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Abstract 

 
A hybrid of the new Conjugate gradient method and Galerkin theory has been used to find the 

maximum deflection of a beam under uniformly distributed load. Maximum deflection of a 

beam under a given pressure was found by solving a two-point linear, second order, boundary 

value problem with homogeneous boundary conditions without evaluating the inverse of a 

matrix. An objective function associated with a given member of this class of boundary value 

problems was optimized. The numerical results obtained from solving some of these problems 

are very close to the exact solutions. This method is easy to implement and automate 

computer-wise. 

Keywords: Hybrid of the new conjugate gradient method, two-point linear boundary value 

problems, objective function, Galerkin theory. 

 

1 Introduction 

 
Burden and Faires [1] have shown how physical problems that are position- dependent rather than 

time-dependent could be described in terms of differential equations. A differential equation of 
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this type has conditions imposed at more than one point. A common problem in civil engineering 

is to find the maximum deflection of a beam subject to uniform loading while the ends are 

supported in order to avoid deflection at the two fixed ends. A mathematical model of this 

physical phenomenon results in the formulation of a boundary value problem (BVP). A BVP is an 

ordinary differential equation with specified values at the extreme points or boundaries of a given 

system [2]. A beam deflection model, formulated from Fig. 1, seeks the value of a function )(xy  

from the following two-point linear boundary value problem. 

 

 
 

Fig. 1. Simply supported beam with a uniformly distributed load 
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where x  is the location along the beam, l  is the length of the beam, E  is the young’s modulus of 

elasticity of the beam, I is the central moment of inertia, S  is the stress at the endpoints and q  is 

the intensity of the uniform load. In a related literature, Mohammadi et al. [3] employed the 

differential quadrature method and Galerkin method in their investigation of free vibration 

behavior of rectangular graphene sheet under shear in-plane load. Also, Ali et al. [4] used the 

modified Timoshenko beam model to derive a formulation which provides more accurate results 

than those obtained by the classical beam theory. In addition, Mohammad et al. [5] used the 

differential quadrature method (DQM) to solve the governing equations of the nanorod for 

clamped–clamped (C–C), clamped–free (C–F) and fixed-attached spring boundary conditions. 

This paper will concentrate on linear two-point, second order, boundary value problem given in 

equation (1). This type of boundary value problem is assumed to have a unique solution, )(xy , 

since )(
2

xlx
E

q
−  is continuous in the given interval. In sections (2) and (3), we considered 

other relevant literatures and Galerkin method for solving two-point linear, second order, 

boundary value problems. Sections (4) and (5) treated the new conjugate gradient method with 

Galerkin theory. Numerical examples and solutions were considered in sections (6) and (7). 

Section (8) discussed our numerical results. Finally, section (9) summarized the findings of this 

paper with a conclusion. 
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2 Literature Review 

 
Numerical methods have been used to generate an approximate solution of the conventional linear 

two-point, second order, boundary value problem since the analytic solution is very difficult to 

handle. This problem takes the form 

 

].,[),()()()()()()( baxtxyxvxyxexyxd =+′+′′                                     (2) 

 

A unique solution of equation (2) exists if )(),(),( xvxexd and )(xt  are continuous in ],[ ba

[1,6,7]. Shooting method and finite difference method have been used to solve this class of 

problems [1,6,7,8]. Fyfe, in 1968 introduced cubic spline interpolation method for solving 

equation (2). After Fyfe, many researchers, including Burden and Faires, used linear and cubic 

spline interpolations with Galerkin method and finite element method to solve same problem 

[1,9,10]. Galerkin method is one of the best methods for solving (2) numerically. The numerical 

solutions of this class of boundary value problems are very good but difficult to implement. The 

method leads to full matrices that must be inverted in order to obtain the required solutions [11]. 

Shafigul and Shirin [12] used Galerkin method with Bernoulli polynomials to solve equation (2). 

Also, Rahman et al. [13] used Galerkin method with hermite polynomials to solve same problem. 

Bamigbola and Ejieji [14] showed that the properties of an objective function could be explored to 

design an efficient conjugate gradient method for solving optimization problems. The new 

conjugate gradient method [15] has been used to solve many optimization problems successfully 

without involving matrix inversion. We, therefore, present a hybrid of the new conjugate gradient 

method and Galerkin theory for solving problem (1) with ease and high accuracy.  

