5.1 with $f(x, y) = (Tx, y - x)$.

6 Conclusion

The variational inequality technique is a powerful technique for handling a wide range of problems arising in diversified areas of since and engineering. Problem P_1 , which is a variant of the equilibrium problem,is a generalization to the classical variational inequality problem and some of its generalizations. Problem P_1 can be studied in a more general setting, for example, by considering X an H-space.

Acknowledgements

The authors are thankful to the anonymous referees for their valuable suggestions which improved the presentation of this paper.

Competing Interests

Authors have declared that no competing interests exist.

References

- [1] Baiocchi C, Capelo A. Variational and quasi variational inequalities, John Wieley and Sons: New York; 1984.
- [2] Behera A, Panda GK. A variational-type Inequality and Minty's like lemma*.* Opsearch. 1996;33(4):213–220.
- [3] Behera A, Panda GK. An inequality associated with variational inequalities in Banach spaces and its consequences. Bull Inst Math. Acad Sinica. 1999;27(3):227–245.
- [4] Bensoussan A, Lions JL. Nouvelle formulation des problemes de controleimpulsionnelet applications. C R Acad Sci: Ser A. 1973;29:1189–1192. French.
- [5] Blum E, Oettli W. From optimization and variational inequalities to equilibrium problems, Math Student. 1994;63:123-145.
- [6] Chadli O, Chbani Z, Riahi H. Equilibrium problems with generalized monotone bifunctions and applications to Variational Inequalities. JOTA. 2000;105(2):299-323.
- [7] Chipot M. Variational Inequalities and Flow in Porous Media. Appl Math Sci. 52, Springer-Verlag: New York/Berlin; 1984.
- [8] Isac G. Complementarity problems: Lecture notes in Math. 1528, Springer-Verlag: New York; 1992.
- [9] Mosco U. Implicit variational problems and quasi-variational inequalities. Nonlinear Operators and the Calculus of Variations.Lecture notes in Mathematics, No. 453. Springer-Verlag: New York/Berlin. 1976;83–156.
- [10] Nanda S. Strongly nonlinear variational inequality problem and its alternative form and complementarity problem. Indian J Pure Appl Math. 1991;22(5): 355–359.
- [11] Noor MA. Strongly nonlinear variational inequalities, C R Math Rep Acad Sci Canada 1982;4:213–218.
- [12] Noor MA. An iterative algorithm for variational inequalities. J Math Anal Appl. 1991;158(2):448–455.
- [13] Noor MA, Ottli W. On general nonlinear complementarity problems and quasi-equilibria, Le Matematiche (Catania). 1994;49:313-331.
- [14] Park S, Kim I. Nonlinear variational inequalities and fixed-point theorems. Bull Koer Math Soc. 1989;26(2):139–149.
- [15] Rudin W. Real and Complex Analysis, 2nd ed., Tata McGraw-Hill: New Delhi; 1981.
- [16] Royden HL. Real Analysis, Macmillan Publishing Company: New York; 1988.
- [17] Shih MH, Tan KK. Generalized quasi-variational inequalities in locally convex topological vector spaces. J Math Anal Appl. 1985;108(2):333–343.
- [18] Takahashi W.Nonlinear variational inequalities and fixed-point theorems, J Math Soc, Japan. 1976;28(1):168–181.
- [19] Tarafdar E. A fixed point theorem equivalent to the Fan-Knaster-Kuratowski-Mazurkiewicz theorem. J Math Anal Appl. 1987;128(2):475–479.
- [20] Yen CL. A minimax inequality and its application to variational inequalities. Pacific J Math. 1981;(2):477-481. ___

© 2014 Sahoo and Panda; This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Peer-review history:

The peer review history for this paper can be accessed here (Please copy paste the total link in your browser address bar) www.sciencedomain.org/review-history.php?iid=276&id=6&aid=2178