

SCIENCEDOMAIN international www.sciencedomain.org

ISSN: 2231-2919

Screening of Pharmacognostical, Phytochemical **Profile and Traditional Application of** Ficus benghalensis

Sattya Narayan Talukdar^{1*}, Md. Bokhtiar Rahman¹ and Sudip Paul²

¹Department of Biochemistry, School of Science, Primeasia University, Dhaka1213, Bangladesh. ²Department of Biochemistry and Molecular Biology, Jahangirnagar University, Dhaka1342, Bangladesh.

Authors' contributions

This work was carried out in collaboration between all authors. Author SNT designed the study and wrote the protocol. Author MBR wrote the first draft of the manuscript and analyses of the study. Author SP managed the literature searches and identified the species of plant. All authors read and approved the final manuscript.

Article Information

DOI: 10.9734/BJPR/2015/20130 Editor(s): (1) Elena G. Zavyalova, Chemistry Department, Moscow State University, Russia. Reviewers: (1) Anonymous, Shanghai University of Traditional Chinese Medicine, China. (2) Anonymous, USC School of Pharmacy, USA. Complete Peer review History: http://sciencedomain.org/review-history/11206

Review Article

Received 13th July 2015 Accepted 6th August 2015 Published 1st September 2015

ABSTRACT

Ficus benghalensis belonging to Moraceae family is mostly familiar as "Banyan tree" or "Indian fig" with several vernacular names. Gigantic in appearance, as a colossal evergreen tree, it is extended by spreading branches through the substantiation of aerial roots. As an indigenous plant of South Asia, it is considered as a sacred plant in certain regions because of its numerous roles in its history, culture, heritage, religion as well as inhabitant's life style from ancient time. Its legendary remedial potency is also bolstered by enormous phytotherapeutical features recommended by local practitioner for long years and verified by epic ayurvedic classic "Charak Samhita". Extensive presence of certain potent secondary metabolites including flavonoids, alkaloids, glycosides, phenolic compounds etc. has been screened out from its several portions including bark, root, leaf, fruit and latex. Current pharmacognostical evaluations unravel its effective functions as antioxidant, anti-diabetic, analgesic, anti-diarrheal agent and role in relieving

*Corresponding author: Email: sattya.narayan@primeasia.edu.bd;

several skin diseases. This review based on *Ficus benghalensis* is a compendium of its recent advancements in the field of phytopharmacognosy along with its ethnobotanically established therapeutical roles.

Keywords: Ficus bengalhensis; traditional use; pharmacognosy; phytochemicals.

ABBREVIATIONS

μg	Microgram
μĬ	Microliter
hr	Hour
kg	Kilogram
mg	Milligram
min	Minute
mm	Millimeter
ml	Milliliter
sec	Second
DIC	Disc diffusion method
DPPH	1, 1- Diphenyl- 2- picrylhydrazyl
ED_{50}	Median effective dose
FB	Ficus benghalensis
FCA	Freund's Complete Adjuvant agent
FeCSA	Fe ²⁺ chelating activity assay
HCSM	Human red blood cell membrane stabilization method
HepG2	Hepatocellular human tumor cell line
HPSA	Hydrogen peroxide scavenging activity assay
HRSA	Hydroxyl radical scavenging activity assay
IC_{50}	Half maximal inhibitory concentration
LD ₅₀	Median lethal dose
MCF-7	Brest human tumor cell line
MTT	Mitochondrial toxicity test
NOSA	Nitric oxide scavenging activity assay
OECD	Organization for Economic Co-operation & Development
SASA	Superoxide anion scavenging activity assay
SGOT	Serum glutamic-oxalacetic transaminase
SGPT	Serum glutamic pyruvic transaminase
STZ	Streptozotocin
TBARS	Thiobarbituric acid reactive substances

1. INTRODUCTION

Ficus benghalensis is laticiferous, moraceaeous, massive ever green tree included in ficus genus containing more than 800 species and 2000 subvarieties (Fig. 1) [1-5]. Commonly known as "Indian banyan tree", it has several vernacular name including bawt, jatala, nyagrodha, rohina, avrohi, vitapi, rakatphala, skandaruha, mandali, mahachchya, yaksavasa, yakshataru, padrohina, nila, kshiri, shipharuha, bahupada, vanaspati [6,7]. Native to South Asia, It grows in dry regions throughout in India, Sri Lanka, Pakistan and Bangladesh and cultivated widely in almost every wet tropical area over the world [6,8] Its massive appearance is on average about 23-34

m tall supported by numerous aerial roots grows from low altitudes to 2,000 ft (610 m) [9]. Its obtusely cuspidate, oval shaped leaves are approximately 10-20 cm in length and 5-12.5cm in breadth. It has three types of flowers including males, females and imperfect females which are unisexual having about 1.3-1.8 cm diameter [9,10]. Its barks are smooth, greyish white exuding a milky latex after cutting leaves and fruits are dark reddish with fleshy pericarp [11]. Besides convensional propagation by seed, it can also propagated by cuttings. It is revered as sacrosanct plant in certain regions of South Asia specifically in India due to its inevitable presence in the myth and literature of this area verified by its nomination as the national plant of India.

Fig. 1. Whole tree of Ficus benghalensis (Left) and its leaves with flower (Right) Photo credit: <u>http://www.indiaonlinepages.com/national-symbols/national-tree.html</u> http://lifescience-chandrakumar.blogspot.com/2012/05/ficus-benghalensis-banivan-tree-bargad.html

Its ethanomedicinal uses are validated from ancient time by traditional practitioners in various medical purposes [12-14]. Because of containing enormous phytochemicals such as flavonoids, alkaloids so on, as a medicinal plant it is very functional for curing many diseases [15-18]. This review is a condensation of current phytopharmacognostical profile with its established folk use.

2. TRADITIONAL APPLICATION

Folk use of Ficus benghalensis (FB) established from ancient time in South Asia is summarized in Table 1. Infusion of its bark is applied in dysentery, nervous disorders, leucorrhoea and diarrhea [12,13,19]. Traditional physicians used milky sap from bark and boiled bark for curing gonorrhea, snake bite, dermatitis, joint pain, indigestion, gum swelling and cold, cough, asthma [12]. For curing urinary problem, its bark mixed with the root of Asparagus racemosus, fruits of Annona squamata, and shoot of Colebrookea oppositifolia and taken during empty stomach [12]. Dried stem bark or root bark was very helpful for diabetes (quarter glass of stem bark juice in daily morning) [14,20]. In Jaundice prop root juice (50 ml) taken once a day for 3 days [4,21]. Leaf paste is applied externally in abscesses and wound [22,23]. Leaf powder is mixed with coconut oil and applied once a day for 3 days for the treatment of wounds. Leaf also has taken orally in diarrhea [24,25]. Milky latex is used for the treatment of sexual impotency, rheumatism, diarrhoea, dysentery, gonorrhea, maggot wound, bleeding, boils, toothache, earache, tonsils, lumbago and heel cracks [11,13,24-33]. Latex also act as blood purifier [34]. Whole plant is used as inhibitor in prolonged menses, bleeding of nose, tumor growth on bone and as stimulator of sexual weakness [7,21,35]. In diarrhea, dysentery, heamoptysis and haemorrhage its bud is used [9,11,27]. In food scarcity and billiary complication fruits can be eaten directly [10,36].

