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ABSTRACT

Zitterbewegung is the quiver motion discovered by Schroedinger in his 1930 solution of the
time-dependent Dirac equation for a free electron. The origin of Zitterbewegung is the
interference between positive-energy and negative-energy states. Zitterbewegung is
predicted to exist for both free and bound electrons provided one discards Dirac’s
hypothesis, known as hole theory, whereby positive-energy electrons are forbidden from
occupying negative-energy states such that Zitterbewegung is suppressed. The positive-
energy spectra of states is identical whether one uses hole theory, in which Zitterbewegung
is suppressed (restricted solution), or whether one uses the solution in which electrons are
not restricted from simultaneously occupying both positive-energy and negative-energy
states such that Zitterbewegung is not suppressed (unrestricted solution). Thus both the
restricted and unrestricted solutions are confirmed by spectroscopic experimental
observation such that new experiments are motivated to discriminate between the restricted
and unrestricted solutions. Hole theory (the restricted solution) is used to interpret the
experimental observation of electron-positron pair creation and annihilation. In this paper we
look for pair states in the negative-energy region of the Dirac spectrum in order to
understand if the unrestricted solution, which correctly predicts the positive-energy spectrum
and Zitterbewegung, is also correct in the description of pair creation and annihilation.
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1. INTRODUCTION

A considerable literature exists on different electrodynamical theories proposed for the
calculation of the radiative properties of matter for which, in order better to orient the reader
to the subject matter of this paper, we give a brief review as follows. The quantization of the
classical electromagnetic field, which founded quantum electrodynamics (QED), was carried
out by Dirac in 1927 [1]. A review of the quantized radiation field (QRF), as it is called and its
use in the calculation of radiative spontaneous emission and the Lamb shift is given by
Louisell [2]. The QRF may be criticized in the sense that its distribution of frequencies is
unrelated to the electron’s own distribution of frequencies and is therefore unbounded such
that its use in the radiation-matter interaction Hamiltonian for the electron leads to an energy
shift – Lamb shift – which diverges linearly in the photon frequency,  .  As explained in [2]
and elsewhere the linear divergence is interpreted as a permanent radiant property of a free
electron such that, when it is included or “added back” to the calculation for a bound electron
which is “bare” or undressed by the radiation field in the original calculation, the linear
divergence is exactly canceled. This procedure is known as mass renormalization because it
contributes a radiative component to the electron’s material mass.  Although a logarithmic
divergence in the photon frequency remains, use of a suitable cut off leads to results which
agree quantitatively with experiment [2-3].  Notice that the linearly-divergent contribu-tion to
the mass of a free electron appears to be irremovable.

In order to gain a more satisfactory physical picture of the radiant aspect of the electron,
pioneers have presented formulations – the neoclassical theory of Edwin Jaynes and
coworkers [4] and self-field quantum electrodynamics of Asim Barut  and coworkers [5]  in
which the electromagnetic vector potential is calculated from the electron’s current.  These
theories were problematic either in a quantitative sense in Jaynes’ case or in the sense of
possible flaws in the use of Schroedinger theory to calculate the electron’s current in Barut’s
case [6-7].

The quantization condition for the photon and electron [1-2] requires that the initial state of
an atom comprises an electron in an excited state with zero photons present in the radiation
field and that the final state of the atom comprises an electron in an unexcited state with one
photon present in the radiation field. The radiative emission rate converges because it
vanishes by destructive interference of the out-of-phase electron wave functions of the initial
and final states unless h  E fi, where E fi the energy is gap between the two states
and h is the photon energy.  On the other hand emission of a photon from the ground
state means that the photon must be re-absorbed by the same state leading to a closed
photon loop in which the electron energy shift diverges as .  Dirac’s relativistic-electron
theory [8] leads to further complications in interpretation since a set of negative-energy
states lies below the nominal ground state such that radiative spontaneous emission from
the ground state to a negative-energy state lying below it would occur, which is unobserved
in nature. Dirac’s hole interpretation that the negative-energy states are filled with electrons
in which an absent electron or hole represents a positron avoids the unphysical prediction
since a positive-energy electron is forbidden by Pauli’s exclusion principle from falling into a
negative-energy state. But Dirac’s whole theory also rules out the existence of
Zitterbewegung, which arises from the interference between positive-energy and negative-
energy states in observables in which an electron simultaneously occupies a superposition
of positive-energy and negative-energy states. The recent observation of Zitterbewegung in
a simulated electron experiment using a trapped-ion [9] suggests that whole theory, for all its



Physical Science International Journal, 4(6): 797-815, 2014

799

success in positron physics, should be reexamined from the point of view of its reconciliation
with Zitterbewegung.

