
American Journal of Computational Mathematics, 2018, 8, 55-67 
http://www.scirp.org/journal/ajcm 

ISSN Online: 2161-1211 
ISSN Print: 2161-1203 

 

DOI: 10.4236/ajcm.2018.81005  Mar. 16, 2018 55 American Journal of Computational Mathematics 
 

 
 
 

Solving Stiff Reaction-Diffusion Equations Using 
Exponential Time Differences Methods 

H. A. Ashi 

The Mathematical Department, King AbdulAziz University, Jeddah, KSA 

 
 
 

Abstract 
Reaction-diffusion equations modeling Predator-Prey interaction are of cur-
rent interest. Standard approaches such as first-order (in time) finite differ-
ence schemes for approximating the solution are widely spread. Though, this 
paper shows that recent advance methods can be more favored. In this work, 
we have incorporated, throughout numerical comparison experiments, spec-
tral methods, for the space discretization, in conjunction with second and 
fourth-order time integrating methods for approximating the solution of the 
reaction-diffusion differential equations. The results have revealed that these 
methods have advantages over the conventional methods, some of which to 
mention are: the ease of implementation, accuracy and CPU time. 
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1. Introduction 

Numerical methods are important tools in investigating the solution’s behavior 
of non-linear realistic models in biology [1] where no closed form solutions exist. 
A class of these models is reaction diffusion (RD) problems that, for instant, 
reproduce some of the complex pattern observed on the skin of certain animals. 
This includes the development of coat patterns on mammals and the patterning 
of butterfly wings [1]. 

Reaction diffusion models have been studied extensively since the RD theory 
first proposed by Turing [2] to describe the range of spatial patterns observed in 
the developing embryo. 

In recent years, several theoretical models, regarding spatial pattern, have 
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been introduced and led to a better understanding of how these patterns arise 
from certain mechanism. A general theoretical framework for studying pattern 
formation in biological systems within a growing domain was developed in [3]. 
In addition, reaction diffusion equations modeling predator-prey interactions 
have been paid attention and studied extensively [4] [5] [6]. In these models, the 
most important element is the “ functional response”, the function that describes 
the number of prey consumed by predator per unit time. 

For the numerical solution of nonlinear reaction diffusion problems (most of 
which are stiff1), fully explicit temporal methods are avoided due to the sever 
restriction on the time step size imposed by the stiff diffusion term. Fully 
implicit temporal schemes are not recommended since they have the task of 
solving large implicit systems at each time step. Alternatively, several methods 
were introduced. The vast majority of scientific community uses, for the spatial 
discretization, lower-order centred finite differences schemes due to the ease of 
implementation and incorporation of the boundary conditions in a straightforward 
way. The time integration is carried out, usually, by using some types of low-order 
time step methods such as, second-order fully implicit Crank-Nicholson 
methods. 

The Exponential Time Differencing (ETD) methods [12] in conjunction 
with spectral methods [13] [14] [15] have emerged as viable alternatives to 
classical schemes for a wide variety of problems. Their applications to solve 
reaction-diffusion problems [6] [16] [17] [18] [19] have been steadily growing. 
Spectral methods are popular for generating spectral accurate spatial derivatives, 
through built-in codes in Matlab [20]. ETD schemes recover the exact solution 
to the linear part (which is generally the most stiff part of the system), and 
integrate exactly an approximation of the non-linear terms. We may approximate 
the non-linear parts by some polynomial in time that may be calculated using 
previous steps of the integration process (producing multi-step ETD methods) 
or by Runge-Kutta-like stages (resulting in ETD schemes of RK type), see [21] 
for a comprehensive review. The numerical computation of the ETD coefficients, 
which are functions related to the matrix exponential, arises some difficulties [22] 
[23]. Fortunately, several numerical algorithms [19] [22]-[28] were introduced 
to enhance the accuracy in computing these coefficients. 