3. PHYTOCHEMICAL AND NUTRIENT PROPERTIES

Ficus benghalensis, rich in phytochemicals and nutrients, acts as remedies for some deadliest diseases. Its bark contains several primary metabolites such as carbohydrates, proteins, fats and oils [15,43,44]. Alkaloids, alycoside (bengalenoside.leucopelargonidin.3-o-beta-Dgalactosylcellobioside, 3-0-alpha-L-rhamnoside, leucocvandin). saponins. flavonoid (leucopelargonin, 5, 7-dimethyl ether of leucopelargonidin-3-0-L-rhamnoside, 5.3'dimethyl ether of leucocyanidin 3-0-Dgalactosylcellobioside), steroids, phenolic compounds, tannins, terpenoids, phlobatannins and anthroquinones are also present in bark detected by different phytochemical tests [15-18. 43,45-51]. Latex contains not only proteins but glycosides. anthroquinone also cardiac reducing glycoside. glycoside, flavonoids. steroid, alkaloids, tannins, phenolic compounds rubber [52,53]. Several secondary and metabolites such as tannin, lignin, terpinoids, phenols, sterols, flavonoids, saponin and few primary metabolites (starch and protien) are found in leaves measured by different qualitative tests [54,55]. Reducing sugars, glycosides, tannins are found in different extracts of its root

[56,57]. Fruits and seeds contain protein and saccharide (lectin) too [9,58]. A brief summary of phytochemical analysis are given Table 2.

Plant Part	Diseases/Disorder	Application mode	References
Bark	Dysentery	infusion of the bark	[19]
	Urinary problem	applied by formulation	[12]
	Diabetes mellitus	dried stem bark or root bark	[14]
	Gonorrhea	milky sap from bark	[12,13]
	Snake bite	milky sap from bark	[12]
	Nervous disorders	infusion of the bark	[19]
	Cold and cough	boiled bark	[12]
	Leucorrhoea	infusion of the bark	[13,19]
	Dermatitis , joint pain	milky sap from bark	[12]
	and gum swelling		
	Diarrhea	infusion of the bark or milky sap from bark	[12,19]
	Diabetes	quarter glass of stem bark juice in daily morning	[20]
	Indigestion	milky sap from bark	[12]
	Asthma	boiled bark	[12]
Leaf	Diarrhea	taken orally	[24,25]
	Wounds	leaf powder is mixed with coconut oil	[37]
	Abscess	crushed or paste leaves are applied	[22,23]
	Wound	paste form applied externally	[22]
Latex	Aphrodisiac	orally taken	[24,34]
Lutox	Rheumatism	milky latex externally applied	[11,26-30]
	Diarrhoea and	milky juice with sugar	[28,31]
	dysentery	milly Julee with Sugar	[20,01]
	Pains and bruises	applied externally	[11,13]
	Gonorrhea	not specified	[32]
	Maggot wound	white latex is applied	[33]
	Bleeding and Boils	directly applied	[25]
	Blood purifier	not specified	[23]
	Toothache	externally applied	[34]
	Earache	directly applied	
	Tonsils		[25]
		latex rubbed on swelling twice daily for a week	[4] [20]
	Heel cracks	stem latex directly	[38]
٨٥٣٠٥١	Lumbago	milky latex applied externally	[11,13,26]
Aerial	Morning sickness of	fine powder boiled with goat's milk	[39]
root	pregnant women	reate are mixed with do busiced acade of an mo	[0]
	Excessive bleeding	roots are mixed with de-husked seeds of oryza	[8]
	during menstruation	sativa and sugar to take three times for a day	
	Lin's fall	only	[40]
	Hair-fall	roots with coconut oil	[40]
	Menstruation	aerial root juice act as inhibitor	[12]
	Obstinate vomiting	tender ends of the aerial root	[11]
	Body pain and Joint	aerial root juice applied externally	[12]
	pain		
	Abortion	prop roots	[41]
	Diarrhea	decoction from aerial roots and water obtained from rice wash	[12,42]
	Leucorrhoea	formulated root bark	[12,18]
	Jaundice	root juice (50 ml) taken once a day for 3 days.	[4,21]
Whole	Female prolonged menses	not specified	[21]
plant	and Sexual weakness		

Table 1. Traditional utilization of Ficus bengalhensis

Plant Part	Diseases/Disorder	Application mode	References
	Bleeding of nose	3 gm bark, bud and aerial root each boiled with water and then mixed with milk	[7]
	Tumor growth on bone	mixed with sausserealappa and applied	[35]
Bud	Diarrhoea and Dysentery	juice form of young bud	[27]
	Heamoptysis	infusion of the small branches	[9]
	Haemorrhage	a decoction of leaf buds in milk	[11]
Fruit	Food scarcity	directly eaten	[36]
	Billiary complication	not specified	[10]

Talukdar et al.; BJPR, 8(3): 1-17, 2015; Article no.BJPR.20130

Plant Part	Phytochemicals	Qualitative analysis	Reference
Bark	Carbohydrate Proteins Alkaloids	Not specified (Pe, B, A, Ea, M, E, Aq) Not specified (A, M, E, Aq) Not specified (A, Ea, M, E, Aq),Hager's reagent (C, Ea, M), Wagner's reagent (Pe, C, M), Mayer's reagent (B, C, Ea), Dragendorff's reagent (M)	[15, 43] [15, 16] [15-18]
	Fat Glycoside(bengalenoside,3 -O- β –D-galactosyl cellobioside,3-O- α -L- rhamnoside, leucocyandin, leucopelargonidin)	Not specified (Pe) Not Specified (Aq, E), Baljet test (Pe, B, M), Legal test (B, C), Keller Killani test (Ea, M), Borntrager's test (C),	[44] [15, 17, 43, 45, 47-49]
	Volatile oils	Not specified (PE)	[44]
	Flavonoid(leucopelargonin, 5,7-dimethyl ether of leucopelargonidin-3-O-L rhamnoside, 5,3'-dimethyl ether of leucocyanidin 3-O- D galactosyl cellobioside)	Not specified (B, A, Ea, M, E, Aq),Alkali reagent (M, Pe),TLC(EA),Lead acetate test (C,Ea,M), Sodium hydroxide test (C), Magnesium ribbon test (B,C,M), Ammonia test (Pe,B)	[15-17, 43- 46, 50, 51, 59]
	Steroids	Not specified (Pe, B, A,Ea, M, E, Aq)	[15]
	Phenolic compounds and Tannins	FeCl ₃ test (Pe, C, MEa,Aq), Lead acetate test (C, E), Gelatin solution (M), Bromine water (B, M), Acetic acid solution (Pe, M), Dichromate test (Pe, B, Ea), Diluted nitric acid (B, Ea)	[15, 17, 43, 46]
	Saponins	Frothing test (M, Pe, B,Aq ,A, M, E)	[15, 16, 43, 46]
	Terpenoids	Not Specified (E)	[43]
	Phlobatannins	Not Specified (E)	[15]
	Anthroquinones	Not Specified (E)	[43]
Latex	Cardiac glycosides	Legal test, Keller - Killiani test(M)	[52]
	Anthroquinone glycoside	Brontrager test(M)	
	Reducing glycoside	Benedict's test(M)	
	Flavonoids	Shinoga test(M)	
	Steroid	Salkowshi reaction(M)	
	Alkaloids	Dragendraff's test(M), Hager test(M)	
	Tannins and phenolic compounds	5% FeCl ₃ solution(M), Diluted iodine solution(M), Diluted HNO ₃ test(M)	

Table 2. Phytochemical analysis of Ficus bengalhensis

Phytochemicals	Qualitative analysis	Reference
Proteins	Nihydrin test(M), Biuret test(M)	
Rubber	Centrifuged	[53]
Starch	Not specified(E)	[54]
Tannin	FeCl ₃ test(E, M)	[54, 55]
Protien	Xanthoproteic test(M)	[55]

Not specified(E)

H₂SO₄ test (M)

Not specified(E)

Benedict's test(Aq,E)

Legal's test(Ag,E)

 $FeCl_3$ test(Aq,E)

Not specified

NaOH test (E)

Forth test(M)

FeCl₃ test(M)

Talukdar et al.; BJPR, 8(3): 1-17, 2015; Article no.BJPR.20130

[54]

[55]

[55]

[54]

[55]

[54, 55]

[56, 57]

[9, 58]

 Seeds
 Saccharide (lectin)

 Petroleum ether=Pe, Benzene=B, Acetone=A, Ethyl acetate=Ea, Methanol=M, Ethanol=E, Water=Ag, Chloroform=C

4. PHARMACOGNOSTICAL PROPERTIES

Lignin

Terpinoids

Flavonoids

Glycosides

Protein and

Reducing sugars

Phenols

Sterols

Saponin

Tannins

A brief summary of the pharmacognostical properties of *Ficus benghalensis* is given in Table 3.