What is the ground state?  A body of theory exists known as 4-space Dirac theory [10,11],
whose principal motivation is the clear avoidance of a preferred frame of reference. In 4-
space Dirac theory the positive-energy spectrum of states is identical to that of standard
Dirac theory but the wave function comprises contributions from both electrons and
positrons, which one may surmise is just a bound-state form of Zitterbewegung, although not
identified as such likely owing to the fact that the original prediction of Zitterbewegung [12]
was made for a free electron. Following Barut and coworkers [5,13] and others, it is
necessary here to pursue a first-quantization approach in order to understand phenomena
usually treated within second quantization.

Recent work [10] suggests that a negative-energy state does not lie empty below the ground
state but rather actively participates with it to form a two-component ground-state
configuration. If a negative-energy state does not lie empty below the positive-energy states,
then the quantization rules for radiative spontaneous emission do not physically apply. In
[10,11] the positive-energy spectrum is identical to that of standard Dirac theory but the
wave function exhibits Zitterbewegung (or comprises contributions from both electrons and
positrons in the post-hole language of [11]). But the original motivation and experimental
confirmation of Dirac theory was the spectroscopic observation of atomic fine structure. Thus
standard Dirac theory and 4-space Dirac theory [10,11] are therefore both confirmed by
spectroscopic experiments, such that the confirmation of wave-function Zitterbewegung
predicted by 4-space theory requires experiments designed to probe the wave function and
not the energy spectrum. In short Dirac whole theory is incompatible with the experimental
observation of Zitterbewegung, which exists if indeed the negative-energy states do not lie
empty below the positive-energy states such that radiative spontaneous emission from the
nominally positive-energy ground state cannot exist and therefore does not need to be
blocked by the artifice of filling up the negative-energy levels with electrons.  In hole theory a
positron is represented by an absent electron or hole, which is an abstract representation of
an electron-positron pair since one-body Dirac theory requires a two-body interpretation of
the one-body Dirac solutions.

It seems clear from the above discussion that, while the QRF is physically correct for
radiative spontaneous emission, it has unphysical consequences for the radiative shift of
energy levels, which is corrected in practical applications by using the physical argument of
mass renormalization.  Indeed in his original paper [1] Dirac limits the use of the QRF to the
emission and absorption of radiation and the derivation of the Einstein A and B coefficients.
But one can use the renormalization concept that an electron permanently has radiant
properties which are therefore always present, such that the concept of a bare electron loses
meaning. In standard QED this concept takes the form of continuously emitted and
reabsorbed photons by the quantum state of a free electron, whose mathematical
implementation, as stated above, leads to the divergent shift linear in for a free electron –
the divergence which, when included in the bound-electron calculation, cancels the divergent
shift linear in  for the bound electron. One may postulate that this concept can be realized
by finding a first-quantized Lorentz-invariant relativisitic equation of motion which accounts
for the radiant properties of the electron in the same way that Dirac’s equation accounts for
the material properties of the electron. A small literature using the concept of a photon
equation of motion (EOM) already exists [14] but its applications appear to be confined to
experiments in which the radiation-matter interaction is unimportant.
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The concept of radiation as a permanent part of the quantum states of the electron is
actually introduced in renormalization theory, as discussed above. But again the field-
theoretic logic of the continuous emission and absorption of virtual photons by the same
quantum state in a closed photon loop leads to a radiative correction to the electron’s mass
which diverges as  [2]. The missing concept whose mathematical implementation would
avoid this failure uses the logic that the quantum states of matter exist simultaneously and
permanently with the quantum states of radiation such that the artificial boundary-value
setup of virtual-photon emission and absorption is averted.  Since the quantum states of
matter are given by Dirac’s equation, we require a supplemental wave equation to give the
quantum states of radiation associated with the electron.  While Dirac’s equation accounts
for the material properties of the electron, the supplemental radiation wave equation may be
considered to account for the radiant properties of the electron, as observed experimentally
in the Lamb shift and the electron’s anomalous magnetic moment.