The work presented in this article is motivated by the theoretical and 
computational study by Gavie [5] for the dynamical properties of the 2-component 
reaction-diffusion system modeling predator-prey interactions with the Holling 
type II functional response. The system displays a wide spectrum of ecologically 
relevant behavior, including chaos. The model and an illustration of the 
computational study conducted by Garvie [5], using first-order finite difference 

 

 

1Stiff differential equations are categorized as those whose solutions (or different components of a 
single solution) evolve on very different time scales occurring simultaneously, i.e. the rates of change 
of the various components of the solutions differ markedly. For a comprehensive review of this 
phenomena see [7] [8] [9] [10] [11]. 
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schemes, are briefly described in §2. In §3, we numerically approximate the 
solution of the predator-prey model in two dimensions employing spectral 
methods, for the space discretization, in conjunction with high-order time 
integrating methods. The results of the numerical experiment are compared to 
Garvie’s findings. Section §4 recaps our results and points out some 
conclusions. 

2. Model Problems 

In this section we briefly give the 2-component reaction-diffusion non-dimensional 
system, modeling predator-prey interactions with the Holling type II functional 
response and logistic growth of the prey, as follows (taken from [5]): 

( ) ( )

( )

1 ,

.

u u u u vh au
t
v v bvh au cv
t

δ

∂
= ∆ + − −

∂
∂

= ∆ + −
∂

                  (1) 

The population densities of the prey and predators at time t and vector 
position x  are denoted by ( ),u tx  and ( ),v tx  respectively. ∆  is the usual 
Laplace operator in 3d ≤  space dimensions and the parameters , ,a b c  and 
δ  are strictly positive. The domain (habitat), defined by Ω , is bounded and 
configured with appropriate initial condition and zero-flux boundary conditions, 
ensuring that no individual species can leave the domain. The “functional 
response” ( )h ⋅  represents the prey consumption rate per predator as a fraction 
of the maximal consumption rate. It is assumed to be a 2C  function satisfying 
the following conditions: 

• ( )0 0h = , 
• ( )lim 1

x
h x

→∞
= , 

• ( )h ⋅  is strictly increasing on [ )0,∞ . 
A specific type II functional response with positive parameters ,α β  and γ  

is given as follows [5] 

( ) ( ), , with  1 , , .
1

h au a b cηη η α β γ
η

= = = = =
+

 

Thus, the type of kinetics governed in this paper is 

( ) ( ) ( ), 1 , , .uv uvf u v u u g u v v
u u

β
γ

α α
= − − = −

+ +
              (2) 

We consider the natural biological meaningful region 0, 0u v≥ ≥  with 
bounded positive initial data, where the solution remains positive at all time. 
From an environmental point of view, the choice of parameters for the 
numerical simulation of the full reaction-diffusion system insure that both the 
spatial and temporal local dynamics (the densities) of the predator and preys are 
oscillatory. It is important to note that the above model takes into account the 
invasion of the prey species by predators but does not include stochastic effects 
or any influences from the environment. 

https://doi.org/10.4236/ajcm.2018.81005


H. A. Ashi 
 

 

DOI: 10.4236/ajcm.2018.81005 58 American Journal of Computational Mathematics 
 

Computational Issues 

For the two dimensional approximation, let 1, ,n N=   and , 0, ,i j J= 
, 

where N and J denote the number of uniform subdivision of the time interval 
[ ]0,T  and the square domain [ ] [ ], , , 0A B A B A BΩ = × <  respectively. The 
forward difference in time and the five point central difference approximation of 
the Laplace in two dimensions are defined as follows: 

( )
( )

1

2
, , 1 , 1 1, 1, ,

,

4 ,

n n n
n

h i j i j i j i j i j i j

U U U t

U U U U U U h

−

+ − + −

∂ = − ∆

∆ = + + + −
 

where t T N∆ =  and ( )h B A J= −  represent the time and space step 
respectively. In addition, suppose that ,

n
i jU  and ,

n
i jV  denote the two dimensional 

approximation to the solutions u and v respectively at the point ( ), ,i j nx y t , 
where the time levels nt n t= ∆ . 