4.1 Analgesic Activity

Plant Part

Leaves

Root

Fruits and

seeds

Methanolic extract (100 mg/kg) of leaves provided 43% inhibition of acetic acid-induced writhings and showed highest basal reaction in 15 min in hot plate method [60]. Diclofenac and methanolic extract (200 mg/kg) showed 11.00±0.36 and 20 sec increasing of reaction time after 90 min treatment in hot plate method [61]. Significant analgesic activity was revealed by methanolic extract of stem bark in acetic acid induced writhing [62].

4.2 Anti-allergic Activity

Aqueous, ethanol, and ethyl acetate extracts showed significant decrease in leucocytes and eosinophilsin asthma by milk-induced leucocytosis and milk-induced eosinophilia [63,64].

4.3 Antiatherogenic Activity

Treatment of isolated flavonoids form bark (100 mg/kg/day) was significantly reversed or restored atherogenic index, HMGCoA reductase,

lipoprotein lipase activity, incorporation of labeled acetate into free and ester cholesterol, adipose tissue and plasma LCAT activity in cholesterol diet fed rats [50]. In cholesterol fed rat antiatherogenic index was 1.69±0.008 TC/HDL for isolated (100 mg/kg body weight) leucodelphinidin collected from bark [51].

4.4 Antibacterial Activity

Aqueous and ether extract (10gm/100ml) reveal good inhibition zone against E.coli (8mm, 5mm), S.typhi, (6 mm, 5 mm) and L.acidophilus (5mm, 7mm). At same concentration of methanol extract displayed 6mm inhibition zone against E.coli [65]. Aqueous, methanol and chloroform extract of root at 0.4 mg/well provided significant activity by producing highest inhibition zone against Staphylococcus aureus (7.82 + 0.03)mm). Pseudomonas aeruginosae (11.7+0.1 mm) and E.colimutants (10.55+0.12 mm), respectively [66]. Ethanolic extract of FB provided 6.5mm inhibition zone against B.cereus [67]. Methanolic extract of FB showed 11 mm inhibition zone of both S. epidermidis and B. subtilis detected by DIC [68]. Significant inhibition zones were found against B. cereus (16mm) and S. aureus (12mm) by methanolic extract of FB [18]. Methanolic extract of flavonoid (100 µg/ml) isolated from bark of FB showed potent antibacterial activity against E. coli, Proteus vulgaris, Staphylococcus aureus. Bacillus subtilisand Pseudomonas auruginosa as 13.9±0.54, 15.4±0.36, 14.3±0.5, 23.7±0.32 and 23.9±0.7 mm inhibition zone [46].

0.08, 0.09 and 0.10 mg/ml concentration of hydro alcoholic extract of bark showed inhibition zone as 9.4, 13.6 and 15.2 mm against *Actinomycets viscosus by* cup plate diffusion Method [69]. Amikacin and methanolic extract provided inhibition zone as 20 and 16 mm, respectively against *E. coli* [70]. Highest inhibition zones were 30, 24 and 22 mm for ethanolic extract (75 mg/ml) and 14, 12 and 14 mm for aqueous extract of root against *Staphylococcus aureus*, *Escherichia coli* and *Klebsiella pneumonia*, respectively [71]. Ethanolic extract of bark Talukdar et al.; BJPR, 8(3): 1-17, 2015; Article no.BJPR.20130

showed 6.5 mm inhibition zone against *B. cereus* [72].

4.5 Anticancer Activity

Methanolic extract of leaves displayed 22.1and 16.4% cytotoxicity on HepG2 and MCF-7at 100ppm, respectively and branch extract showed 8.27 and 14.8% cytotoxicity on HepG2 and MCF-7 cytotoxicity, respectively at 100 ppm [73].

Table 3. Pharmacognos	stical properties o	f Ficus benghalensis

Activity	Plant part	Extract	Details	Reference
Analgesic	Leaves	Methanol	Showed 43% inhibition of acetic acid-induced writhings and 15 min increased in basal reaction time in hot plate method.	[60]
	Leaves	Methanol	200 mg/kg showed 20 sec increasing of reaction time after 90 min treatment in hot plate method.	[61]
	Bark	Methanol	Displayed significant activity in acetic acid induced writhing.	[62]
Anti-allergic	Bark	Aqueous, Ethanol, Ethyl- acetate	Reduced leucocytes and eosinophilsin milk-induced leucocytosis and eosinophilia.	[63, 64]
Anti-atherogenic	Bark	Not specified	Significant activity observed from the treatment of leucopelargonin derivative (100 mg/kg/day) in cholesterol diet fed rats.	[50]
	Bark	Not specified	Isolated leucodelphinidin displayed 1.69 TC/HDL activity in cholesterol fed rat model.	[51]
Anti-bacterial	Root	Aqueous, Methanol, Chloroform	Among them chloroform extract showed highest inhibition zone against <i>E. coli</i> mutants as 10.55+0.12 mm examined by cup plate method	[66]
	Fruit	Aqueous Methanol Ether	Aqueous and methanol extract showed highly response against <i>E.coli</i> and ether extract showed against <i>L. acidophilus</i> detected by DIC	[65]
	Not specified	Ethanol	Extract showed 6.5 mm inhibition zone against <i>B. cereus.</i>	[67]
	Root	Aqueous Ethanol	Aqueous and ethanolic extract showed 14 mm and 30 mm inhibition zone against <i>S. aureus</i> , respectively.	[71]
	Not specified	Methanol	Extract showed 11 mm inhibition zone of both <i>S. epidermidis</i> and <i>B.</i> <i>subtilis</i> detected by DIC	[68]
	Bark	Methanol,	Methanolic extract showed 16 mm	[70]

