British Journal of Mathematics & Computer Science %3
4(1): 73-89, 2014 />

SCIENCEDOMAIN international

www.sciencedomain.org

SCIENCEDOMAIN

A General Inequality Related to Variational Inequalities
and Its Consequences

B. B. Sahoo! and G. K. Panda®

'Department of Mathematics, Choudwar College, Choudwar, Cuttack 877540disha, India.
“Department of Mathematics, National Institute of Technology, ketair 769 008, Odisha, India.

Research Article |

Received: 28 February 2013
Accepted: 07 September 2013
Published: 05 October 2013

Abstract

Let X be a Hausdorff topological vector space with diiglKk a nonempty subset &f, and
f:KxK—R be any map. In this paper we study the following probldfindx, € Ksuch that
f(xq,¥) = 0 for allyeK” . Some results on this problem have been studied by Tak&tzaki
and Kim and Yen. Behera and Panda proved several results grdhism in the setting of a
Banach space. This problem includes as special cases, neotgnps on variational inequalitie
and generalized variational inequalities studied by many esiths a consequence of the main
results, we also consider the problerfintx, € Ksuch thatf (x,,y) = 0 for allyeS(x,)”
whereS: K—2Kis any point-to-set map which, includes as a special, thseclassical quas
variational inequality problem. A generalization of Mirgyemma is also studied.
Keywords: Partition of unity, upper and lower semi contusugoint-to-set map, monotone
operator.

n

1 Introduction

Let X be a Hausdorff topological vector space with ddialandK a nonempty closed and
convexsubset of. Let the value ofi € X* atx € X be denoted byu, x). Letg: K = R be a map
(possibly nonlinear). The classical minimization probkmthe pair(g, K) is to findx, € K such
that

g(xp) = ming(y).
YEK

If we define a functiorf:K X K - R asf(x,y) =g(y)—g(x)for all x,yeK, then the above
problem reduces to the problem of findinge K such thaif (x,,y) = 0 for all y € K.
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If T: K—>X*, then the nonlinear variational inequality problem is to figde K such that
(Txo,y — xo) = 0 for all y € K. If we definef: KxK—Rasf (x,y) =(Tx,y—x), then it reduces to
the problem of finding, € K such thaff (x,,y) = 0 forally € K.

Motivated by the above facts, Behera and Panda [3]daemesl the following problem:
Pi: Giverf:K x K - R, find x, € K such thatf (x,,y) = 0 for all yeK.

Certain variation of this problem is known as equilibripnoblem. The readers are advised to
refer [5], [6] and [13] for a detailed discussion on equilim problem and its generalization.
Some similar results are also available in [20].

1.1 Special Cases

1. If zeK is fixed andf (x,y) = (T((z+x)/2),y — x), then R reduces to the problem of
finding x, € K such that(T((z + x,)/2),y —x,) = 0 for all yeK, which is the
variational-type inequality problerariginally introduced by Behera and Panda [2].

2. If f(x,y) = (Tx—Ax,y—x) for some map¥,4 : K—X*, then R reduces to the problem
of finding x, € K such that(Tx,,y — x¢) = (Axy,y — x,) for all yeK which is the
strongly nonlinear variational inequality problestudied by Nanda[10] and Noor[11].

3. If f(x,y) = (Tx-Ax,g(y) —g(x)) for some mapd,A:K—X", g:K—>K, then R
reduces to the problem of finding, € K such that(Tx,, g(¥) —g(x,)) = (Ax,,
9g(y) —g(xy)) for all yeK, which is thestrongly nonlinear implicit variational inequality
problem introduced and studied by Noor[12] in connection with the swlubf the
differential equations of odd order.

Some results on Problem &e available in Takahasi [18] and Park and Kim [14]. Beled
Panda [3] proved several results on the existence of @olofi this problem in the setting of
Banach spaces. Many authors used results on ProhléemgPove the existence of solutions of
variational and generalized variational inequality problems

In this paper, we prove some results on the existenceluiion of Problem Punder different
assumptions in the setting of Hausdorff topological vesfiaces. We also use a result on the
existence of solution of Problem fr the study the following problem, which is a genegdion

of the quasi-variational inequality problem introduced by@essan and Lions [4] in connection
with impulse control and subsequently studied by Baicchi apel® [1] and Mosco [9].