Garvie [5] presents two first-order semi-implicit (in time) finite difference 
schemes as follows: 

1
, ,1

, , , , , 1
,

1
, ,

, , ,1
,

,

.

n n
i j i jn n n n n

n i j h i j i j i j i j n
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i j i jn n n
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              (3) 
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∂ = ∆ + − −
+

∂ = ∆ + −
+

             (4) 

with the given initial approximations 

( ) ( )0 0
, 0 , 0, , , ,i j i j i j i jU u x y V v x y= =  

and zero-flux boundary conditions, for studying the dynamics of spatially 
extended predator-prey interaction with logistic growth of the prey (1) in two 
space dimensions. The “analytical solution” of the predator-prey system (1) is 
approximated using schemes (3) and (4) on a fine mesh and small time step. The 
linear system of algebraic equations, resulting from the solution of the problem 
using either schemes, is sparse, banded and has a simple structure (tridiagonal and 
block tridiagonal system in one and two dimensions respectively). In addition, the 
coefficient matrices of the linear system are strictly diagonally dominant, which 
guarantee the convergence of the GMRES algorithm (an iterative solver) used to 
solve the system (in two dimensions), see [5]. 

The convergence of Schemes (3) and (4) was decided on upon reducing the 
time step until the difference between the approximations from either schemes is 
negligible. On the other hand, the space step is kept sufficiently small to see 
clearly the qualitative feature of the solutions. 

The numerical experiments conducted by Garvie had numerical and ecological 
implications. Numerically, Garvie showed that 
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• For various initial conditions, the evolution of the system led to the formulation 
of spiral patterns, see Figure 1, followed by irregular patches covering the whole 
domain (spatio-temporal chaos). 

• Schemes (3) and (4) are simple to program, stable and convergent provided 
that the time step is below a (non-restrictive) critical value. 

• The disadvantage of the code is that the run time can be prohibitive when 
using a combination of large domain size and final time T coupled with small 
space and time step. 

From an ecological point of view, Garvie stated that in the absence of external 
influences, certain initial conditions can lead to spatial and temporal variants in 
the densities of predator and prey that persist indefinitely. 

The section following gives an overview of higher-order competing methods: 
Exponential Time Differencing (ETD) methods §3.1, Integrating Factor (IF) 
methods §3.2 and Implicit-Explicit methods (IMEX) §3.3 utilized for simulating 
the numerical solution of the prey-predator system (1) with kinetics (2) in two 
dimensions. 

3. Numerical Experiments 

We numerically compare the performance of the first-order (in time) schemes (3) 
and (4), outlined in §2.1, with that of the second and fourth-order time 
integrating methods including: Exponential Time Differencing (ETD) methods 
 

 

Figure 1. The approximated prey densities ,
n
i jU  for kinetics (2) in two dimensions at 

150T = . The initial conditions are given by  

( ) ( )0 7
, 6 35 2 10 0.1 225 0.1 675i j i j i jU x y x y−= − × − − − − ,  

( ) ( )0 5 4
, 116 245 3 10 450 1.2 10 150i j i jV x y− −= − × − − × −  with 0.4α = , 2.0β = ,  

0.6γ = , 1δ = , 1h =  and 1 384t∆ = . 
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§3.1, Integrating Factor (IF) methods §3.2 and Implicit-Explicit methods (IMEX) 
§3.3, for approximating the solution of the prey-predator system (1) with 
kinetics (2) in two dimensions. The aim is to observe the effectiveness of the 
competing methods, taking into account the accuracy and CPU time consumed 
by the methods. 

3.1. Exponential Time Differencing Methods 

Consider for simplicity a single model of a stiff ordinary DE 

( ) ( ) ( )( )d
, ,

d
u t

cu t F u t t
t

= +                    (5) 

where c is the stiffness parameter and ( )( ),F u t t  is the non-linear forcing term, 
then the first-order ETD1 scheme [12] [29] is 

( )1 e e 1 ,c t c t
n n nu u F c∆ ∆
+ = + −  

where t∆  is the time step and nu  and nF  denote the numerical 
approximation to ( )nu t  and ( )( ),n nF u t t  respectively. 