 

3 Galerkin Method 

 
Galerkin method is a variation technique used in solving equation (2) numerically. In this paper, it 

is based on the fact that a function ]1,0[2Cw∈  is the unique solution of

[ ] ),()()()()( xtxyxvxyxd =+
′′−  for ,10 ≤≤ x  if and only if w is a unique function in 

]1,0[2C  whenever 

 

[ ]{ }∫ =−+
′′−

1

0
0)()()()()()( dxxxtxwxvxwxd jφ

        
                        (3) 

 

....,,1 ni =  From equation (1),

 

1)(),(
2

)(,)( −=−=−= xdxlx
EI

q
xt

EI

S
xv  and jφ

 
is 

a weight function. Equation (3) yields n  residual equations in n unknowns. This method 

approximates the solution of (1) by solving the system of equations derived from equation (3) 

simultaneously. In order to solve this system of equations, we used the finite element method as a 

variation tool. The finite element method is simply the Ritz-Galerkin method where the finite set 

of basis functions )(...,),(),( 21 xxx nφφφ  are splines. With these splines, the minimum of 

equation (3) is usually computed. We restrict ourselves to the splines defined in equation (6). 
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Thus, we convert the interval, ],0[ l  in equation (1), to ]1,0[  by the relation zx →  such that 

]1,0[, ∈= xlxz
 
and ].,0[ lz ∈  It follows that ),()( ztxf = ,

1)(
)(

22 ll

zd
xp −==  

)()( zvxr =
 
and ).()( zwxy =  )(xp  becomes the new coefficient of .y ′′  From equation (3), 

 [ ]{ }∫ =−+
′′−

1

0
0)()()()()()( dxxxfxyxrxyxp jφ     

[ ]{ }∫ =−+′′+′′−
1

0
0)()()()()()()()( dxxxfxyxrxyxpxyxp jφ            

  ( )∫∫ ′+′′−′=′′
1

0

1

0

1

0
)()()()()()()()()( dxxxpxxpyxxpxydxxyxp jjjj φφφφ                 

  ( )∫ ′+′′−=
1

0
)()()()( dxxxpxxpy jj φφ                  

 

It follows that    

    

{ }∫ ∫=+′′
1

0

1

0
)()()()()()()()( dxxxfdxxxyxrxyxxp jjj φφφ

    
             (4) 

 

We partition the interval ]1,0[  into 1+n  subintervals with n  interior points such that 

.1...,,2,1,0;;;1...0 1110 +==−==<<<<= ++ niihxxxhxxxx iiinn  

 

A small set of functions which consists of linear combinations of some basis functions 

)(...,),(),( 21 xxx nφφφ  contains the approximate solutions of (1) [16]. These functions are 

required to be linearly independent and satisfy the conditions given in equation (5) below. 

 

....,,2,1;0)1()0( niii === φφ                                                                    (5) 

 

In this paper, we used the conventional basis functions and their derivatives as defined in 

equations (6) and (7) below.  
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ni ...,,1= , 0)(,1)( 1 == −iiii xx φφ  and 0)( 1 =+ii xφ . If we connect ( )ii cx ,  by a line 

segment we obtain an approximation of the form  

 

∑ =
=

n

i iin xcxy
1

)()( φ                                                                                      (8)                                                                                      

 

where ic  approximates the exact solution of (1) at ).( ilxy  It follows that 

 

∑ =
′=′

n

i iin xcxy
1

)()( φ                                                                                      (9) 

 

The absolute error of approximation is .)()( lxyxyn −  Replacing y  by )(xyn  
and y ′  by 

)(xyn
′

 
 in equation (4) gives 

 

{ } ∫∫ =+′′
1

0

1

0
)()()()()()()()( dxxxfdxxxyxrxxyxp jjnjn φφφ  

 

Substitute for )(xyn  and )(xyn
′  values, from equations (8) and (9), into above equation: 

                                            

[ ] [ ]{ } ∫∫ ∑∑ =+′′
==
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The solution of equation (10) will produce nn ×  linear system of equations in nici ...,,2,1, =
, unknown constants. So, we must form and solve a matrix equation. Define 

 

       { }∫ +′′=
1

0
, )()()()()()( dxxxxrxxxpa jijiji φφφφ                                     (11) 
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From equation (11), 
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From equation (12), 
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From the above equations, we obtained the matrix equation for the system: 
 

BAC =                                                                                                         (17) 
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From equation (17), 

 

BAC 1−=                                                                                                        (18)                                                                                                                       

 

The absolute error is: Error = ( )lxyxyn −)( . 

