
_____________________________________________________________________________________________________ 
 
*Corresponding author: Email: Hamid.Fardi@ucdenver.edu; 

 
 

Journal of Scientific Research & Reports 
6(2): 84-98, 2015; Article no.JSRR.2015.134 

ISSN: 2320-0227 
 

SCIENCEDOMAIN international 
                                     www.sciencedomain.org 

 

 

Numerical Analysis of Semiconductor PN Junctions 
Using MATLABTM 

 
Hamid Fardi1* 

 
1Department of Electrical Engineering, University of Colorado Denver, United States of America. 

 
Author’s contribution 

 
The sole author designed, analyzed and interpreted and prepared the manuscript. 

 
Article Information 

 
DOI: 10.9734/JSRR/2015/14434 

Editor(s): 
(1) José Alberto Duarte Moller, Center for Advanced Materials Research, Complejo Industrial Chihuahua, Mexico. 

Reviewers: 
(1) Yoshiki Yonamoto, Hitachi, Ltd., Yokohama Laboratory, Japan. 

(2) Jyh Jian Chen, Department of Biomechatronics Engineering, National Pingtung University of Science and Technology, 
Taiwan. 

(3) Abel Garcia-Barrientos, Electronics and Computer Science Dept., Autonomous University of Hidalgo State (UAEH), México. 
Complete Peer review History: http://www.sciencedomain.org/review-history.php?iid=963&id=22&aid=8080 

 
 
 

Received 30th September 2014 
Accepted 13

th
 January 2015 

Published 7th February 2015 

 
 

ABSTRACT 
 

The purpose of this project is to develop a functional PN semiconductor device simulator that is 
modular in nature in order to allow for flexibility during programming and to allow for future 
development with relative ease. In addition, the program’s main goal is to provide a tool that can 
supplement device modeling and  the standard course material covered in a basic college level 
introduction, semiconductor device physics, course or and numerical analysis course and to 
construct basic PN semiconductor devices which can be studied using standard numerical analysis 
techniques. A device modeling program is developed using the basic MATLAB tools necessary to 
understand the operation of the program and allow future developments as necessary. MATLAB’s 
capability and inherent nature of handling matrices and matrix operations makes this approach an 
excellent technique to develop numerical analysis algorithms.  
The program solution will be used to examine device parameters such as carrier statistics, device 
potential, and internal electric fields. The device solution is compared to analytical approximations 
in order to further strengthen the understanding between theory and exact numerical solutions and 
how those solutions are obtained. 
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1. INTRODUCTION 
 
The purpose of this project is to develop a 
general purpose semiconductor device simulator 
(SDS) that is functional and modular in nature in 
order to allow flexibility and future development 
without any major reprogramming effort to the 
base code. In addition, the program’s main goal 
is to develop a tool that can supplement the 
standard course material covered in a basic 
college level Introduction to Semiconductor 
Physics course, or Numerical Analysis course to 
build basic semiconductor devices and study the 
various parameters such as carrier statistics, 
device potential, and internal electric fields [1,2].  
 
Although there are several industry and student 
level device physics simulators already available 
[3], the hope is that with this new tool and report, 
the theory of numerical analysis applied to device 
physics can be studied in a more thorough 
manner. The addition of the report that 
supplements the program will develop the basic 
tools necessary to understand the operation of 
the program and allow future developments as 
necessary. 
 
This project was developed in the programming 
environment provided by MATLAB™ which is 
developed and supported by Mathworks [4]. 
Almost all academic institutions use MATLAB 
heavily in the learning process and is readily 
available to most students, hence the choice of 
this programming environment. Additionally, 
MATLAB is an extremely powerful numerical 
analysis tool that makes the solution of a 
program like this one rather straightforward. 
MATLAB’s capability and inherent nature of 
handling matrices and matrix operations makes 
this an excellent tool to develop numerical 
analysis algorithms [5].  
 
The current semiconductor simulation tools 
available do not lend to updates or modification 
simple or straightforward. In fact most tools are 
not open to be changed in any manner unless 
the source code is available [6]. With the open 
nature of MATLAB the solution process can be 
studied throughout and all variables and 
parameters are available to study. The program 
does have the capability to be standalone which 
allows for the use of the tool without the 
requirement of the MATLAB environment [7-15]. 
 