The second-order ETD Runge-Kutta method ETD2RK1 [12] analogous to the 
“improved Euler” is 

( )
( ) ( )( ) ( )2

1

e e 1 ,

e 1 , ,

c t c t
n n n

c t
n n n n n

a u F c

u a c t F a t t F c t

∆ ∆

∆
+

= + −

= + − ∆ − + ∆ − ∆
          (6) 

where term na  approximates the value of u at nt t+ ∆ . Also, the ETD2RK2 
scheme [23] analogous to the “modified Euler” method is 

( )
( )( ){

( ) ( )}

2 2

1

2

e e 1 ,

e 2 e 2

2 e 1 , 2 .

c t c t
n n n

c t c t
n n n

c t
n n

a u F c

u u c t c t F

c t F a t t c t

∆ ∆

∆ ∆
+

∆

= + −

= + ∆ − + ∆ +

+ − ∆ − + ∆ ∆

             (7) 

A fourth-order scheme ETD4RK [12] is obtained as follows: 

( )
( ) ( )

( ) ( )( )

2 2

2 2

2 2

e e 1 ,

e e 1 , 2 ,

e e 1 2 , 2 ,

c t c t
n n n

c t c t
n n n n

c t c t
n n n n n

a u F c

b u F a t t c

c a F b t t F c

∆ ∆

∆ ∆

∆ ∆

= + −

= + − + ∆

= + − + ∆ −

 

( )( ){
( )( ) ( ) ( )( )

( )( ) ( )} ( )

2 2
1

2 2 3 2

e 3 4 e 4

2 2 e 2 , 2 , 2

4 e 3 4 , .

c t c t
n n n

c t
n n n n

c t
n n

u u c t c t c t F

c t c t F a t t F b t t

c t c t c t F c t t c t

∆ ∆
+

∆

∆

= + ∆ − ∆ + − ∆ −

+ ∆ − + ∆ + + ∆ + + ∆

+ − ∆ + − ∆ − ∆ − + ∆ ∆

  (8) 

The terms na  and nb  approximate the values of u at 2nt t+ ∆  and the 
term nc  approximates the value of u at nt t+ ∆ . 

3.2. Integrating Factor Methods 

The first-order Integrating Factor Euler (IFEULER) method [13] [20] 
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( )1 e .c t
n n nu u tF ∆
+ = + ∆  

The second-order Integrating Factor Runge-Kutta (IFRK2) method [12] is 
given by 

( )( )
( )1

e ,

e , ,

1e ,
2

c t
n n

c t
n n n n

c t
n n n n

a tF

b tF u tF t t

u u a b

∆

∆

∆
+

= ∆

= ∆ + ∆ + ∆

= + +

                   (9) 

and the Integrating Factor Runge-Kutta (IFRK4) method [25] [30] [31] is 

( )( )
( )
( )

( )( )

2

/2

2

2
1

,

2 e , 2 ,

2, 2 ,

e e , 2 ,

1e e 2 e .
6

n n

c t
n n n n

c t
n n n n

c t c t
n n n n

c t c t c t
n n n n n n

a tF

b tF u a t t

c tF u e b t t

d tF u c t t

u u a b c d

∆

∆

∆ ∆

∆ ∆ ∆
+

= ∆

= ∆ + + ∆

= ∆ + + ∆

= ∆ + + ∆

= + + + +

          (10) 

3.3. Implicit-Explicit Methods (IMEX) 

The usefulness of the IMEX schemes is apparent when it is coupled with spectral 
methods, for approximating spatially discretized reaction-diffusion problems [32] 
arising in chemistry and mathematical biology. The most popular method is the 
second-order linear-multi-step IMEX scheme (AB2AM2) [33] 

( )1 1 13 .
2n n n n n n
tu u c u u F F+ + −

∆
 = + + + −                (11) 

For the time discretization, this method treats the non-linear reaction term 
explicitly utilizing the second-order Adams-Moulton methods, while the 
diffusion term is treated implicitly utilizing the second-order Adams-Bashforth 
schemes. 

IMEX methods are restricted from having an order higher than two if 
A-stability is required. Therefore, despite their simplicity and frequent usage, 
they are not extendable to higher order. 

3.4. Comparison Experiments and Results 

The overall efficiency of the methods in our numerical experiments is measured 
by three dominant testing parameters: the accuracy, the start-up overhead cost 
and the CPU time consumed by the methods. All the calculations presented in 
this paper are performed using Matlab codes. 