P,: Find x, € K such that f(x,,y) = 0 for all y € S(x,) whereS: K — 2X is any point-
to-set map

We also prove a theorem on the uniqueness of solution dfdfmoR which would serve as a
generalization of the well-known Minty's Lemma (see [XB).
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2 Priliminaries

In this section we recall some definitions and known tesuhich will be needed in the sequel.
Throughout this sectiof,is a real Hausdorff topological vector space with dtiabndK a
nonempty convex subset »f

2.1 Definition

A mapping T: K—»>X"* is said to be monotone ifTx-Ty,x —y) = 0 for allx,yeK. T is said to
be strictly monotone if strict inequality holds whenevet y. T is said to be pseudo-monotone if
x,yeK and(Tx ,x —y) = 0 then(Ty,x —y) = 0.

2.2 Definition

A function h: K—R is said to be upper semi-continuous, if for each realbeurh, the set
{x € K: h(x) < A} is openifis said to be lower semi-continuousf is upper semi-continuous.

2.3 Definition

A function h: K—R is said to be quasi-convex if for each real numiehe sefx € K: h(x) <
A} is convex; functiorf is said to be quasi-concave-if is quasi-convex.

2.4 Definition

Let MandN be two topological spaces, ahdY — 2V, a point-to-set map. Thenis said to be
upper semi-continuous at, € M if for each open selfof N with h(x,) c U, there exists a
neighborhoodi(x,) of x, in Msuch thatifx € n(x,) thenh(x) c U; h is said to be lower semi-
continuous atx, € M if for each open set of N with h(x,) NU # @, there exists a
neighborhoodn(x,) of x, in M such that ifx € n(x,) then h(x) N U # @; h is said to be upper
semi-continuous (lower semi-continuous) dhif h is upper semi-continuous (lower semi-
continuous) at each point d.

2.5 Theorem

(Isac [8]) LetK be a nonempty compact convex subset of a Hausdorff topalogictor space.
Let fandg be two real valued functions éfxK having the following properties:

(a) Forall x,yeK, f(x,y) <g(x,y)andg(x,x) <0,
(b) For each fixedyeK, f (x, y) is a lower semicontinuous functionxobnK,
(c) For each fixedeeK, g(x, y)is a quasi-concave function efonkK.

Then there exists a poirt € K such thatf (z,y) <0 for all yeK.
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2.6 Theorem

(Shih and Tan [17])Let Xbe a Hausdorff topological vector space with dkighnd K a nonempty
convex subset of. LetS: K—2¥ be an upper semicontinuous point-to-set map such thatfir e
xeK, S(x) is nonempty and bounded. Then for epelk”, the mapf,: K — R defined by, (x) =
Supyesx) (P, ¥) iS upper semicontinuous.

2.7 Theorem

(Takahasi [18])let K be a nonempty compact convex subset of a locally convex Hdusdorf
topological vector spac& and let F: KxK—R be a function such that

(a) for eachyeK, the mapu—F (x,y) is upper semicontinuous,
(b) for eachxeK, the mapy—F(x,y) is convex
(c) F(x,x)=afor all xeK with some real numbetx.

Then there existg € K such thatF (x,,y) = afor all yeK.
2.8 Theorem

(Rudin [15]) LetK be a compact subset of a topological space anflev,,---,V,} be a finite

open covering oK. Then there exists a fami{,, 3,, -, B} of continuous real valued functions

onK such thaf;(x) = 0 outsideV;,0 < g,(x) < 1foralli € {1,2,---,n} and for allx € K, and
tiBi(x)=1forallx eK.

2.9 Theorem

(Tarafdar [19])LetK be a nonempty subset of a Hausdorff topological vector spacel let
F: K—2X be a point-to-set map such that

(a) for eachxeK,F(x) is nonempty,

(b) for eachyeK, F~'(y) = {xeK: yeF(x)} contains a relatively open subsgj of
K(4, may be empty for sonyg,

(€) Uxex4x =K,

(d) K contains a nonempty sk} contained in a compact convex sulisgbf K such
that D = Nyek, AS is compac{D may be empjy

Then there existg, € K such thatx, € F(x,).