 

4 New Conjugate Gradient Method 
 
The new conjugate gradient method (NCGM) [13] seeks to optimize a multivariable function f

whose gradient vector is .g  At a point ,kx the objective function F is represented by 

 

)(
!

1
...)(

2

1
)()()( 2

k

m

kkk xfw
m

xfwxwfxfxF ++++=  

where 

 

∑∑∑
== = ∂∂∂

∂
=

N

i iii

k

m

iii

N

i

N

i

k

m

N N

N xxx

xf
hhhxFw

11 1 ...

)(
......)(

21

21

1 2

, .2;,, ≥−=ℜ∈ − nxxhhx ijjj

m
 

 

The gradient function of F is represented by .G The algorithm for the scheme is given below. 

  

4.1 Algorithm I (NCGM) 
 

Input initial values: 0x and .00 GD −=  

 

Repeat:  

 

Find step length kα such that ).(min( kkkkk DxFDxF αα +=+  

Compute new point: .1 kkkk Dxx α+=+ Update search direction:  

 

[ ]
k

T

k

k
kkkkkkkkk

uD

G
xgxxgGDGD

2

1
111

||||
,)()2(

2

1
, +

+++ =+∆+=+−= ββ  

.1 kkk GGu −= + ||.|| denotes Euclidean norm. 

 

Check for optimality of :g Terminate iteration at step k if ||)(|| kxg is so small that kx is 

acceptable. 
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5 New Conjugate Gradient Method with Galerkin Theory 

 
The hybrid of the new Conjugate Gradient Method and Galerkin theory seeks to )(

0
xyMaximize

lx≤≤  
subject to equation (1). By our method, we require the matrix A, in equation (16), to be symmetric 

otherwise we replace A with an equivalent symmetric matrix M. That is, BAACA
TT =    

 

or   

ZMC =                                                                                                            (19) 

 

where AAM T=  and .BAZ
T=  Also, AM =  if A is symmetric. By our assumption of 

uniqueness of solution of (1), we state that the matrix M is also positive definite. It follows that we 

are guaranteed to form an objective function from equation (19) as given below. 

 

ZCMCCCF TT −=
2

1
)(                                                                              (20) 

 

The gradient function is 

 

ZMCCG −=)(                                                                                              (21) 

 

Next, we seek to solve the following optimization problem. 

 

CoverFMinimize )(−                                                                                 (22)                                                                                                                

 

Since our objective function F in equation (20) is a quadratic function, we used the new Conjugate 

Gradient Method to solve (22). This technique solves the optimization method through an iterative 

procedure 

 

kkk dC α+=+1kC                                                                                             (23) 

 

...,2,1,0=k , kd  is a direction vector and kα  is the line search step length at iteration .k  

Usually, we find kα  such that )).((min
0

kkk dCF αα
α

+−=
>

 The algorithm is given below. 

 

5.1 Algorithm II (Hybrid of the New Conjugate Gradient Method and 

Galerkin Theory) 
 

Let )( kk CGG =  and ( )2

1

k

T

kk GGG = . Choose a whole number .
1

1

+
=

n
handn

 

Use 

Galerkin method to obtain equations (17) and (19) and ZMCCG kk −=)(
 
 from equation (21). 

Use the following initial values: 
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.,0,)0...,,0,0( 000 GDkC
T −===  

 

Repeat the following steps of the new Conjugate gradient method. 

 

a. Find step length kα such that  

0

)(min)(
>

+=+
α

αα kkkkk DCFDCF
  

b.  Compute new point:                                                                                                               

  kkkk DCC α+=+1  
 

c.  Update search direction: 

    kkkk DGD β+−= ++ 11 ,                                                               

       

[ ])()2(
2

1
1 kkkk CGCCGG +∆+=+                                                   

       

k

T

k

k

k
yD

G
2

1+
=β                                                                           

        kkk GGy −= +1                                                                              

d.  Check for optimality of G : Terminate iteration at step k  when kG  is so small that 

kC  is an acceptable estimate of the optimal point of F . If not optimal set .1+= kk  

 

6 Numerical Examples 

 
We used the hybrid of the new Conjugate Gradient Method and Galerkin theory to find the 

maximal deflection of a simply supported beam under uniformly distributed load from the 

following boundary value problems. Each boundary value problem governs the deflection of a 

structured beam as described in exercise 11.3, page 666, of [1]. Nine interior points were used in 

each case.  