Activity	Plant part	Extract	Details	Reference
		Aqueous, Chloroform Petroleum ether	inhibition zone against <i>E. coli</i> compare with amikacin (20 mm).	
	Not specified	Methanol	Inhibition zones were 16 and 12 mm against <i>B. cereus</i> and <i>S. aureus</i> .	[18]
	Bark	Ethanol	Showed 6.5 mm inhibition zone against <i>B. cereus</i>	[72]
	Not spcified	Methanol	Showed highest activity against Bacillus subtilis (23.7±0.32 mm) and Pseudomonas auruginosa (23.9±0.7mm) by DIC method.	[46]
	Bark	Alcohol	Extract (0.10 mg/ml) showed inhibition zone as 15.2 mm against <i>Actinomycets viscosus</i> by cup plate diffusion method.	[69]
Anti-cancer	Leaf	Methanol	Not significant on HepG2 and MCF-7 cell line.	[73]
	Branch	Methanol	Did not show cytotoxicity on human on MCF-7 and HepG2 cell line.	[73]
Anti-diabetic	Bark	Not specified	Glibenclamide and leucodelphinidin improved glucose tolerance in diabetic rat model as 70% and 35%, respectively.	[74]
	Bark	Not specified	Isolated leucocyandin 3-0-beta-D- galactosyl cellobioside treatment inhibited insulin degradative processes in alloxan-induced diabetic rat model.	[48]
	Root Bark Fruit	Ethanol	Among those extracts fruits had more reduction ability.	[77]
	Bark	Not specified	Isolated leucopelargonidin and glibenclamide demonstrated similar significant hypoglycemic and insulin raising effects in moderately diabetic rat model.	[49]
	Bark	Aqueous	Observation of STZ- induced diabetic rat model provided equivalent decreasing blood glucose levels of extract and tolbutamide.	[75]
	Bark	Not specified	Isolated leucopelargonin derivative (100 mg/kg/day) reduced blood sugar (34%) and glycosylated haemoglobin (28%) in alloxan diabetic dogs.	[50]
	Stem bark	Aqueous	Extract treatment provided better reduction (52%) of fasting blood glucose than tolbutamide (32%).	[76]
	Bark	Ethanol	Bengalenoside revealed more efficacy than crude extract.	[47]
Anti-fungal	Root	Aqueous, Methanol, Chloroform	Among of them chloroform extract showed highest inhibition zone against Aspergillus niger (8.61±0.09)	[66]

Talukdar et al.; BJPR,	8(3): 1-17, 2015; Article no.BJPR.20130
------------------------	---

Activity	Plant part	Extract	Details	Reference
			by cup plate method.	
Anti-helmintic	Latex	Not Specified	26.3 min time taken for death of <i>Pheritima posthuma</i> .	[78]
	Fruit	Aqueous	Pheritima posthuma became dead after 8 min treatment.	[79]
Anti-inflammatory	Bark	Aqueous, Methanol	Methanol extract (200 µg/ml) showed 67.24±1.01% inhibition where diclofenac (100 µg/ml) showed 79.25±1.31%.	[80]
Anti-mutagenic	Bark	Not specified	Inhibited micronucleus formation and chromosomal aberrations.	[81]
Antioxidant	Stem bark	Methanol	100 μ g/ml exhibited 85.46% and 88.62% inhibition of DPPH and H ₂ O ₂ by DPPH and hydrogen peroxide model.	[15]
	Leaf	Methanol	Activity showed as ED_{50} (49.7) and ED_{90} (66.7).	[73]
	Branch	Methanol	Showed activity as ED_{50} (47.3) and ED_{90} (79.2).	[73]
	Leaf	Ethyl acetate	Fraction showed activity as ED_{50} (49).	[73]
	Bark	Ethanol	IC ₅₀ of scavenging of superoxide anion, hydroxyl radical, nitric oxide, hydrogen peroxide and metal chelating were found to be, 63, 46, 47 and 53 μ g/ml, respectively by SASA, HRSA, NOSA, HPSA, FeCSA, respectively.	[43]
	Latex	Methanol	Highest scavenging of IC_{50} of DPPH radical, FeCl ₃ and phosphor- molybdenum were found to be 28.63 ± 0.16 , 49.82 ± 1.00 and $31.84\pm0.12 \mu g/ml$, respectively detected by above assay.	[52]
	Bark	Aqueous	Extract (500 mg/kg) decreased the lipid peroxidation index significantly	[75]
Anti-rheumatic	Stem bark	Methanol	300 mg/kg exhibited activity in FCA- induced edema arthritis in rat model. Extract and ASA showed 78.42 and 67.54% inhibition, respectively in formalin-induced arthritis in rat model.	[15]
	Bark	Pet Ether Chloroform Ethanol, Aqueous	Ethanolic extract showed highest (63%) inhibition where indomethacin showed 62% by FCA-induced paw edema rat model.	[44]
Anti-ulcerogenic	Leaf	Aqueous	Ranitidine (50 mg/kg) and extract (500 mg/kg) displayed 73.21 and 63.24% reduction in pylorus ligation induced ulcer model. 64.91and 47.36% reduction was occurred by extract (500 mg/kg) and sucralfate inaspirin induced gastric ulcers model.	[82]

Talukdar et al.; BJPR,	8(3): 1-17, 2015; Article no.BJPR.20130
------------------------	---

Activity	Plant part	Extract	Details	Reference
CNS depressant	Leaf	Ethanol	In hole cross test, open field test, thiopental sodium-induced sedative test and beam walking test, extract (250 and 500 mg/kg) possessed significant activity.	[83]
Cytotoxic	Bark	Aqueous	Partially purified hypoglycemic preparation of extract had high LD ₅₀ .	[84]
	Not specified	Methanol	100% cell viability showed at 40 μl extract by MTT assy.	[85]
	Arial root	Methanol	LD ₅₀ was more than 2000 mg/kg body weight.	[86]
	Bark	Ethanol Aqueous	No signs of toxicity or mortality were observed at 2000 mg/kg.	[87]
	Bark	Methanol	No toxicity was observed up to 4g/kg dose.	[15]
Heamatological	Bark	Aqueous	Hematological parameters were returned to normal after administration of the extract for 12 weeks in STZ-induced diabetes rat model.	[89]
Hepatoprotective	Aerial root	Methanol	300 mg/kg treatment increased GSH (89.6±0.25 nmol/g) and reduced TBARS (292.91±0.32 nmol/g) in isoniazid-rifampicin induced hepatotoxic rats.	[88]
	Bark	Methanol, Ethyl acetate	Extracts of bark reduced SGOT and SGPT enzymes significantly in CCl ₄ induced rat model.	[90]
	Bark	Methanol	Showed reduction of liver marker enzymes.	[91]
Hypo-lipidemic	Bark	Not specified	Isolated leucopelargonidin showed significant hypolipidemic activity.	[49]
	Bark	Not specified	Isolated leucodelphinidin derivative reduced total cholesterol and LDL as 108.2 and 36.6 mg/100 ml where increased HDL 63.9±0.53 mg/100ml in hypercholesterolemic rats.	[51]
Immuno modulatory	Arial root	Methanol, Aqueous	Methanolic extract (0.5 mg/ml) and control exhibited phagocytosis whereas 53 and 31%. 55% and 32% phagocytosis occurred by aqueous extract (1 mg/kg) and control, respectively in <i>in vitro</i> phagocytosis test. 200mg/ kg possessed early and delayed type hypersensitivity as 0.92±0.28 and 0.76±0.28, respectively in rat model.	[86]
Renal protective	Stem Bark	Aqueous	Biochemical parameters were returned to normal after administration of the extract for 12 weeks in STZ-induced diabetes rat model.	[89]
Wound-healing	Bark	Ethanol Aqueous	Both extract (200 mg/kg) and control provided healing in 17.16, 18.33 and	[87]

Activity	Plant part	Extract	Details	Reference
			21.50 days, respectively in excision wound model. Also increased wound-breaking strength at same doses in incision wound model.	