In summary radiation-free matter does not exist in nature. But theoretical physics has
evolved, reflecting the separate developments historically of mechanics and
electrodynamics, into a radiation-free quantum theory of matter, a matter-free quantum
theory of radiation and a theory of the mutual interaction of radiation and matter. This
piecemeal approach leads to an infinite energy for the Lamb shift and other “radiative
corrections” of the electron in absence of the use of physical argument and mathematical
adjustments to “renormalize” the theory in order to obtain a finite result which remarkably
agrees with high accuracy with experimental observation.  One may question however if
perfect theoretical agreement with a specific set of experiments should be accepted with
uncritical acclaim in absence of a theory which explains the source of the infinities and
provides a divergence-free result.  It is hard to imagine that renormalization theory with its
mathematical recipes for the removal of divergent contributions could be a general theory of
nature, not withstanding its high degree of accuracy.

Indeed one may say that particle fields for matter-free photons or photon-free electrons
represent incomplete physical descriptions of these particles. This is the lesson which we
may take away from Lamb’s experiments, which demonstrate the existence of permanent
radiative shifts in atomic energy levels, namely that radiation-free matter does not exist in
nature such that a photon-free material particle field or a particle-free photon field, however
neat and pleasing this it is mathematically is not a complete picture either of the material
particle or of the photon. The renormalization scheme itself confirms this  view since infinities
are removed from radiation-matter calculations by postulating that photons are always
present in the structure of a free electron  such that when the free-electron radiative shift is
added back to bound-electron calculations the unphysical infinities are removed.

In Section II of this paper an equation of motion for the radiant aspect of the electron is
given.  Then in Section II we investigate the possibility that a bound state might exist in the
negative-energy region of the spectrum of the two-body Dirac equation such that annihilation
may be interpreted as an ordinary bound-bound transition of matter rather than as the
conversion of matter into light. Finally in Section III our conclusions are presented.

2. EQUATION OF MOTION FOR THE ELECTRON’S RADIANT ASPECT

It is easy to propose a radiant equation of motion (REOM) for the electron once it is
recognized that the electron’s material equation of motion (MEOM), which is Dirac’s
equation, can be inferred from the scalar product of the electron’s 4-momentum and a
material 4-potential posited for the electron. This understanding of Dirac’s equation suggests
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that a REOM can be inferred from the photon’s 4- momentum and an electromagnetic 4-
potential posited for the electron.

Recalling that the scalar product of 4-vectors is always Lorentz invariant [15], Dirac’s
equation can be derived by further elucidating the close relationship between Dirac’s
equation and the spinorial form of Maxwell’s equation, which has been studied continuously
since 1928 [16-19].  Dirac’s equation can be inferred from the scalar product of the electron’s
4-momentum and a material 4-potential, ),( 


, posited for the electron as follows,
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Using a carrier-wave expansions for ),( 


in order to isolate a dominant frequency
component of the 4-potential we obtain,
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On substituting Eqs. (II-2) into Eq. (II-1) and separately setting the coefficients of the
exponential factors equal to zero, I obtain,
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Dirac’s Equation,
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Follows immediately on settingh  mc 2 ,   
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The reader may verify that Eqs. (II-4) are indeed Dirac’s equation in coupled first-order form
where  and  are known in the literature as the large and small components of the Dirac
solution.  Notice that the electron’s spin can be interpreted as the polarization of the vector
component of its posited material 4-potential.Notice that no further proof of the Lorentz
invariance of the wave equation itself is required since Eqs. (II-4) have been inferred directly
from a scalar product of 4-vectors, which is always a Lorentz invariant [15].  As an example
Dirac’s equation for a hydrogen-like ion [20] is manifestly Lorentz invariant, but a fully
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relativistic Lorentz-invariant theory for two fermions is given by the Bethe-Salpeter equation
[21]. As a further complication the Coulomb potential for the electron-electron interaction is
incompatible with Lorentz invariance since it depends on the six spatial dimensions of two
electrons; its Lorentz-invariant representation is achieved using the force-carrier formalism in
which the Coulomb force is represented by the exchange of virtual photons.  If indeed future
experiments show that Zitterbewegung is a real physical effect arising from the simultaneous
occupancy of both positive-energy and negative-energy states by an electron, then
the Bethe-Salpeter equation describing a positron and electron should be appealed to for
a proper description of annihilation and pair creation.  This point is examined further in
Section III.