 

Problem 1: The boundary-value problem governing the deflection of a beam, in Fig. 1, with 

supported ends, is 

 

)120(
2

)(
)(

2

2

xx
EI

q
xy

EI

S

dx

xyd
−+= ,  1200 ≤≤ x  

).120(0)0( yy ==
 

 

Suppose the beam is a W10-type steel I-beam with the following characteristics: 

 

;625/103,/
3

1
8,120,1000 427 mIandmNEmNqmlNS =×====  
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where  l  is the length, S  is the stress at the ends, q is the intensity of uniform load, E is the 

modulus of elasticity and I is the central moment of inertia. Find the maximum deflection of the 

beam at its middle. 

 

Solution of problem (1): In the interval ]1,0[ , we restated problem (1) as 

[ ] )()()()()( xfxyxrxyxp =+
′′− ,  ),1(0)0( yy ==

 
;10 ≤≤ x         

where

 

).120120(120
2

)()(,
14400

11
)(

2
xx

EI

q
xfand

EI

S
xr

l
xp −=−=−=−=  

 

Algorithm (5.1) was used to solve the problem. The solution is shown in Table 1. 

 

Table 1. Solution of problem 1 (Maximal deflection is 0.12cm downwards) 

 

]1,0[,
10

1
,9 ∈== ixhn  

i  
ix  ii cxy =)(9  )120( ixy  Error = )120()(9 ii xyxy −  

1 0.1 -0.000376675239629 -0.000376675016014 2.23615 x 10
-10

 

2 0.2 -0.000712649320008 -0.000712648849003 4.71005 x 10
-10

 

3 0.3 -0.000975668780120 -0.000975668110186 6.69934 x 10-10 

4 0.4 -0.001142695610452 -0.001142694818554 7.91898 x 10
-10

 

5 0.5 -0.001199907076070 -0.001199906197144 8.78927 x 10
-10

 

6 0.6 -0.001142695610458 -0.001142694702139 9.08319 x 10
-10

 

7 0.7 -0.000975668780131 -0.000975667935563 8.44568 x 10
-10

 

8 0.8 -0.000712649320025 -0.000712648557965 7.6206 x 10-10 

9 0.9 -0.000376675239651 -0.000376674608560 6.3109 x 10
-10

 

 

Exact solution of problem (1): The deflection of the beam at point x  is given by 

 

.1200,
2120

)(
2

2

21 ≤≤+−++= − x
a

b
x

a

b
x

a

b
eCeCxy axax

 

 

Where 

 

andaCC
8

21 1033333.5,74624780185.79207,35375219814.77042 −×=−=−=
101022222222.2 −×=b  

 

Problem 2: The boundary-value problem governing the deflection of a m20 long beam with 

flexural stiffness EI is given by 
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)20(
2

)(
2

2

xx
EI

q

dx

xyd
−= ,  200 ≤≤ x                                                                    

),20(0)0( yy ==
 

 

andNmEImNqml 2610333.133,/5000,20 ×=== q is the intensity of the uniform 

load. Find the maximum deflection of the beam at its middle. 

 

Solution of problem (2): In the interval ]1,0[ , we restated problem (2) as 

 

[ ] )()()()()( xfxyxrxyxp =+
′′− ,  ),1(0)0( yy ==

 
;10 ≤≤ x         

where

 

).2020(20
2

)(0)(,
400

11
)(

2
xx

EI

q
xfandxr

l
xp −==−=−=  

 

Algorithm (5.1) was used to solve the problem. The solution is shown in Table 2. 