The remaining discussion in this section gives a 
brief overview of the contents included in this 
report. 

Section 2 gives a brief introduction to the devices 
physics required to build a numerical analysis 
program to simulate semiconductor devices in 
general. Device physics equations (continuity, 
poisson’s, current, etc.) are discussed as are the 
models, such as mobility, SRH (Shockley-Read 
Hall) Recombination, and generation. Boundary 
conditions are also discussed. Lastly, silicon 
material parameters are given and briefly 
discussed. Currently no other semiconductor 
material is used in this program, but the addition 
of other materials is rather straightforward.  

 

Section 3 will give a brief introduction to 
numerical analysis techniques followed by 
simulation results in section 4 and compare them 
to basic theory (depletion width, built in potential, 
etc.) as well as with other simulation tools, such 
as Sim Windows. 

 

APPENDIX – This section will discuss the 
program as written and the various functions built 
to support it. Each function will be discussed and 
explained. It should be noted however, that the 
MATLAB code itself is heavily commented as a 
supplement to this section.  

 

2. SEMICONDUCTOR DEVICE PHYSICS 

 

Semiconductor device phenomenon is described 
and governed by Poisson’s equation (1)  
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Is the effective doping concentration defined for 
the semiconductor, N(x) is the position 
dependent net doping density, Nd is the donor 
density, and Na is the acceptor density. Equation 
(1) is the differential equation for the potential 
distribution in an arbitrarily doped semiconductor 
[16-18]. This equation, depending upon the 
particulars, is difficult to solve analytically and in 
some cases can be impossible. Approximations 
must be made in most analytical solutions, 
alternatively numerical methods can be used 
which is the focus of this report. The time (t) 
dependent equations for electrons and holes 
(2a,b) are defined by electron (n) and hole (p)  
densities, electron current density (Jn) and hole 
current density (Jp). 
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Equations (2a) and (2b) are known as the 
continuity equations for electrons and holes 
respectively. In equation (2), q is the electronic 
charge, G is the total generation rate per unit 

volume, bbU   is the band-to-band radiative 

recombination rate per unit volume, and SRHU  is 

the Shockley-Read-Hall recombination rate per 
unit volume [19,20]. It is assumed that the 
recombination centre is at the middle of the 
bandgap energy level. This assumption simplifies 
the Shockly-Read-Hall recombination model to 
be dependent on only the carriers lifetime. 
 
These equations are used to describe the free 
carrier densities and their properties within the 
device by examining their interactions within a 
small infinitesimal volume that we can extend 
across the device as a whole. The current 
transport equations or current densities are 
defined by a combination of the drift and diffusion 
affects on the free carriers within the device. The 
drift portion of the current expression is simply 
due to the presence of an electric field (E), if 
there is one. This electric field creates an overall 

drift velocity dv , and is proportional to the electric 

field and the mobility of the carrier [21-23]. 
 

Ev nd                                   (3) 

 
The mobility (n) of the electron carrier is a 
parameter that describes the ease of motion of 
an electron in response to an electric field.  
 
The same procedure can be extended to the hole 
free carriers and then combined to give the total 
current density due to the applied electric field in 
equation (4). 
 

EpqnqJJJ pndriftpdriftndrift )(,,    (4) 

 
In Eq. (4) Jdrift is the total drift current density, 
Jn,drift,  and Jp, drift are the drift current densities of 
the free carriers, and  the hole carrier mobility is 
defined by p. The other affect on the current 
density through a device is due to the diffusion of 

free carriers in the device if a special variation of 
carrier energies or densities exist.  
 

dx

dn
qDJ ndiffn ,     where, nn

q

kT
D       (5) 

 

The quantity nD , is known as the diffusion 

constant or Einstein relationship.  In Eq. (5) k is 
the Boltzmann constant and the ambient 
temperature is defined by T in unit of Kelvin. 
 

2.1 Carrier Densities 
 
The carrier models used in this program follow 
the Boltzmann statistics approximation. 
 