2.10 Theorem

([17], p. 34).LetX be a Hausdorff topological vector space with ddaland K a nonempty
convex subset ok. LetS: K—2¥ be a point-to-set upper semi-continuous map such that for each
xeK, S(x) is nonempty and bounded. Then for epch X* the mapf,:K — R defined by

fp(x) = sup (p,y) is upper semi-continuous
YES(x)
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2.11 Theorem

([16], p.201).LetX be a locally convex Hausdorff topological vector space witl dtiandK a
nonempty closed and convex subsef.dfetx*be a point o not inK. Then there exists € X~
such that(p, x*) > sup,ex (p, x).

3 Existence of Solution

The following theorems on the existence of solution of problerar® the main results of this
paper.

3.1 Theorem

LetK be a nonempty compact convex subset of a Hausdorff topolegictdr spac& and let
f:K x K = R be a map such that

(@) f(x,x) = Ofor eachx € K,
(b) the mapy — f(x,y)of K into R is quasi-convex for eache K,
(c) foreachy € K, the set{x € K : f(x,y) < 0} is open ink.

Then there exists, € K such thaf(x,,y) =0 forally € K.
Proof.Same as the proof of Theorem 2.7. Indeed Takahasi [$8esl that for each € K, the
mapx — f(x,y) of KintoRis upper semi-continuous and for eacte K, the map —

f(x,y) of K into R is convex which are stronger then hypotheses (b) and (ejsdheorem.

The following theorem generalizes Theorem 3.1 to an arpitr@anempty convex subsktof X.
3.2 Theorem

LetK be a nonempty convex subset of a Hausdorff topological vector ¥gatletf: K X K —
R be a map such that

(@) f(x,x) = 0for eachx € K,

(b) the mapy — f(x,y) of K intoR is quasi-convex for eache K,

(c) for eachy € K, the sef{x € C: f(x,y) < 0} is open inK for every compact
subset C oK,

(d) there exists a nonempty compact suldseft K such that for eaclh € K — L,
there existat € L for which f(x,u) < 0.

Then there existg, € L such thatf (x,,y) =0 forally € K.

ProofFor eachy € K, let
A)={x€L:f(xy) = 0}.
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From hypothesis (c) it follows that(y) is a nonempty compact subsetkof The conclusion of
the theorem follows if,cx A(y) # @. To ascertain this, it is sufficient to show that the family
{A(y) : ¥y € K} has the finite intersection property.

Lety;, y,, -+, ¥, be arbitrary elements éfandkK,, the convex hull of. U {y;, y,, -, y,.}. Thenk,
is a nonempty compact convex subsekoBy Theorem 3.1, there exists € K, such that

for all y € K,. We claim thatt, € L; for if X, ¢ L, then,X, € K, — L c K — L and by hypothesis
(d), there exista € L such thaff (¥,, u) < 0 which contradicts (1) whenp = u. Thusx, € L, and
in particularX, € A(y;) fori=1,2,---,n; that is%, € N, A(y;). HenceNi; A(y;) # @ which

proves that the familyA(y) : y € K} has the finite intersection property. This completes the
proof.

If X is a normed linear space akids locally compact, we have the following result.
3.3 Theorem

LetK be a nonempty locally compact convex subset of a mrated linear spac& with 0 € K,
and letf: K x K - R be a map such that

(a) the mapy — f(x,y)of K into R is quasi-convex for eache K,
(b) for ally e K andr > 0, the sef{x € K, : f(x,y) < 0}is open inK, where
K. ={xekK:|x|| <7},
(¢) f(x,x) = 0 for eachx € K, and for eachr > 0,
(d) there existsr > 0 such thatf(x, 0) < 0 whenevel|x| = r.
Then there exists, € Ksuch thaf (x,,y) >0 forally € K.

Proof. For eachr > 0, the setX, is a nonempty compact and convex subsek .oHence by
Theorem 3.1 there exists € K, such that

flny) 20 )
for all y € K,.. We claim thaf|x,|| < r; for if ||x,.|| = r, then by hypothesis (df(x,,0) <0
which contradicts (2) whep = 0. Now letx € K be arbitrary and choose> 0 sufficiently small
so that
¥y =Ax + (1-A)x, EK,.