4.6 Antidiabetic Activity

Leucodelphinidin derivative (250 mg/kg) isolated from the bark of FB and glibenclamide (2 mg/kg) showed 30% and 70% glucose tolerance, respectively [74]. 2 hours treatment of dimethoxy derivative (250 mg/kg) isolated from bark increased serum insulin level in blood [48]. Aqueous extract (500 mg/kg body weight/day) of bark decreased the blood glucose level as 169±2.65, 168±1.54 and 173±2.03 mg/dl after 5 hrtreatment in STZ-induced diabetic fasted, fed and glucose loaded rats, respectively which was equivalent to tolbutamide (100 mg/kg body weight/day)and this reduction was occurred for restoring serum enzymes level [75]. Aqueous extract of bark (20 g/kg) and tolbutamide (15 mg/kg) showed 52% and 36% reduction on fasting blood glucose, respectively [76]. Ethanolic extracts of fruit, aerial root and bark of FB at 120 mg/kg for 15 days decreased blood glucose level as 31.73, 18.33, and 28.84%, respectively where glibenclamide (0.5 mg/kg) showed 34.4% reduction [77]. Bengalenoside isolated form bark provided more efficacious than crude extract and tolbutamide half as potent as [47]. Leucopelargonidin, a glycoside detected from the bark provided significant hypoglycemic and serum insulin raising effects displaying closely similar effect of glibenclamid [49]. Isolated glycoside viz. leucopelargonin derivative (100 mg/kg/day) form bark helped in reducing blood sugar (34%) and glycosylated haemoglobin (28%) of alloxan diabetic dogs [50].

4.7 Antifungal Activity

Aqueous, methanol and chloroform extract of root at 0.4 mg/well showed activity against *Aspergillus niger* as 6.35±0.07, 6.35±0.16 and 8.61±0.09 mm inhibition zone, respectively [66].

4.8 Antihelmintic Activity

Pheritima posthuma took time 26.3 and 13.2 min for death after treatment of latex of FB (250 μ l) and metronidazole (10 mg/ml), respectively [78]. Aqueous extract (37.5 mg/ml) of fruits of FB showed paralyzed and death condition at 5.30 and 8.00 min of *Pheretima posthuma* [79].

4.9 Anti-inflammatory Activity

Four hours treatment of metanolic extract (300 mg/kg), indomethacin (100 mg) and (100 extract indomethacin mg/kg) with (100 mg/kg) showed reduction ability as 40.37, 42.66 and 44.50%, respectively in agar-induced paw edema in rat model [15]. Methanol extract (200 µg/ml) and diclofenac (100 µg/ml) showed and 79.25±1.31% inhibition, 67.24±1.01 respectively in HCSM [80]. Methanolic extract of leaves 100 mg/kg, 200 mg/kg and diclofenac (10 mg/kg) showed 59.42, 65.21 and 62.31% inhibition of formalin induced paw edema in rats [61]. Methanolic extract of bark possessed significant exhibition of both acute (acetic acid induced vascular permeability and carrageenan induced hind paw edema) and sub-chronic (cotton pellet-induced granuloma) animal models [62].

4.10 Anti-mutagenic Activity

Bark extract at 800, 500 and 250 mg/kg body weight provided anti-mutagenic activity by significant inhibition of micronucleus formation and significant inhibition of chromosomal aberrations after 24 hr oral administration [81].

4.11 Anti-oxidant and Free Radical Scavenging Activity

Methanolic extract at 100 µg/ml exhibited 88.62 and 85.46% inhibition of hydrogen peroxide and DPPH free radicals, respectively where IC₅₀ values were 44.73 and 51.83 µg/ml respectively [15]. Methanolic extract of FB leaves provided ED_{50} (49.7) and ED_{90} (66.7) of DPPH scavenging where branch of FB reveal ED_{50} (47.3) and ED_{90} (79.2). Insoluble fraction from ethyl accetate of FB leaves showed activity as ED_{50} (49) and ED_{90} (94.2) [73]. The IC₅₀ values of scavenging of superoxide anion, hydroxyl radical, nitric oxide, hydrogen peroxide and metal chelating were found to be 26, 63, 46, 47 and 53µg/ml, respectively of ethanolic extract of bark detected by SASA, HRSA, NOSA, HPSA, FeCSA, respectively [43]. IC₅₀ values of methanolic extract of latex for scavenging DPPH, ferric chloride and phosphor-molybdenum were found to be 28.63 ± 0.16 , 49.82 ± 1.00 and 31.84 ± 0.12 µg/ml respectively [52]. Bark extract (500 mg/kg body weight/day) decreased the lipid peroxidation index significantly within 12 weeks [75].

4.12 Anti-rheumatic Activity

Methanolic extract (300 mg/kg) of bark exhibited significant efficacy in Freund's FCA-induced edema arthritis in rat model. In formalin-induced arthritis in rat model provided 78.42 and 67.54% inhibition after 15-30 min by same dose of bark extract and acetyl salicylic acid (100 mg/kg), respectively [15]. Indomethacin (10 mg/Kg), petether, ethanol, chloroform and aqueous extract of bark at 300 mg/Kg inhibited paw edema as 62.34, 58.43, 63.64, 61.69 and 31.82% after four week treatment in FCA-induced arthritis in rat model [44].

4.13 Anti-ulcerogenic Activity

Treatment of ranitidine (50 mg/kg), aqueous extract of leaf at 500 and 250 mg/kg displayed 73.21, 63.24 and 51.28% reduction of ulcer indexin pylorus ligation induced ulcer model in rat. Aspirin induced gastric ulcers model revealed 64.91, 28.94 and 47.36% reduction by aqueous extract (500 and 250 mg/kg) and sucralfate [82].

4.14 CNS Depressant Activity

In hole cross test and open field test, ethanolic extract of leaves (250 and 500 mg/kg) provided significant decrease of movement from its initial value 0 to 120 min. At same dose treatment decreased onset of thiopental sodium action and increased the duration of sleep in thiopental sodium-induced sedative test. In beam walking test, extract (500 mg/kg) induced motor coordination deficit in mice model [83].

4.15 Cytotoxic Activity

According to OECD no mortality was observed by methanolic extract treatment of Stem bark up to 4 g/kg dose [15]. Partially purified hypoglycemic preparation of bark at 1.1 and 1.3 gm/kg dry weight of preparation provided 60% and 70% mortality, respectively [84]. Methanol extract at 40 μ I of FB provided 100% cell viability detected by MTT assay [85]. Methanolic extract of aerial root provided LD₅₀ as 2000 mg/kg body weight [86]. At 2000 mg/kg dose of ethanolic and aqueous extract of bark did not displayed toxicity or mortality [87]. Moreover, no mortality and signs of behavioral changes were observed after oral administration of methanol extract of areal root up to 5000 mg/kg body weight [88].

4.16 Hematological Activity

Administration of extract at 500 mg/kg of body weight per day for 12 weeks in STZ-induced diabetes rat model returned hematological parameter (hemoglobin, red blood cell, and white blood cell) to normal [89].

4.17 Hepatoprotective Activity

Methanolic extract (300 mg/kg) of aerial root increased total bilirubin (0.73±0.11 mg/dl), total protein (13±0.31 mg/dl), albumin (4.4±0.09 glutamic-oxalacetic decreased mg/dl) and transaminase (170±2.6 IU/dl), Serum glutamic pyruvic transaminase (67±1.7 IU/dl) and TBARS (292.91±0.32 nmol/g) in isoniazid-rifampicin induced hepatotoxic rats [88]. Ethyl acetate fraction (50 mg/kg) and methanolic extract (100 mg/kg and 250 mg/kg) of barks showed significant reduction of SGOT and SGPT enzymes in CCl_4 induced rat model [90]. Treatment of methanolic extract (250 mg/kg) of bark reduced SGOT, SGPT and bilirubin levels 59.04±3.40 U/ml, 106.65±4.83 as U/ml,19.18±0.37 U and 1.4±0.19 mg/dl in the CCl₄ treated groups [91].