This project neglects band gap narrowing due to 
heavy doping levels. The intrinsic carrier 
concentration (nie) then is only modeled as a 
function of temperature as shown below. 
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CN  (T) and VN  (T) are known as the density of 

states for conduction and valence bands and 

along with the band-gap energy, gE also have 

dependencies on temperature (T) [24-27]. 
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(300)CN and (300)VN  along with   and  , 

are predefined constant quantities given in            
Table 1. 
 
Currently only parameters for Silicon material are 
used. The corresponding program variable is 
also shown in Table 1. 
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2.2 Mobility Models 
 
The mobility ) of an electron or hole to move 
throughout the silicon crystal lattice is 
representation of the responsiveness of a free 
carrier to move through the conduction and 
valence bands in the presence of an electric 
field. This phenomenon is governed by several 
complex interactions at the quantum mechanical 
level [28,29]. 
  
Temperature plays a major role because at 
higher temperatures the lattice will vibrate more 
causing the overall free carrier mobility to lower. 
Dopant levels also have a significant role since 
the dopant sites create local distortions in the 
lattice allowing the free carriers to scatter more 
[30]. 
 
The models built into SDS allow for effective 
doping dependency and electric field 
dependency. There is also a factor included to 
take into account for high-injection levels in high 
power devices. These models can be turned on 
or off to account for any dependency that is 
desired. 
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The max, min, Nref, , and Ec are constants 
and fitting parameters tabulated in Table 2. 
 
The SDS program models both generation and 
recombination for use in determining current flow 
in the specified device when solving both the 
continuity equations and Poisson’s equation. The 
most fundamental type of recombination defined 
as Shockley-Read Hall recombination (USRH). 
The recombination rates are defined as: 
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Table 1. Material parameters for silicon 

 
Nomenclature Physical 

parameter 
MATLAB 
program 
variable 

Default value Units 

Relative permittivity 
r  

er 11.7 - 

Silicon permittivity 
s  

es 1.036 x 10
-12

 F/cm 

Energy gap (300K) 
gE (300) 

EG300 1.08 eV 

Alpha α EG_alpha 4.73 x 10
-4

 - 
Beta β EG_beta 636 - 
Conduction band density of states  
(300K) 

NC NC300 2.8 x 1019 cm-3 

Valence band  
Density of states (300K) 

NV NV300 1.04 x 1019 cm-3 

Electron mobility 
n  

Function 1350 cm
2
/V-

sec 
Hole mobility 

p
 

Function 495 cm
2
/V-

sec 
Intrinsic carrier concentration nie nie 1.45 x 10

10
 cm

-3
 

SRH electron lifetime τn tau_n0 0.2 x 10
-7

 sec 
SRH hole lifetime τp tau_p0 0.2 x 10-7 sec 
Donor energy level  - 0.044 eV 
Acceptor energy level  - 0.045 eV 
Saturation velocity  Function - cm/sec 
Band-to-Band constant, B  - 2.8 x 10-31 cm6/sec 
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where, ien  is the intrinsic carrier density at 

thermal equilibrium. 
 

The electron and hole lifetime are defined by n  

and p , respectively and are defined below 

where , is the capture cross-section for 

electrons (nand holes (p tN  is the density 

of trapping centers, and Vth is the thermal 
velocity. 
 

1 1
n p

n th t p th t

and
v N v N

 
 

         (13) 

 

It is assumed that the recombination center is 
located at the middle of the band gap energy 
level. This assumption simplifies the Shockley-
Read-Hall recombination model to be dependent 
on only the carriers lifetime. 
 

The band-to-band recombination (Ub-b) is 
characterized by electron-hole pairs disappearing 
without the aid of trapping centers modeled in 

equation (2) by )( 2
iebb nnpBU  . 

 

The generation term (G) used in this program 
models the basic generation affect due to impact 
ionization rate for electrons (n) and holes (p). It 
is useful in characterizing reverse applied bias 
breakdown. In low electric field applied bias 
cases the generation rates are typically 
negligible. 
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The constants n0 , p0, En0, Ep0, and m are tabulated in Table 3.
 