Now by hypotheses (a) and (b)

0<f(xp,y) = flxp, Ax + (1-Dx,)

S x) + A=A f (X, %) = Af (%7, X).

Sincel > 0, it follows thatf (x,., x) = 0. Sincex is arbitrary, the proof is complete.
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If Xis a reflexive Banach space then local compactnegscah be relaxed from the above
theorem.

3.4 Theorem

LetK be a nonempty closed and convex subset of a reflexive aratB spac&with 0 € K and
f:K X K = R be a map such that

(@) f(x,x) =0 foreachx € K,

(b) the mapy — f(x,y)of K intoR is convex for each € K,

(c) the sef{x € C : f(x,y) < 0} is weakly open i for eachy € K, and for each
weakly compact subsétof K.

Then there exists, € K such thaif(x,,y) =0 for all y € K under each of the following
conditions

(i) K is bounded

(i) there exists > 0 such thatf(x,0) < 0 whenevel|x|| = r.

Proof Equip K with the weak topology. IK is bounded, then it becomes weakly compact and in
this case, the proof follows from Theorem 3.1.

If K is not bounded let

K, = {x e K:||x]| <r}.
ThenK, is a nonempty closed, convex and bounded subgét BY the first part of the theorem,
there existx, € K, such thaff (x,,y) >0 for all y € K.. The remaining part of the proof

follows from the proof of Theorem 3.3 and hence it is omitted.

The following theorem generalizes Theorem 3.4 to a Hauspdlogical vector space.
3.5 Theorem

LetK be a nonempty convex subset of a Hausdorff topological vectos ¥@aw L, a nonempty
compact and convex subsetkf Let f: K X K - R be a map such that

(a) f(x,x) =0foreachx €L,

(b) the mapy — f(x,y) of K intoR is convex for each € K,

(c) foreachy € K, the sef{x € L : f(x,y) < 0} is open inL,

(d) for everyx in the boundary of., there exists € L such thaff (x,u) < 0.
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Then there existg, € L such thatf(x,,y) =0 forall y € K.
Proof. By theorem 3.1 there existg € L such that

fGxo,y) =0 ()

for ally € L. We claim that, € intL (whereintL stands for the interior df), for if x, € intL,
then by hypothesis (d) there exist€ L such thaf (x,, u) < 0 which contradicts (3) whep =
u.

Now letx € K be arbitrary and choose> 0 sufficiently small so that

v, =Ax + (1-Dx, € L.
By hypotheses (a) and (b)

0 < f(x0,y2) < Af (x0,%) + (1-Af (x0,%0) = Af (%0, X).
Sincel > 0, it follows thatf (x,, x) = 0. This completes the proof.

The following theorem is a variant of Theorem 3.1 in akhithe hypotheses (a) and (b) of
Theorem 3.1 have been replaced by a single generalizedioondi

3.6 Theorem

LetK be a nonempty compact convex subset of a Hausdorff topolegictdr spac& and let
f:K XK - R be amap such that

(a) for eachy € K, the set{x € K: f(x,y) < 0}is open inK,
(b) for any finitesulset {y,, y,, -+, y,} of K and
u € conv ({1, 2, Yn}) Maxy gien f(u, ¥;) = 0.

Then there existg, € K such thaff (x,,y) = 0 for ally € K.

Proof. Assume that the assertion is false. Then for ea€hK, there existy € K such that
f(x,y) < 0. For eacly € K, let

AY) = (x€K: f(x,y) <0}.

Then by hypothesis (aji(y) is open for every € K. FurtherkK = U, A(y). Sincek is
compact, there exist§y,v,, -, ¥} € K such thatk = U, A(y;). Let{By, B2, Bn} be a
partiion of wunity subordinate to the coverindA(y;):i=12,---,n} and let

S = conv({y1, 2, ", ¥.}). ThenS is a compact convex subset Kf Define a continuous map
p:K = K asp(x) = Y7L, Bi(x)y;. Sincep(x) is a convex linear combination of points of the set
S, p(x) € S for eachx € K. In particularp mapsS intoS. By Browuer’s fixed point theorem
has a fixed point; that is, there exi¢t€ K such thatt = p(&).
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Since{B;, B2, -+, Bn} is a partition of unityp;(£) > 0 for at least oné. But8;(%) > 0 implies
thatx € A(y;) so that

f&y) <O0. @)