For the simulation tests, we choose Neumann boundary conditions 

( ) ( )

( ) ( )

, , , ,
0 , 0 400,

, , , ,
0 , 0 400,

u x y t v x y t
x

x x
u x y t v x y t

y
y y

∂ ∂
= = ≤ ≤

∂ ∂
∂ ∂

= = ≤ ≤
∂ ∂
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and apply discrete Fourier cosine series approximation for the spatial 
discretization using 256

x yF FN N= =  grid spatial points. The spatial grids are 
set to be fine enough such that the errors are dominated by those from the time 
integration. We can write the test model problem (1) in Fourier space, taking the 
advantage of the 2-dimensional discrete cosine transform routine dct2  built in 
Matlab as follows: 

( ) ( ) ( ) ( ) ( )( ) ( ) ( )
( )

( ) ( ) ( ) ( ) ( )
( )

2 2

2 2

ˆd
ˆ 1 ,

d

ˆd
ˆ ,

d

k
x y k

k
x y k

u t u t v t
k k u t u t u t

t u t

v t u t v t
k k v t v

t u t

α

β
γ

α

 
= − + + − −  + 

 
= − + + −  + 

dct2

dct2

      (12) 

where 0.4, 2, 0.6, 1α β γ δ= = = =  and ,x yk k  represent the wave-numbers in 
two dimensions. The linear (diffusion) operator in the resulting uncoupled 
system of ordinary differential equations (ODEs) (12) is diagonal, with elements 

( )2 2
x yk k− + , of which some has large negative real eigenvalues that represent 

decay on a time scale much shorter than that typical of the non-linear term 
(strong dissipation dynamics), causing system (12) to be stiff. The non-linear 
term is transformed to physical space and evaluated at the uniform grid points 
and then transformed back to spectral space. 

Afterword, we integrate the system of ODEs (12) in time up to 150t =  
employing second and fourth-order stiff integrators including: Exponential Time 
differencing ETD2RK1(6), ETD2RK2 (7), ETD4RK (8) methods, Integrating 
Factor IFRK2 (9), IFRK4 (10) methods and a second-order Implicit-Explicit 
AB2AM2 (11) method. We focus on the initial approximation (taken from [5]) 
given by 

( )( )0 7
, 6 35 2 10 0.1 225 0.1 675 ,i j i j i jU x y x y−= − × − − − −  

( ) ( )0 5 4
, 116 245 3 10 450 1.2 10 150 .i j i jV x y− −= − × − − × −  

Considering the implementation of the above time discretization methods, we 
evaluate three coefficients2 for the ETD2RK1(6), the ETD2RK2 (7) methods and 
four coefficients for the ETD4RK (8) method, once at the beginning of the 
integration for each value of the time-step sizes, by means of contour integra-
tion3 in the complex plane approximated by the Trapezium rule. We choose 
circular contours, each is centred at one of the elements that are on the diagonal 
matrix of the linear part of the semi-discretized model (12), with radius 1R =  
and sampled at 32 equally spaced points. Moreover, in the main loop of 
integration, the ETD2RK1, the ETD2RK2, the IFRK2 (9), the ETD4RK and the 
IFRK4 (10) methods perform two (for the second-order methods) and four (for 
the fourth-order methods) function transforms per time step. The IF schemes 
require, in addition, the evaluation of one or more matrix exponentials, for 

 

 

2The ETD-RK methods require an accurate algorithm for evaluating the coefficients of ( )( ),n nF u t t  

to avoid numerical difficulties, see [22] [23]. 
3The “Cauchy integral” approach was proposed by Kassam and Trefethen, see [25] [31] for further 
details. 
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which acceptable algorithms are well known [29] [34]. 
In our tests, we measure the accuracy of the methods in terms of the relative 

error evaluated in the integrated error norm. The numerical “exact” solution is 
approximated on a fine mesh with a very small time-step size and compared 
with the corresponding approximated solution with a sequence of large time 
steps. 