Table 2. Mobility parameters 
 

Nomenclature Physical 
parameters 

MATLAB 
program 
variable 

Default 
value 

Units 

Electron mobility concentration reference 
nrefN ,  in Eq. (10) Nrefn 8.5 x 1016  cm-3 

Electron mobility alpha α in Eq. (11) alphan 0.72 - 
Electron mobility beta β  in Eq. (10) betan 2 - 
Electron critical electric field Ec  Ecn 8.0 x 10

3
 V/cm 

Electron maximum mobility μmax mu_maxn 1330 cm2/V-sec 
Electron minimum mobility μmin mu_minn 65 cm

2
/V-sec 

Hole mobility concentration reference 
prefN ,  in Eq. (10) Nrefp 6.3 x 1016 cm-3 

Hole mobility alpha α  in Eq. (11) for 
hole 

alphap 0.72 - 

Hole mobility beta β  in Eq. (10) for 
hole 

betap 1 - 

Hole critical electric field Ec  for hole Ecp 1.95 x 10
4
 V/cm 

Hole maximum mobility μmax for hole mu_maxp 495 cm
2/
V-sec 

Hole minimum mobility μmin for hole mu_minp 47.7 cm2/V-sec 
 

Table 3. Generation parameters 
 

Nomenclature Physical parameter MATLAB program variable Default value Units 
Electron Alpha αn  in Eq. (14) alpha_n0 2.25 x 10

7
  

Hole Alpha αp  in Eq. (14) alpha_p0 3.08 x 106  
Electron Energy En0 in Eq. (15) E_n0 3.26 x 10

6
 V/cm 

Hole Energy Ep0 in Eq. (15) E_p0 1.75 x 106 V/cm 
Fitting Parameter m in Eq. (15) m 1 - 
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3. NUMERICAL ANALYSIS 
 

The electrical device equations are solved by 
direct Newton-Raphson’s method and the energy 
balance equations are solved by Gummel’s 
decoupled method [31]. This approach is 
implemented due to its simplicity in modifying an 
existing simulation program [32]. The isothermal 
electrical equations are solved for fundamental 
variables of quasi-Fermi levels for electrons and 
holes and electrostatic potential at a 
preconditioned electron temperature (the lattice 
temperature is kept at an ambient room 
temperature). For non-isothermal conditions, 
Gummel’s method is used to compute electron 
temperature. Two types of boundary conditions: 
Ohmic contacts and finite surface recombination 
velocity are supported. Standard box 
discretization method of both the carrier 
continuity equations and the energy balance 
equations are applied by extending Scharfetter-
Gummel algorithm, similar to those used in the 
literature [18,19].   
 

3.1 P-N Junction Diode Example 
 

In this section, a procedure for performing DC 
analysis of a 1-D, P-N junction device will be 
developed. The basic P-N junction diode is 
examined as further development techniques for 
other devices follow the same basic procedures 
and solutions used in this section. For a 1-D 
Bipolar Junction Transistor, for example, only 
slight modification of this procedure is required 
and the resulting simulator program can be 
modified to use either solution depending upon 
the device specified. Another example of 

modification is time domain analysis, which 
requires extra division spacing but ultimately 
requires little modification to the base program 
with the conceptual idea that these further 
implementations can be readily incorporated. 
 

Before we can proceed with numerical analysis 
of the device shown in Fig. 1, a few points of 
interest should be noted. Many of the models 
used in the solution procedure can be expanded 
easily to incorporate more advanced models. For 
example, the intrinsic carrier concentration model 
is currently only temperature dependent and the 
mobility model is fixed across the device. Both 
could be modified to incorporate band gap 
narrowing for heavily doped devices or electric 
field dependency respectively. More discussion 
on each model used in this section along with its 
capabilities is further discussed in Section 4. 
 

The boundary conditions need to satisfy a zero 
space charge region at each contact x=0 and 
x=w as shown in Fig. 2. Usually the 
semiconductor forming an ohmic contact with the 
metal has sufficiently high doping concentration. 
If there were a nonzero space charge region in 
such a highly doped semiconductor, then there 
would be a correspondingly high electric field 
which would lead to breakdown conditions at the 
metal-semiconductor contact, so therefore the 
zero space charge condition must be satisfied.  
 