While Eqs. (II-4) account for atomic fine structure and the anomalous Zeeman effect,  whose
spectroscopic observation was the motivation for Dirac’s equation and its experimental
confirmation, radiant properties of the electron also exist which are observed as a quantum
electrodynamical shift of atomic energy levels and the electron’s anomalous magnetic
moment. It is assumed that an electro- magnetic 4-potential exists for the electron such that
a REOM can be inferred from the Lorentz invariant found from the scalar product of the
photon's 4-momentum and the electron’s posited electromagnetic 4-potential thusly,
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This is simply the electromagnetic analog of writing the Lorentz-invariant material continuity
equation,
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as the scalar product of the known 4-gradient, ),( 
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, and the known material 4-current,
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 . Notice that in the radiant-electron theory developed above the known 4-gradient is
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simply renormalized by the replacement HE
mc
e 
,2 , which gives a Lorentz-

invariant electromagnetic continuity equation since the scalar product of E
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, vanishes.  The 4-gradient renormalized using E
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addition 3-vector, E
mc
e 
2 , with the usual odd parity.  On the other hand the 4-

gradient renormalized using H


gives an addition 3-vector, H
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e 
2 , with mixed

parity.  As shown below in the electric-field and magnetic-field equations of motion with
second-order Helmholtz form [Eqs. (II-11)], the same-parity and mixed-parity addition
vectors contribute, among other terms, all four of Maxwell’s equations as interaction terms,
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radiation-matter interaction terms are guaranteed to be gauge invariant by depending on the
electromagnetic fields rather than on the electromagnetic potentials.  Our approach in this
work has been to eschew the quantization of the classical electromagnetic field in favor of
finding first-quantized equations of motion for the photon or if one wishes for the radiant
aspect of the electron.  It is remarkable that an established photon 4-momentum and photon
EOM to our knowledge do not exist in the literature.  The omission seems to follow from the
neglect of a requirement that a complete relativistic-electron theory should be
compatible with the electromagnetic equation of continuity [Eq. (II-6)] as well as with the
material equation of continuity [Eq. (II-7)]. Dirac required only that his equation be
compatible with the material equation of continuity. One may recall that the wave theory of
electricity and magnetism followed from Maxwell’s requirement that Ampere’s equation be
compatible with the material equation of continuity.

As with the electron the photon scalar and vector potentials can be written in the form of
carrier-wave expansions,
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from which on substituting Eqs. (II-8) into Eq. (II-5) and separately setting the coefficients of
the exponential factors equal to zero, we obtain,
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where we have used the identity, )())(( BAiBABA
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Eq. (II-11b), forh   0 , was used in physical applications to calculate a divergence-free
Lamb shift [22] and electron’s anomalous magnetic moment [23].

Notice that in Eqs. (II-11) the electromagnetic fields and not the electromagnetic potentials
occur such there is no question of a gauge dependence of matter-light interactions in the
electron’s REOM.  The success of the use Eqs. (II-11) to calculate divergence-free radiative
properties of matter [22-23] suggests that the concept of radiation as a permanent part of the
structure of matter is a valid one.  Recall that this is identically the concept of mass
renormalization used in standard QED used to remove infinite contributions to the electron’s
energy arising from unphysical logic that first-quantized states of matter exist which are
totally free of radiation.  As we have shown here it is possible to present a theory in which
the electron does not exist in a bare or radiation-free state and whose material and radiant
properties are described by a pair of relativistic, Lorentz-invariant first-quantized material and
radiant EOM’s respectively.

3. PAIR CREATION AND ANNIHILATION IN TWO-BODY DIRAC THEORY

Toward a resolution of the paradox of the incompatibility of hole theory and Zitterbewegung
[9,12] a two-body Dirac theory is used to calculate the spectrum of the positronium atom
(Ps). Countless annihilation and pair-creation experiments are successfully interpreted using
hole theory, which is part of Dirac’s interpretation of the negative-energy states, namely that
an absent electron in the set of negative-energy states filled with electrons represents a
positron such that annihilation and pair-creation are interpreted as two-photon transitions
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downward to and upward from a hole state respectively. Hence a reconciliation of
Zitterbewegung and whole theory requires that the two-fermion spectrum for an electron and
positron contain both the known ground state and a negative-energy state with binding
energy equal to 2mc2.  To our knowledge two-body Dirac theory has heretofore not been
used to search for a bound state lying below the nominal ground state.