4.18 Hypolipidemic Activity

Significant hypolipidemic activity was evaluated by leucopelargonidin isolated from bark [49]. Reduction in serum total cholesterol (108.2±1.81 mg/100 ml), LDL-cholesterol (36.6±0.63mg/100 ml) and stimulation in the HDL-cholesterol levels (63.9±0.53 mg/100 ml) had observed after the treatment of leucodelphinidin derivative (100 mg/kg/day) in hypercholesterolemic rats. It also significantly increased hepatic bile acids, fecal excretion of bile acids and neutral sterols [51].

4.19 Immuno-modulatory Activity

Methanol extract of aerial root at 0.5, 1.0, 2.0 mg/ml and control exhibited 53, 49, 46 and 31% increasing of phagocytosis, where as 55% and 32% phagocytosis increase occurred by aqueous extract (1 mg/kg) and control. Extract at 200mg/kg treatment also showed in early (4 hr) and delayed (24 hr) type hypersensitivity as 0.92±0.28 and 0.76±0.28, respectively in rat model [86].

4.20 Renal Protective Activity

Total protein, albumin, urea, uric acid, creatinine were returned to normal level after administration of the extract at 500 mg/kg of body weight per day for 12 weeks in STZ-induced diabetes rat model [89].

4.21 Wound Healing Activity

Aqueous extract (200 mg/kg), ethanolic extract (200 mg/kg) and control provided healing in 17.16, 18.33 and 21.50 days, respectively in excision wound model. At same dose treatment of ethanolic and aqueous extract of bark displayed significant increasing of wound-breaking strength when compared with the control in incision wound model [87].

5. CONCLUSION

In era of the extensive outgrowth of genetic nanotechnology engineering and in pharmaceutical sectors, plant based research is still prevailing to find out new remedies from various diseases globally for having less side effects and eco-friendliness. Moreover, medications prepared from plant are comparatively inexpensive and impoverished people over the world are still relving on their local medicinal plants for relief from light fever to lethal diseases. It is clear that, F. benghalensis provides us shelter not only under its canopy but also therapeutically from prehistoric times. Latest pharmacological pharmacognostical and evaluations also substantiate its huge potential against several disorders including diabetes, diarrhea, skin diseases etc. Therefore, this review is although not enough to delineate its diverse therapeutical features but this abridged edition will be helpful to those who are carrying out their research to explore novel activities of F. benghalensis in the field of pharmacology and pharmacognosy.

CONSENT

It is not applicable.

ETHICAL APPROVAL

It is not applicable.

COMPETING INTERESTS

Authors have declared that no competing interests exist.

REFERENCES

- Choudhury S, Chowdhury H, Mandal S, Ghosh A. Folk-lore knowledge on medicinal usage of the tribal belts of Birbhum district, West Bengal, India. IJBR. 2013;3(2):43-50.
- Chaudhary LB, Sudhakar JV, Kumar A, Bajpai O, Tiwari R, Murthy G. Synopsis of the genus Ficus L.(Moraceae) in India. Taiwania. 2012;57(2):193-216.
- Choudhury S, Sharma P, Choudhury MD, Sharma GD. Ethnomedicinal plants used by Chorei tribes of Southern Assam, North Eastern India. Asian Pacific Journal of Tropical Disease. 2012;2:S141-S7.
- Gayake D, Awasarkar U, Sharma P. Indigenous traditional medicinal plant resources from Ahmednagar District, Maharastra, India. Asian Journal of Biomedical and Pharmaceutical Sciences. 2013;3(22):1-5 (Review).
- Mousa O, Vuorela P, Kiviranta J, Wahab SA, Hiltunen R, Vuorela H. Bioactivity of certain Egyptian Ficus species. Journal of ethnopharmacology. 1994;41(1):71-6.
- Singh AP. Paňca Ksīra Vrksa (Ficus Species Used in Ayurvedic Medicine). Ethnobotanical Leaflets. 2006;10:329-35.
- Mallick SK, Banerjee P, Saha A. Medicinal plants used by the tribals of Ratanpur village of Bankura, West Bengal. International Journal of life sciences. 2012;1(2):82-6.
- Islam F, Jahan F, Seraj S, Malek I, Sadat A, Bhuiyan M, et al. Variations in disease and medicinal plant selection among folk medicinal practitioners: A case study in Jessore district, Bangladesh. American-Eurasian Journal of Sustainable Agriculture. 2011;5(2):282-91.
- 9. Deraniyagala S, Wijesundera R. *Ficus benghalensis*: National Science Foundation, Colombo; 2002.
- Patil VV, Patil VR. Ficus bengalensis Linn. An overview. International journal of pharma and bio sciences. 2010;4(2).
- Nambiar VK, Sasidharan N, Renuka C, Balagopalan M. Studies on the medicinal plants of Kerala Forests: Division of Botany (Taxonomy), Kerala Forest Research Institute; 1985.
- Kunwar RM, Bussmann RW. Ficus (Fig) species in Nepal: a review of diversity and indigenous uses. Lyonia. 2006;11(1): 85-97.

- Jabeen A, Khan MA, Ahmad M, Zafar M, Ahmad F. Indigenous uses of economically important flora of Margallah hills national park, Islamabad, Pakistan. African Journal of Biotechnology. 2009;8(5).
- 14. Ediriweera E, Ratnasooriya W. A review on herbs used in treatment of diabetes mellitus by Sri Lankan ayurvedic and traditional physicians. AYU (An international quarterly journal of research in Ayurveda). 2009;30(4):373.
- Manocha N, Chandra S, Sharma V, Sangameswaran B, Saluja M. Antirheumatic and antioxidant activity of extract of stem bark of Ficus bengalensis. Res J Chem Sci. 2011;1(2):1-8.
- 16. Ponnusamy S, Ravindran R, Zinjarde S, Bhargava S, Ravi Kumar A. Evaluation of traditional Indian antidiabetic medicinal plants for human pancreatic amylase inhibitory effect in vitro. Evidence-Based Complementary and Alternative Medicine. 2010;2011:1-10.
- 17. Singh M, Mukhtar HM, Vashishth D. Standardization Of Stem Bark Of Ficus Bengalensis. IJRPC. 2012;2(3).
- Parekh J, Chanda SV. In vitro antimicrobial activity and phytochemical analysis of some Indian medicinal plants. Turk J Biol. 2007;31(1):53-8.
- 19. Singh A, Singh MK, Singh R. Traditional medicinal flora of the district Buxar (Bihar,India). Journal of Pharmacognosy and Phytochemistry. 2013;2(2):41-9.
- Padal SB, Sathyavathi K, Chandrasekhar P. Ethnomedicinal uses of trees by tribals of munchangiputtu mandalam, visakhapatnam district, andhra pradesh, india. IJPBS. 2013;3(2):441-9.
- Khan SU, khan Ru, Mehmood S, ullah I, ullah Z, Zahoor M. Study of Prominent Indigenous Medicinal Plants of Village, Ahmad Abad, District Karak, Kpk, Pakistan. Journal of Medicinal Plants Studies. 2013;1(4):121-7.
- 22. Joy P, Thomas J, Mathew S, Skaria BP. Medicinal plants.1998;124.
- 23. Rahmatullah M, Das AK, Mollik MAH, Jahan R, Khan M, Rahman T, et al. An ethnomedicinal survey of Dhamrai subdistrict in Dhaka district, Bangladesh. American Eurasian Journal of Sustainable Agriculture. 2009;3(4):881-8.
- 24. Pareek A, Trivedi P. Ethnobotanical studies on medicinal plants of Kaladera region of Jaipur District. Indian Journal of

Fundamental and Applied Life Sciences. 2011;1(1):59-63.