Figure 2(a) summarizes the temporal accuracy behavior for all the methods  
 

 
(a) 

 
(b) 

Figure 2. Relative errors versus (a) time step (b) CPU time for the prey-predator system 
(1) with kinetics (2) in two dimensions. The initial conditions are given by  

( ) ( )0 7
, 6 35 2 10 0.1 225 0.1 675i j i j i jU x y x y−= − × − − − − ,  

( ) ( )0 5 4
, 116 245 3 10 450 1.2 10 150i j i jV x y− −= − × − − × −  with 0.4α = , 2.0β = ,  

0.6γ =  and 1δ = . 
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and confirms the expected order for all of them. In the figure, we plot the 
numerical relative error of the integrated error norm as a function of the time 
step. The time-step values are selected to ensure that all methods achieve stable 
accurate results. The plot indicates, firstly, that the fourth-order methods take 
the largest time-step size, i.e. the fewest number of steps, to converge to a 
solution within a fixed given relative error in the figure. On the other hand, the 
first-order schemes (3) and (4) break down (errors are of ( )1O ) for time-step 
size larger than 42t −∆ ≈  because of the numerical stability constraints. 
Secondly, a fixed reduction in the time-step size will produce a greater reduction 
in the error for the second and fourth order methods than for the first-order 
schemes (3) and (4). 

For an additional preference between the methods compared, we valued the 
accuracy with respect to the CPU time, illustrated in Figure 2(b). For the 
first-order schemes (3) and (4), the computation cost is almost identical, per 
time step. 

Second-order convergence is confirmed in Figure 2(a) for the ETD2RK1(6), 
the ETD2RK2 (7), the AB2AM2 (11) and the IFRK2 (9) methods. All second-order 
methods successfully integrate the system for time-step sizes 22t −∆ ≈  and less. 
In addition, the corresponding errors for all methods (except for that of the 
AB2AM2 method which is considered to be the least accurate) lie approximately 
on the same line for all values of the time-step. Regarding the CPU time, Figure 
2(b) indicates that the variation in time consumption for all methods, for a given 
level of accuracy, is insignificant. 

For the fourth-order methods, the performance of the IFRK4 (10) method 
resembles that of the ETD4RK (8) method, and the errors are identical and all 
scale with the expected ( )4t∆  order, see Figure 2(a). However, according to 
Figure 2(b), the IFRK4 method uses a slightly longer computation time than the 
ETD4RK method for a given error tolerance. 

Clearly the fourth-order methods have a superior performance, as the 
accuracy and speed are improved significantly compared to lower order methods 
referring to Figure 2(a) and Figure 2(b) respectively. The fourth order methods 
have the advantages of gaining order of magnitude of accuracy, even for larger 
time steps 12t −∆ ≈ , greater than lower order methods.  

In general, we find that out of all comparable methods, the fourth-order 
methods are the most accurate, for a given time-step size, and the least time 
consuming for a given level of accuracy, see Figure 2(a) and Figure 2(b) 
respectively. However, the ETD4RK method was found to be the best scheme for 
providing accurate stable solution in a fast and efficient way. On the other hand, 
the most expensive with high computational cost and unpleasant performance 
are schemes (3) and (4). Thus, the greater accuracy of the ETD4RK and the 
IFRK4 methods rewards the extra programming efforts. 

4. Conclusions 

In most of the cases in using numerical computations of reaction-diffusion 
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problems, a simple first-order semi-implicit scheme is the first choice [5] due to 
the difficulties introduced by the combination of non-linearity and stiffness of a 
PDE, the complexity both of analysis and implementation of higher order 
methods, and the increased computer storage required by these methods. 
However, in tow and higher space dimensions problems, simulations based 
upon the more conventional ideas become more time consuming. Higher order 
time integration methods can result in significant benefits in run time reduction 
while maintaining high accuracy. 

In this paper, spectral methods, coupled with second and fourth order exponential 
integrator methods, are used for solving a reaction-diffusion problem modeling 
predator-prey interaction. The spectral methods offer several advantages over 
finite-difference methods such as, accurate discretization of spatial derivatives, 
ease of implementation and applicability to a wide varies of equations [23] [25] 
[31]. 

Exponential time stepping solvers are used to remove the the stiffness 
associated with the diffusive terms, and hence, the severe restriction on the 
time-step for reasons of stability, allowing much larger time-steps to be selected 
and the selection is only limited by accuracy. 

In our comparison experiment, we have shown that the fourth-order ETD4RK 
(8) and IFRK4 (10) methods have aided the simulation of model (1) in tow 
dimensions with improvements of the computational efficiency and speed over 
first and second-order methods. 

Although we focus on system (1) in this paper, we believe that the numerical 
methods described here and our results can also be extended with modification 
to numerically solve other non-liner wave problems, models which include 
advection and reaction-diffusion-convection systems. 
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