,0)()()(,0)0()0()0(  wnwpwnp  (16a) 

 

,)()(,)0()0( 22
ii nwnwpnnp           (16b) 

 

 
 

Fig. 1.  Schematic of a P-N junction diode at x-direction 



 
 
 
 

Fardi; JSRR, 6(2): 84-98, 2015; Article no.JSRR.2015.134 
 
 

 
90 

 

 
 

Fig. 2. Division points for dc analysis 
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Equation (16a) satisfies the zero space charge 
condition specified above, while equation (16b) 
satisfies the thermal equilibrium condition 
necessary at each contact. Equations (16a and 
b) are used to establish the two-point boundary 
conditions that are self-consistent among the two 
equations and the result is shown in equation 
(17). 
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Conditions for the potential boundary conditions 
given in equation (16c) are deduced by the use 
of the quasi-Fermi potentials briefly discussed in 
Section 2. These are re-written here in equation 
(18) for reference. 
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If the definition of the zero potential point on the 
n-region and applied bias (V) on the p-region is 
extended to equation (18) it follows 
that

Vandww npnp  )0()0(0)()( 

. With equation (17c) and equation (18) we now 
have a two-point boundary condition with respect 
to the three unknown variable, n, p, and ψ for 
use in the solution of the device. 
 
This solution uses uniform mesh spacing and is 
sufficient for most classes of devices, however 

when the extent of the depletion region becomes 
much smaller than the neutral bulk regions it is 
sometimes more beneficial to have course mesh 
spacing in the neutral regions and finer mesh 
spacing in the depletion region.  
 

3.2 Numerical Solution 
 
This section will discuss the numerical solution 
process used to solve the matrix-vector equation 
(33), including development of the trial values, or 
initial guess, and finally Newton’s iteration 
principle to update the trial values and check for 
convergence of the solution.  
 
A solution procedure is conceptualized below: 
 

(1) Define physical and numerical parameters 
(2) Define iteration limit and set current 

iteration number to zero. 
(3) Use the matrix-vector coefficients to 

calculate the error for each iteration using 
the recursive algorithm discussed in 
Appendix.  

(4) Improve the initial guess or trial potentials 
by adding the calculated error. 

(5) Check for convergence against defined 
convergence tolerance. 

(6) End program if solution has converged 
otherwise update current iteration limit by 1 
and return to step (3) repeating the 
process until solution has converged or 
iteration limit is reached. 

 
Assuming that a converged solution for the 
equilibrium condition has been reached, 
extending the solution to an external biased 
condition only requires updating the equilibrium 
condition potential with a simple proportional 
relationship and then repeating the process 
defined above. The numerical constants and the 
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physical constants are given in Table 4 and 
Table 5 respectively. 
 

4. SDS RESULTS INVESTIGATED 
 
In this section, we will review the output of the 
SDS program and compare it to other simulators, 
notable SimWindows [6]. SimWindows is also a 
1-D semiconductor device simulator capable of 
simulating the same devices as the SDS 
program.  
 
Fig. 3. shows the output for the potential of the 
SDS program when run with an abrupt step 
junction of equal doping in both regions. The 
cursor in the graph is displaying the pertinent 
information. 
 
We can also observe in Fig. 3 that the potential is 
zero at the junction transition as we expect since 

the doping densities are equal in the bulk n and 
p-regions. Fig. 4 shows the equilibrium electric 
field throughout the device. It is also symmetrical 
about the junction as we expect. 
 
Figs. 5 and 6 show the potential for a PN junction 
where the acceptor dopant density is greater 
than the donor density. This shows the depletion 
region extending further into the n-region as it 
should, as well as a nonzero value at the 
transition region. Fig. 6 is taken from 
SimWindows as verification the correct solution 
was obtained. The only difference in 
SimWindows is that all plots are scaled to zero, 
meaning there are no negative potential values. 
SDS has an option to do this as well and the 
result is shown in Fig. 7. 
 
 

 

 
 

Fig. 3. Equilibrium device output potential 
 

φn 

φp 

φi= φn- φp = 0.2878 – (-0.2878) = 0.5756 
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Fig. 4. Equilibrium electric field. Emax is at the transition region. 
 