- 25. Parmar DN, Patel NK. Sacred and medicinal plant diversity of vandiol sacred grove of Sabarkantha District (N.G.). Life Sciences Leaflets. 2013;5:34-49.
- 26. Kumar R, Bhagat N. Ethnomedicinal plants of district Kathua (J&K). International Journal of Medicinal and Aromatic Plants. 2012;2(4):603-11.
- Rahman A, Anisuzzaman M, Haider S, Ahmed F, Islam A, Naderuzzaman A. Study of medicinal plants in the Graveyards of Rajshahi city. Res J Agric Biol Sci. 2008;4(1):70-4.
- Rahman A. Graveyards angiosperm diversity of Rajshahi city, Bangladesh with emphasis on medicinal plants. American Journal of Life Sciences. 2013;1(3):98-104.
- 29. Rathish N, Sumitra V. Antibacterial activities of some medicinal plants of the western region of India. Turk J Biol. 2007;31:231-36.
- Sreeramulu N, Suthari S, Ragan A, Raju VS. Ethno-botanico-medicine for common human ailments in Nalgonda and Warangal districts of Telangana, Andhra Pradesh, India. Annals of Plant Sciences. 2013;2(07):220-9.
- Gewali MB, Awale S. Aspects of traditional medicine in Nepal: Institute of Natural Medicine. 2008;19-20.
- Arshad M, Nisar MF, Majeed A, Ismail S, Ahmad M. Ethnomedicinal flora in district sialkot, Punjab, Pakistan. Middle East Journal of Scientific Research. 2011;9(2):209-14.
- Naik R, Venugopalan V, Kumaravelayutham P, Krishnamurthy Y. Ethnoveterinary uses of medicinal plants among the Lambani community in Chitradurga district, Karnataka, India. Asian Pacific Journal of Tropical Biomedicine. 2012;2(2):S470-S6.
- 34. Shah A, Marwat SK, Gohar F, Khan A, Bhatti KH, Amin M, et al. Ethnobotanical study of medicinal plants of semi-tribal area of Makerwal & Gulla Khel (lying between Khyber Pakhtunkhwa and Punjab Provinces), Pakistan. American Journal of Plant Sciences. 2013;4:98-116.
- Jain S, Gill V, Vasudeva N, Singla N. Ayurvedic medicines in treatment of cancer. J Chin Integr Med. 2009;7(11):1096-9.

- Upadhyay D. Ethno-botanical Important Plants in the parts of Shivalik Hills of Kangra district, Himachal Pradesh. International Journal of Scientific and Research Publications. 2013;3(6):50.
- Ayyanar M, Ignacimuthu S. Herbal medicines for wound healing among tribal people in Southern India: Ethnobotanical and Scientific evidences. International Journal of Applied Research in Natural Products. 2009;2(3):29-42.
- Anbarashan M, Parthasarthy N, Padmavathy A. Ethno-floristic survey in sacred groves, Pudukottai district, Tamil Nadu-India. J Med Plant Res. 2011;5:439-43.
- Salave A, Reddy PG, Diwakar P. Ethno pharmaceutical claims by the vanjaris from pathardi tahasil in ahmednagar district (MS) India. Asian J. 2011;2(1):69-71.
- 40. Patil DA. Native Phytomedicines In The perspective of doctrine of signatures In Buldhana District (Maharashtra : India). Deccan Current Science. 2010;3(2):104-11.
- 41. Dwivedi S, Dwivedi A, Dwivedi S. Folk lore uses of some plants by the tribes of Madhya Pradesh with special reference to their conservation. Ethnobotanical Leaflets. 2008;12(1):763-71.
- 42. Kota BP, Teoh AW, Roufogalis BD. Pharmacology of traditional herbal medicines and their active principles used in the treatment of peptic ulcer, diarrhoea and inflammatory bowel disease. Brzozowski PT, editor: INTECH Open Access Publisher; 2012.
- Sujitha BS, Velavan S, Mahadevan K. Reactive oxygen and nitrogen species scavenging, metal chelation and reducing power activity of Ficus benghalensis bark (FBB) -- an in vitro study. Journal of Phytotherapy and Pharmacology. 2012;9(7):01-10.
- 44. Bhardwaj LK. Phytochemical Investigation and Evaluation of Antiarthritic Activity of Ficus Benghalensis Linn. Bark: KLE University, Belgaum, Karnatak; 2011.
- 45. Koilpillai B, Shankar SG, Sadananda R. Comparative pharmacognostic studies on the barks of four Ficus species. Turkish Journal of Botany. 2010;34(3):215-24.
- 46. M MD, Sankaranarayanan S, sampathkumar G. Evaluating the antibacterial activity of flavonoids extracted from ficus benghalensis. International

Journal of Pharmaceutical and Biological Research. 2012;3(1):7-18.

- Augusti K. Hypoglycaemic action of bengalenoside, a glucoside isolated from Ficus bengalensis Linn, in normal and alloxan diabetic rabbits. Indian journal of physiology and pharmacology. 1974;19(4):218-20.
- 48. Ayodhya S, Kusum S, Anjali S. Hypoglycemic activity of different extracts of various herbal plants. IJRAP. 2010;1(1):212-24.
- 49. Cherian S, Augusti K. Antidiabetic effects of a glycoside of leucopelargonidin isolated from Ficus bengalensis Linn. Indian journal of experimental biology. 1993;31(1):26-9.
- Daniel RS, Devi KS, Augusti KT, Sudhakaran Nair CR. Mechanism of action of antiatherogenic and related effects of Ficus bengalensis Linn. flavonoids in experimental animals. Indian J Exp Biol. 2003;41(4):296-303.
- 51. Mathew B, Yoseph B, Dessale T, Daniel R, Alemayehu A, Campbell I, et al. Hypolipidaemic effect of leucodelphinidin derivative from Ficus bengalensis Linn on cholesterol fed rats. Res J Chem Sci. 2012;2:54-60.
- 52. Yadav YC, Srivastava D, Saini V, Singhal S, Seth A, Kumar S. In-vitro antioxidant activity of methanolic extraction of Ficus Benghalensis L. latex. Pharmacologyonline. 2011;1:140-8.
- 53. Singh AP, Wi SG, Chung GC, Kim YS, Kang H. The micromorphology and protein characterization of rubber particles in Ficus carica, Ficus benghalensis and Hevea brasiliensis. Journal of experimental botany. 2003;54(384):985-92.
- 54. Nagamani SJ, Ahuja J, Reddy V, Rajan D. Pharmacognostical evaluation of leaf buds of Ficus bengalensis L. Asian Journal of Plant Science and Research. 2012;2(1):25-9.
- 55. Sahoo RR. Antioxidant & antimicrobial efficacy of Ficus religiosa L. & Ficus benghalensis L. PLANT: National Institute of technology; 2012.
- Murti K, Kumar U, Kaushik M, Kaushik A. Preliminary phytochemical investigation of roots of Ficus benghalensis. Asian Journal of Traditional Medicines. 2012;7(1):44-9.
- 57. G SV, Sekar R, Suresh K, Balamurugan S. Phytochemical screening, enzyme and antibacterial activity analysis of endophytic fungi botrytis sp isolated from ficus benghalensis (L.). The International

Journal of Pharmaceutical Research and Bio-Science. 2013;2(4):264-73.