J={i:1<i<mnandp;(®) > 0}
then

F=p® =) HEY= Y HEY
i€J

so thatt € conv{y;:i € J}. Now by hypothesis (b), there exisse / such thayf(%,y;,) = 0
which contradicts (4). This contradiction proves the theorem

The following theorem generalizes Theorem 3.6 to an arpitr@anempty convex subsgtof X.
3.7 Theorem

LetX be a locally convex Hausdorff topological vector spdtea honempty convex subsetXof
K, a nonempty compact convex subsdt,oindL a nonempty compact subset Kf Letf: K x
K — R be a map such that

(a) for eachy € K, the sef{x € L: f(x,y) = 0} is closed ink,
(b) for any finite subsefy,, v, -, y,,} of K, and
u € conv({y1, ¥z, ¥n}), maxicicn f (W, 1) 2 0.

(c) foreachx € K — L, there exists. € conv(K, U {x}) such thatf (x,u) < 0.
Then there existy, € L such thatf(x,,y) = 0 for all y € K.
Proof .For eachy € K, let
A(y) ={xeL:f(x,y) 20}

From (b) it follows thatd(y) is closed and consequently compact for gaehK. The assertion of
the theorem follows iN,cx A(y) # @. For this, it is sufficient to prove that the fam{l(y): y €
K} has the finite intersection property.

Let {yy,v5, -, yp}c K andS = conv(K, U {y1,¥,,**, ¥ }). Clearly Sis a non-empty compact
convex subset af. By Theorem 3.6 there existse S such that

fEy)=z0 ®)

for ally € S. We claim that € L; for if X ¢ L, that is,x € S — L c K — L, then there exists
u € conv(K, U {X}) such thaff (X, y) < 0 which contradicts (5) whem = u. Thusx € L, and in
particular,X € A(y;) for each ie{1,2,--,n}, that is,%, € Nj=; A(y;). Hence,NL,;A(y;) #
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@showing that the famil§yA(y) : y € K} has the finite intersection property. This completes the
proof.

The following theorem also deals with the existenceadfit®on of Problem P under pseudo-
monotonicity type assumptions.

3.8 Theorem

LetK be a nonempty closed and convex subset of a Hausdorfogogail vector spac& and let
f:K X K - R be a map such that

(8 f(x,x) = 0foreachx €K,

(b) the mapy— f(x,y) of K into R is convex and lower semicontinuous for each
x €EK,

(c) the maprx — f(x,y) of K into Ris lower semicontinuous from the line segments
of K to the usual topology ofRR,

(d) xe K,y e Kand f(x,y) =0 impliesf(y,x) <0,

(e) there exists a nonempty g€t contained in a compact convex sulisgbf K
such thatD = N,k {y € K: f(x,y) < 0} is either compact or empty.

Then there existg, € Ksuch that
f(x0,y) 20 (6)
For all y € K.

Note: If we setf(x,y) = (Tx,y — x) for some operatdf: K — X* then condition (d) of the
above theorem is equivalent to the fact th& pseudo-monotone.

To prove the above theorem, we need the following lemma.
3.9Lemma

LetK be a nonempty closed and convex subset of a Hausdorff topblogitar spacel and
letf: K x K —» R be a map such that

(@) f(x,x)=0foreachx €K,

(b) the mapy —f(x,y) of K into Ris convex for eachx € K,

(c) the map > f(x,y) of K intoR is lower semicontinuous from the line segments of
K to the usual topology @R,

(d) xe K, ye Kandf(x,y) =0 impliesf(y,x) <0.

Then the following are equivalent:

(A) x, € Kand f(x,,y) =0 forally € K.
(B) x, € Kand f(y,x,) <0 forally € K.
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Note: If we setf(x,y) = (Tx,y — x) for some operatofT: K —» X*, then Lemma 3.9 reduces to
Minty’s Lemma ([7], p. 6).

Proof. Assume that (A) holds. Then for somge K and for ally € K, f(x,,v) =0. By
hypothesis (d)f (v, x,) < Ofor all y € K from which (B) follows.