Table 4. Numerical constants 
 

Nomenclature MATLAB program variable Default value Units 
Device length length 10 um 
Convergence tolerance etol 1 x 10-6 - 
# Grid points L 1001 - 
Iteration number it 0 - 
Iteration limit itl 15 - 

 

Table 5. Physical constants 
 

Nomenclature Program variable Default value Units 
Dielectric permittivity constant eo 8.854 x 10-14 F/cm 
Electronic charge q 1.602 x 10

-19
 C (A-sec) 

Boltzmann’s constant k 8.62 x 10
-5

 eV/K 
Thermal voltage Vt 0.02586 V 
Boltzmann factor (thermal voltage) 1/Vt 38.6 1/V 
Temperature T 300 K 
Donor concentration Nd 1 x 10

15
 cm

-3
 

Acceptor concentration Na 1 x 10
15

 cm
-3

 
Left contact Vl 0 V 
Right contact Vr 0 V 
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Fig. 5. Equilibrium device potential with external applied bias 
 

 
 

Fig. 6.  SimWindows comparison to Fig. 5 with external applied bias 
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Fig. 8 shows the electric filed simulation using 
SimWindows. The electric field comparison with 
SimWindows using SDS program is shown in 
Fig. 9.  The electric field is always max at the 

junction transition; however when the dopant 
densities are unequal across the junction, the 
field will be push further into the region with less 
doping atoms just as the depletion region does. 

 

 
 

Fig. 7. SDS output shifted to zero as compared to Fig. 6 
 

 
 

Fig. 8. Electric field simulation obtained using SimWindows 
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Fig. 9. SDS electric field simulation  
 

5. CONCLUSION 
 
A general purpose semiconductor device 
simulator (SDS) is developed using MATLAB.  
The software program developed has provided a 
tool that can supplement semiconductor device 
modeling by solving basic semiconductor device 
equations using MATLAB tools. The use of 
MALTAB simulation tools made SDS modular in 
nature and has simplified the numerical analysis 
and solution algorithms. The program is used to 
examine device parameters such as carrier 
statistics, device potential, and internal electric 
fields. The comparison made with the analytical 
approximations supports SDS and further 
strengthen the understanding between theory 
and numerical solutions and how those solutions 
were obtained and analyzed. 
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APPENDIX 
 
Semiconductor Device Simulator (SDS) 
 
In this Section, a brief overview of the SDS 
program is given with explanations for key 
aspects of the program that are not explicitly 
covered in any other section. We will begin by 
looking at the “main” program and then 
investigate the functions that are implemented in 
support of the main program. 
 
As we have seen throughout the project, the 
main purpose is to write a program that solves 
the matrix-vector equation which was established 
from the classic differential equations in Section 
2. In most aspects the program can be 
developed however the developer likes, but in 
certain instances poor coding techniques will 
lead to longer computation times and ultimately 
slower convergence speeds for a given device 
setup. The main important goal is to manipulate 
the matrix coefficients efficiently and to solve the 
matrix-vector equation with as little iteration as 
possible. On key element to this is establishing 
the proper boundary conditions and trial values. 
 
A basic flow diagram of the main program is 
given below. The first few blocks simply establish 
any constants, or numerical parameters required 
to solve the device. The second block 
establishes any user defined inputs which also 
include device information for the device to be 
simulated. A note should be made that the code 
provided in Appendix III, and referenced in 

sections here, is heavily commented and the 
reader should reference the comments for any 
confusion that may arise. 
 
clear all;  %Clears all previously stored variable 
information 
close all; %Closes all previously open plots 
clc;  %Clears the command window to blank 
TSTART = tic; %Starts a timer to record solution 
time 
format long eng; %Formats the data to 
engineering mode 
 
This block is a simple setup that is used before 
any new simulation is run. All stored variable 
information in the MATLAB workspace is cleared, 
all open plots are closed, and the command 
window is cleared. This section also starts a 
timer, which is used to investigate the speed of 
the computation algorithm for various device 
setups. 
 
Every calculated value that is stored in a variable 
is accessible after the program is run in the main 
MATLAB workspace. For example, the last 
iterated value for the error values is stored in an 
error vector. The program can be easily modified 
to run through one iteration at a time allowing the 
user to investigate the change in error over each 
iteration. Every opportunity for the user to access 
the calculated data has been provided so that 
any insight into those variables can be gained if 
necessary. 
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