Two-body Dirac theory previously has taken several forms.  A two-body Dirac equation can
be written down and solved [24] but it is not Lorentz invariant owing to the 6-space nature of
the positron-electron Coulomb interaction.  Alternatively the Bethe-Salpeter equation [21] is
a fully relativistic, Lorentz-invariant equation for two fermions but Lorentz invariance requires
that the Coulomb interaction must be represented by the exchange of virtual photons. The
force-carrier formalism for the interaction suggests that the Bethe-Salpeter equation is of
limited usefulness for bound-state problems which require a nonperturbatively solution.  Also
it is possible to use Dirac’s relativistic constraint mechanics to find an exact solution
for the singlet state of positronium [25]. As well two-body Dirac equations of constraint
dynamics has been used to search for states below the nominal ground state of positronium
[26]. More recently a dynamical theory is available [27] which preserves Lorentz invariance
for a many-electron ensemble by using a Dirac equation for each electron in which the
Coulomb interaction (using a two-electron example) is calculated in 4-space as

|)(|

2

12 tsr
e



 , where r is the 3-space position of the electron whose Dirac equation

one is solving and )(ts is the spin-dependent quantum trajectory of the second electron
which is inferred from the Dirac current of the second electron using its Dirac equation and
conversely for second electron.  Coulomb’s law is given to us by classical electrodynamics
as the inverse distance between two point electrons and it is calculated in relativistic 4-space
for use in individual Lorentz-invariant equations of motion without resort to the artifice of
representing it by the exchange of virtual photons. Thus far this methodology has been
tested only in the nonrelativistic limit to solve the electron exchange-correlation problem.  It
provides a natural physical explanation for the Pauli Exclusion Principle and Fermi-Dirac
statistics by correlating the electron-electron Coulomb interaction with the spin state of each
electron.  The historical evolution of quantum mechanics to construct a single wave function
for N electrons instead of constructing N wave equations of established correctness for N
electrons is possibly a scholastic exercise.  In fact it is inconsistent with classical mechanics,
in which the special theory of relativity was formulated by Einstein, as a theory using N
equations of motion for N bodies.  We believe that the one-body 4-space approach as a
compatibility with the special theory of relativity which is obscured by the mathematical
complexity of the standard approach seeking a single wave function for N bodies.

In this paper we want to use a relativistic quantum theory for two fermions which is Lorentz
invariant but yet free of the mathematical complexity of the theories just adumbrated.
Therefore the Hartree or self-consistent field model will be used here.  Although the
Coulomb potential between the two fermions is replaced by its quantum mean with respect
to either fermion and is thus an approximate interaction potential, this procedure
nevertheless preserves Lorentz invariance in the form of a one-body Dirac equation for each
fermion.

The Dirac equations for the electron and positron with Hartree potentials appropriate for
each are given respectively by Eqs. (II-4) and by
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in which the quantum means of the attractive electron-positron Coulomb potential,
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2

12 rr
e



 , as given by Eq. (III-1c) and (III-1d), are calculated respectively using the

quantum density of the positron as given by the sum of large-component and small-
component densities shown in the numerator on the right side of Eq. (III-1c)and similarly by
the quantum density of the electron as given by the sum of large-component and small-
component densities shown in the numerator on the right side of Eq. (III-1d). The Dirac
equations for electron and positron are fully relativistic and Lorentz invariant, but they must
be solved iteratively since the potentials depend on knowing the quantum densities for each
fermion. It is found that 10 iterations are sufficient to achieve convergence in the energy as

given by the operator identity

ih

t
 E . In absence of electromagnetic fields 0A
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.

Eqs. (II-4) are solved variationally by separating variables using ),()()(   rGr 
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where the identities, )(ˆ
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have been used, where 222 sj  
 and

j 2 (,)  j( j 1) (,) , l
2 (,)  l (l 1) (,) and
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s2 ( ,) 
1
2
(
1
2
1) ( ,) .  For states of 1S1/2 symmetry, 2/1,1   (for

angular momentum states j=1/2, l  0) and similarly for the positron equation except that
  1 /2 .  The radial functions are represented by the trial forms G1(r)  Ne

wr and


F1(r)  N

hcw
E V mc 2

ewr , where N is the normalization constant given by

N 2{ drr2
0



 [G1
2 (r) F1

2 (r)]} 1.  The same trial forms are used for both fermions, where

w is a parameter which is varied to find a minimum in E.  The latter step is carried out by
making a first guess for E and inserting it wherever E occurs in a denominator.  For a
positive-energy state this guess is just E = mc2, which is not updated since the positive-
energy state occurs in the nonrelativistic regime, in which the binding energy is much less
than mc2 (Fig. 1).  It is unlikely that the exponentially decaying trial forms with cusps at the
origin will share any energy with the unbound center of mass, which may be considered to
be at rest. The error of course is in the absence of electron correlation in the relative motion,
but we will tolerate this error in gratitude for a mathematically simple theory with which to
investigate our assumption, which questions the orthodoxy of Dirac’s hole interpretation of
the negative-energy region of the spectrum, that Ps has a bound state in the negative-
energy region. It is easy to understand the nature of the binding of the e e  pair from