Now assume that (B) holds. Then for somee K, f(y,x,) < Ofor allye K. Fix y €K,

t €(0,1) and sety, = (1 — t)x, + ty. Theny, € K and by (B)f(y;,x,) < 0 for eacht € (0,1).
Now it follows from hypotheses (a) and (b) that

0<f(yey) <A =OfWnxo) +tf e, y).
Thus

fOuy) 2 _¥f(ypxo) =0

for eacht € (0,1) . Since the mapc f(x,y) of K into R is lower semicontinuous
from the line segments df to the usual topology ofR, taking limitt — 0* in the above
inequality, we gef(x,,y) = 0. Sincey € K is arbitrary (B) follows. This completes the proof of
the lemma.

3.10 Proof of Theorem 3.8
Assume that inequality (6) has no solution. Then, for ea€lK, there exists. € K such that
f,bu)y< 0 (7)
and by Lemma 3.9, there exist€ K such that
f(w,x) > 0. (8)
Thus for eaclx € K, it follows from (7) that the set
F(x)={y €K:f(x,y) <0}

is nonempty, which is also convex by hypothesis (b) oftteerem. Again for each € K, since

F7'(y) ={x €K: f(x,y) <0},
it follows that

[F7']¢ ={x €K:f(x,y) = 0}
c{x€K:f(y,x) <0} (by(d)
=G(y) (say).

Thus

F)2[6]° = A) (say).
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Since for eaclx € K, the mapy — f(x,y) is lower semicontinuous, it follows th&(y) is closed
in K. Thus for eachy € K, A(y) is open ink.

Now, letx € K be arbitrary. By (8) there existse K such thaf(v,x) > 0, so thatc € A(v).
ThusUyex A(y) = K. Finally,D = Nyex, G(Y) = Nyex,[AQ)]¢ is either empty or compact by
hypothesis (e), so that all the conditions of Theoretnae fulfilled byF. Thus there exists

Xy € K such that, € F(x,), which is tantamount tfi(x,, x,) < 0, a contradiction to hypothesis
(a) of the theorem. Hence the conclusion of the thedodows.

4 Uniqueness of Solutions

The following theorem characterizes the uniqueness of solafidime Problem Punder certain
conditions.

4.1 Theorem

Let K be a nonempty subset of a topological vector spaaed let f: K X K — R a map such
that

(@ foralx,yeK, f(x,y)+ f(y,x) <0,
(b) equality does not hold ia) unlessx = y.

Then if ProblemP; is solvableit has a unique solution
Proof. If possible letx,, x, be two solutions of £ Then
f(x,y) =0

f(x2,y) 20

and

for all y € K. Putting y = x; in the former inequality ang = x, in the latter, we get
f(x;[, xz) >0

f(xy,x)=0.

and

Adding the last two inequalities we get,

flx,x) + f(xz, %) = 0.

This inequality combined with hypothesis (a) gives

flxy,x) + fxp,%) = 0.

Now an application of hypothesis (b) yields= x,. This completes the proof.
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Note: If we setf (x,y) = (Tx,y — x) for some operatdf: K — X* then condition (a) of the above
theorem is equivalent to the fact tffais monotone.

The following examples illustrate Theorem 4.1. Example hbws that the fulfillment of
conditions (a) and (b) does not guarantee the existereesaiiition to problem P Examples (2)
and (3) show that if conditions (a) and (b) are fuldiliend problem Pis solvable, then it has a
unique solution.

Examplel. LetX = R, K = [0,%), and defingf: K x K - R as

fl,y) =-x -yl

Then
fy)+fx) =-2[x -y|

and

fy) + frx) =0

if |x—y| = 0, that isx = y. Thus hypotheses (a) and (b) of Theorem 4.1 are fulfiliefl. But
f(xo,¥) = Oforall y € K is equivalent tgx,—y| < 0 for ally = 0. Thus in this case no solution
exists.

Example2. LetX = R, K = [0, «), and defingf: K X K - R as

fy) =x(y ).

Then
f,)+fx)=—~(x-y)*<0

and

fCy)+fx)=0

if and only if (x —y)? = 0 i.ex = y. Furthermoref (x,,y) = 0 forall y € K is equivalent to
xo(y —xo) = 0 for ally > 0, so thatc, = 0 is the only solution in this case.