- Singha B, Adhya M, Chatterjee BP. Multivalent II [beta-D-Galp-(1-->4)-beta-D-GlcpNAc] and Talpha [beta-D-Galp-(1-->3)-alpha-D-GalpNAc] specific Moraceae family plant lectin from the seeds of Ficus bengalensis fruits. Carbohydrate research. 2007;342(8):1034-43.
- 59. Vikrant A, Arya M. A review on antiinflammatory plant barks. International Journal of PharmTech Research. 2011;3(2):899-908.
- Mahajan MS, Gulecha VS, Khandare RA, Upaganlawar AB, Gangurde HH, Upasani CD. Anti-edematogenic and analgesic activities of Ficus benghalensis. International Journal of Nutrition, Pharmacology, Neurological Diseases. 2012;2(2):100.
- Kothapalli PK, Sanganal SJ, Shridhar N, Narayanaswamy H, Narayanaswamy M. In-Vivo Anti-Inflammatory and Analgesic Screening of Ficus bengalensis Leaf Extract in Rats. Asian Journal of Research in Pharmaceutical Science. 2014;4(4):174-8.
- 62. Thakare VN, Suralkar AA, Deshpande AD, Naik SR. Stem bark extraction of Ficus bengalensis Linn for anti-inflammatory and analgesic activity in animal models. Indian J Exp Biol. 2010;48(1):39-45.
- 63. Taur D, Nirmal S, Patil R, Kharya M. Antistress and antiallergic effects of Ficus bengalensis bark in asthma. Natural product research. 2007;21(14):1266-70.
- 64. Dhungana P, Devi P, Borthakur S. Pharmaceutical properties of Indian species of Ficus Linn. International Journal of Pharmacy & Life Sciences. 2013;4(1):2314-9.
- Gaherwal S. Anti-bacterial activity of ficus benghalensis (Banyan) fruit extract against difffrent bacteria. International Journal of Microbiological Research. 2013;4(2):177-9.
- Aswar M, Aswar U, Wagh A, Watkar B, Vyas M, Gujar KN. Antimicrobial activity of Ficus benghalensis. Pharmacologyonline. 2008;2:715-25.
- 67. Yadav M, Khan KK. Investigations of antibacterial activity of some ethnomedicinal plants against certain pathogenic bacterial strains. Indian J Life Sci. 2012;1(2):57-9.
- 68. Parekh J, Jadeja D, Chanda S. Efficacy of aqueous and methanol extracts of some

medicinal plants for potential antibacterial activity. Turk J Biol. 2005;29(4):203-10.

- Bhangale SC, Patil VV, Patil VR. Antibacterial activity of Ficus bengalensis Linn. Bark on actinomyces viscosus. International Journal of Pharmaceutical Sciences. 2010;2(1):39-43.
- Uma B, Prabhakar K, Rajendran S. Invitro antimicrobial activity and phytochemical analysis of Ficus religiosa L. and Ficus bengalensis L. Against Diarrhoeal Enterotoxigenic *E. coli.* Ethnobotanical leaflets. 2009;13(4):472-74.
- 71. Murti K, Kumar U. Antimicrobial activity of ficus benghalensis and Ficus racemosa roots L. Am J Microbiol. 2011;2(1):21-4.
- 72. Nair R, Chanda S. Activity of some medicinal plants against certain pathogenic bacterial strains. Indian J Pharmacol. 2006;38(2):142-4.
- EL-Hawary SS, Wassel GM, El-Menshawi BS, Ibrahim NA, Mahmoud K, Ayoub MM. Antitumor and antioxidant activity of ficus elastica roxb. and ficus bengalensis linn. Family moraceae. World Applied Sciences Journal. 2012;19(11):1532-9.
- 74. Geetha B, Mathew BC, Augusti K. Hypoglycemic effects of leucodelphinidin derivative isolated from Ficus bengalensis (Linn). Indian journal of physiology and pharmacology. 1994;38(3):220-2.
- 75. Gayathri M, Kannabiran K. Antidiabetic and ameliorative potential of Ficus bengalensis bark extract in streptozotocin induced diabetic rats. Indian journal of clinical biochemistry. 2008;23(4):394-400.
- Fernando M, Thabrew MI, Karunanayake E. Oral hypoglycaemic activity of the stem bark of Ficus benghalensis. Ceylon J Med Sci. 1987;30(2):73-7.
- 77. Sharma S, Chaturvedi M, Edwin E, Shukla S, Sagrawat H. Evaluation of the phytochemicals and antidiabetic activity of Ficus bengalensis. Int J Diab Dev Ctries. 2007;27(2):56-9.
- Hari BV, P Saravana Kumar D, Devi R. Comparative *in-vitro* anthelmintic activity of the Latex of ficus religinosa, ficus elastica and ficus bengalensis. Journal of Phytology. 2011;3(3):26-30.
- Sawarkar H, Singh M, Pandey A, Bharadwaj D, Kashyap P. Comparative in vitro anthelmintic activity of Ficus benghalensis, Ficus carica & Ficus religiosa. Int J PharmTech Res. 2011;3(1):157-9.

Talukdar et al.; BJPR, 8(3): 1-17, 2015; Article no.BJPR.20130

- Mahesh M, Kshitij A, Prem S. In vitro antiinflamatory activity of *Ficus benghalensis* bark. Int Res J Pharm. 2013;4(7):107-8.
- Sharma S, Sharma G, Mehta A. Antimutagenic protection of Ficus benghalensis extract against cyclophosphamide induced genotoxicity in rat bone marrow. Asian J Pharm Clin Res. 2012;5(1):84-6.
- Kulshreshtha M, Goswami M, Rao CV, Ashwlayan VD, Yadav S. Anti-ulcerogenic potential of ficus bengalensis leaf, biochemical parameter & histopathological study; 2011.
- Rahman MA. Evaluation of CNS Depressant activities of ethanolic extract of Ficus bengalensis (Moraceae) leaves. International Journal of Pharmaceutical & Biological Archive. 2011;2(3).
- Gupta S, Shukla R, Prabhu K, Aggrawal S, Rusia U, Murthy P. Acute and chronic toxicity studies on partially purified hypoglycemic preparation from water extract of bark ofFicus bengalensis. Indian Journal of Clinical Biochemistry. 2002;17(1):58-63.
- 85. RJ S, Chaphalkar S, Adsool A. Evaluating antioxidant potential, cytotoxicity and intestinal absorption of flavonoids extracted from medicinal plants. International Journal of Biotechnology Applications. 2010;2(1):01-5.

- Gabhe S, Tatke P, Khan T. Evaluation of the immunomodulatory activity of the methanol extract of Ficus benghalensis roots in rats. Indian journal of pharmacology. 2006;38(4):271.
- 87. Garg VK, Paliwal SK. Wound-healing activity of ethanolic and aqueous extracts of Ficus benghalensis. Journal of advanced pharmaceutical technology & research. 2011;2(2):110.
- Parameswari SA, Saleem T, Chandrasekar K, Chetty CM. Protective role of Ficus benghalensis against isoniazid-rifampicin induced oxidative liver injury in rat. Revista Brasileira de Farmacognosia. 2012;22(3):604-10.
- 89. Gayathri M, Kannabiran K. The Effects of oral administration of an aqueous extract of Ficus bengalensis stem bark on some hematological and biochemical parameters in rats with streptozotocin-induced diabetes. Turkish Journal of Biology. 2009;33(1):9-13.
- 90. Baheti J, Goyal R. The methanolic extract of Ficus bengalensis and its fraction induces antihepatotoxic activity in vivo: possible involvement of antioxidant action. Planta Medica. 2013;79(13):PB6.
- 91. Baheti JR, Goyal RK. Evaluation of hepatoprotective activity of ficus bengalensis. Int J Res Pharm Sci. 2011;2(4):522-5.

© 2015 Talukdar et al.; This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Peer-review history: The peer review history for this paper can be accessed here: http://sciencedomain.org/review-history/11206