analysis of Eq. (III-2).  In the positive-energy region of the spectrum

F1  N

hw
mc
ewr such

that | F1 | G 1 , which means that the first term on the right side of Eq. (III-2) is nearly equal
to mc2, the second term is negligible, and the lowest positive-energy bound state therefore
lies just below mc2 (Fig. 1).  Notice that the Hartree model gives 80% of the known binding
energy of 0.25 au (1 au = 27.21 eV).  Figs. 2-3 give the family of wave functions   for the
values of the variational parameter, w, used in the calculation.  These are presented in order
to demonstrate the dominance of G-1 over F-1 in the positive-energy region.
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Fig. 1. E mc
2 versus w for the lowest positive-energy state of Ps in the

Hartree model



Physical Science International Journal, 4(6): 797-815, 2014

809

Fig. 2. G-1(r) versus r in the positive-energy region of the spectrum for the sweep of w
values used in the calculation

For a negative-energy state E is guessed to lie close to –mc2 and is updated until a minimum
in E found which agrees with the guessed-at denominator energy as closely as possible.
This match is not perfect owing to the approximate nature of the calculation, but the energy
calculated from Eq. (III-2) at the minimum shown in Fig. 4 (-18659 au) is 99.6% of the
guessed energy (-18732 au), which is acceptable for this calculation.
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Fig. 3. F-1(r) versus r in the positive-energy region of the spectrum for the sweep of w
values used in the calculation
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Fig. 4. E  versus w for the lowest negative-energy bound state for Ps in the
Hartree model.

On the other hand in the negative-energy region of the spectrum the denominator E-V+mc2

neatly vanishes for E  mc 2 such that | F1 | G 1 , which means that the second term on
the right side of Eq. (II-2) is nearly equal to –mc2, the first term is negligible, and the lowest
negative-energy bound state therefore lies just above –mc2 (Fig. 4).  (All bound states lie in
the regime mc 2  E  mc 2 .). The negative-energy bound state has not hitherto been
reported due to the whole interpretation of one-body Dirac theory discussed at length above.
Figs. 5-6 give the family of wave functions for the values of w used in the calculation. These
are presented in order to demonstrate the dominance of F-1 over G-1 in the negative-energy
region.
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Fig. 5. G-1(r) versus r in the negative-energy region of the spectrum for the sweep of w
values used in the calculation.

Remarkably the term in Eq. (III-2) proportional to  , which is positive and therefore
repulsive for  1 and opposite phases for G-1 and F-1, lifts the binding energy (E-mc2) in
the positive-energy region above its minimum value given by the  sum of the second and
third terms on the right side of Eq.(III-2) and is effectively the kinetic-energy contribution to
the total energy, E.  Conversely this kinetic-energy term and to a lesser extent the fourth and
fifth terms on the right side of Eq. (III-2) lift the energy from a point below –mc2, which lies in
the negative-energy continuum, into the binding region above –mc2.  Remarkably a large
kinetic energy in the negative-energy region makes binding possible by overcompensating
for the second and third thirds term on the right side of Eq. (III-2), which are negative and
therefore attractive and move E in the direction of less binding in the negative-energy region,
in contrast to moving E in the direction of greater binding in the positive-energy region.
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Fig. 6. F-1(r) versus r in the negative-energy region of the spectrum for the sweep of w
values used in the calculation.

4. CONCLUSION

In summary the Hartree model for two-body Dirac theory predicts that a bound state for Ps
exists in the negative-energy region of the spectrum, such that annihilation and pair creation
may be interpreted as ordinary two-photon emission and absorption respectively between
the nominal ground state and the negative-energy state.  This result shows that hole theory
is not unique to the explanation of annihilation and pair creation and therefore lifts the
ambiguity that Zitterbewegung [9,12] cannot be a real physical effect due to Dirac’s hole
interpretation of his one-body equation. It is hoped that this study will stimulate further work
using more accurate two-body Dirac theory either to confirm or falsify the present Hartree-
model result.
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