Example 3. LetX = K = R, and definegf: K x K - R as
fle,y) = —x*|x —yl.

Then
e+ fx)=-x*+y)lx—y|<0

and

fCy)+fx)=0

if and only if |[x —y| = 0 i.e.x = y. Furthermoref(x,,y) = 0 for all y € K is equivalent to
x¢|x, — y| = 0 forall y € R so thatx, = 0 is the only solution in this case also.
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5 Some Consequences

In this section, we discuss some consequences of the themm@ras in Section 3.

The following theorem deals with the existence of sotutf Problem R
5.1 Theorem

LetX be a locally convex Hausdorff topological vector spait dual X*,K a nonempty compact
convex subset of, f: K x K - R a point-to-point mapandS : K - 2¥ ,a point-to-set upper
semicontinuous map such that

a) f(x,x)=0foreachx €K,
b) the mapy f(x,y) of Kinto Ris quasi convex for each € K,
c) the seffx € K:infyeg f(x,y) < 0} is empty or open iK.

Then there existg, € K such thatc, € S(x,) andf(x,,y) = 0 for all y € S(x,).

Proof. Assume that the assertion is false. Then for eaet eitherx ¢ S(x), or there exists
y € S(x) such thatf(x,y) < 0. If x € S(x), then by Theorem 2.11, there exigts X* such that

(p,x) — sup (p,y) > 0.
yeS(x)
Let
Vo = {x € K:yel?&)f(x,y) < 0},
and for eachp € X* let

V(p) = {x € K:(p,x) — sup (p,y) > 0}.
yES(x)
Then by hypothesis (cY, is open ink. By Theorem 2.6, since the map— supycs)(p,y) is
upper semicontinuous for eack X, it follows that the map »e (p,x) — sup yese) (@, y) iS
lower semicontinuous. Hen&&p) is open inK for eachp € X*. FurtherK =V, U [Upex* V(p)].
Since K is compact, there exis{®,,p,, -+, pp} = X* such thatk =V, U [UL,V(p;)]. Let

{Bo, B1,**, Bn} be a partition of unity subordinate to the coveriig V(p,),::-,V(p,)}, and
defineg: K X K - R as

9, ) = Bolf (6, 9) + D B Py = ).
i=1

Then it is clear that for eache K, g(x,x) = 0, the mapy — g(x,y) is quasi-convex, for each
y € K, the mapx — g(x,y) is upper semicontinuous so that the{se€ K: g(x,y) < 0} is open
in K. Thus all the conditions of Theorem 3.1 are fulfillelgince there exists € K such that

gR&,y) 20 9)

for all y € K, which is equivalent to
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Fo@f @ Y) + ) B Puy—2) 2 0.

Since{Bo, B1, -+, Bn} is a partition of unitys; (%) > 0 for at least oné. If B,(X) > 0 thenx € V,
so thatin feg0) f(X,¥) < 0. Lety € S(£) be such thaf (£,9) < 0. If §;(£) > 0 thent € V(p;)
so that
(P, %) — sup (p;,¥) >0
YES(X)
from which it follows that
(P, %) > sup (pi,¥) > (P, 9)
YyES(X)

which implies thalp;,  — &) < 0. Thus,
n
9E.9) = fo®F @I + ) A B9 —2) <0
i=1

which contradicts (9) wherty = . This contradiction proves the theorem.

The following result on the existence of solution of thesgwariational inequality problem is a
direct consequence of the above theorem.

5.2 Corollary

LetX be a locally convex Hausdorff topological vector space with Bu& a nonempty compact
convex subset of, T: K - X*an operator ands: K — 2Xa point-to-set upper semi-continuous
map such that the s{ﬂ: € K:inf,c5)(Tx,y — x) < O} is empty or open iK. Then there exists
X, € Ksuch thate, € S(x,) and(Txy,y — xo) = 0 for all y € S(x,).

Proof Follows directly from Theorem 5.1 withi (x, y) = (Tx,y — x).
6 Conclusion

The variational inequality technique is a powerful technifore handling a wide range of
problems arising in diversified areas of since and engmgelProblem B, which is a variant of

the equilibrium problem,is a generalization to the classieaiational inequality problem and
some of its generalizations. ProbleacBn be studied in a more general setting, for example, by
consideringX an H-space.
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