 

Table 2. Solution of problem 2 (Maximal deflection is 7.81cm downwards) 

 

]1,0[,
10

1
,9 ∈== ixhn  

i 
ix  ii cxy =)(9  )20( ixy  Error = )20()(9 ii xyxy −  

1 0.1 -0.024525000061357 -0.024525000061312 4.4 x 10
-14

 

2 0.2 -0.046400000116089 -0.046400000116000 8.9 x 10
-14

 

3 0.3 -0.063525000158946 -0.063525000158812 1.33 x 10-13 

4 0.4 -0.074400000186200 -0.074400000186000 1.78 x 10
-13

 

5 0.5 -0.078125000195535 -0.078125000195312 2.22 x 10
-13

 

6 0.6 -0.074400000186266 -0.074400000186000 2.66 x 10
-13

 

7 0.7 -0.063525000159123 -0.063525000158812 3.11 x 10
-13

 

8 0.8 -0.046400000116355 -0.046400000116000 3.55 x 10-13 

9 0.9 -0.024525000061712 -0.024525000061312 4 x 10
-13

 

 

Exact solution of problem (2): The deflection of the beam at point x  is given by 

 

( ) .200,800040
12

)( 43 ≤≤−−= xxxx
b

xy  

.
2EI

q
b =

 
 

Problem 3: The deflection of a uniformly loaded, long rectangular plate under an axial tension 

force is governed by a second-order differential equation. Let S represent the axial force and q

the intensity of the uniform load. The deflection w  along the elemental length is given by 
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)50(
2
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)(

2

2

xx
D

q
xy

D

S

dx

xyd
−+= ,  500 ≤≤ x                                                                    

),50(0)0( yy ==
 

 

;108.8,/200,50,100 27 NmDmNqmlNS ×====
  

 

where  l  is the length of the plate and D  is the flexural rigidity of the plate. Find the maximum 

deflection of the beam at its middle.  

 

Solution of problem (3): In the interval ]1,0[ , we restated problem (3) as 

 

[ ] )()()()()( xfxyxrxyxp =+
′′− ,  ),1(0)0( yy ==
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Algorithm (5.1) was used to solve the problem. The solution is shown in Table 3. 

 

Exact solution of problem (3): The deflection of the beam at point x  is given by 
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2

50)( 2

21 ≤≤+−++= −
x

a
xxeCeCxy

axax

andCC 5282739757.903446,471726025.856553 21 −=−=  

6
10636361363636363.1

−×=a  
 

Table 3. Solution of Problem 3 (Maximal deflection is 18.49cm downwards) 

 

]1,0[,
10

1
,9 ∈== ixhn  

i  
ix  ii cxy =)(9  )50( ixy  Error = )50()(9 ii xyxy −  

1 0.1 -0.058044685436589 -0.058044549310580 1.36126009 x 10-7 

2 0.2 -0.109817315930269 -0.109817057382315 2.58547953 x 10-7 

3 0.3 -0.150347747852438 -0.150347393937409 3.53915029 x 10-7 

4 0.4 -0.176085979463466 -0.176085565239191 4.14224275 x 10-7 

5 0.5 -0.18490205005989 -0.184901615371928 4.34687963 x 10-7 

6 0.6 -0.176085979463886 -0.176085566170514 4.13293373 x 10-7 

7 0.7 -0.150347747853279 -0.150347396032885 3.51820394 x 10-7 

8 0.8 -0.10981731593153 -0.109817060641944 2.55289585 x 10-7 

9 0.9 -0.05804468543827 -0.058044552803040 1.32635231 x 10-7 
 

7 Numerical Solutions 
 
We used MatLab to solve the given boundary value problems.  
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8 Discussion of Numerical Results 

 
The data shown in Tables 1 to 3 reveal that results obtained by the hybrid of the new conjugate 

gradient  method and Galerkin theory are very close to the exact solutions of the given boundary 

value problems. We observed that errors on numerical solutions decrease as interior points 

increase. 

 

9 Conclusion 

 
We have used this hybrid of a new conjugate gradient method and Galerkin theory to find the 

maximal deflection value of a simply supported beam under uniformly distributed load. The 

characterized two-point linear, second order, boundary value problems with homogeneous 

boundary conditions were solved, numerically. Simple basis functions were used as trial functions 

in our approximations. Results from Tables 1 to 3 confirm that our method is accurate and 

reliable. 

 

Herein, we present the hybrid of a new conjugate gradient method and Galerkin theory to 

engineers and scientists who wish to solve real life problems in this class of boundary value 

problems. 
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