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Abstract

The Disk Substructures at High Angular Resolution Project (DSHARP) provides a large sample of protoplanetary
disks with substructures that could be induced by young forming planets. To explore the properties of planets that
may be responsible for these substructures, we systematically carry out a grid of 2D hydrodynamical simulations,
including both gas and dust components. We present the resulting gas structures, including the relationship
between the planet mass, as well as (1) the gaseous gap depth/width and (2) the sub/super-Keplerian motion
across the gap. We then compute dust continuum intensity maps at the frequency of the DSHARP observations.
We provide the relationship between the planet mass, as well as (1) the depth/width of the gaps at millimeter
intensity maps, (2) the gap edge ellipticity and asymmetry, and (3) the position of secondary gaps induced by the
planet. With these relationships, we lay out the procedure to constrain the planet mass using gap properties, and
study the potential planets in the DSHARP disks. We highlight the excellent agreement between observations and
simulations for AS 209 and the detectability of the young solar system analog. Finally, under the assumption that
the detected gaps are induced by young planets, we characterize the young planet population in the planet mass–
semimajor axis diagram. We find that the occurrence rate for >5MJ planets beyond 5–10 au is consistent with
direct imaging constraints. Disk substructures allow us to probe a wide-orbit planet population (Neptune to Jupiter
mass planets beyond 10 au) that is not accessible to other planet searching techniques.

Key words: hydrodynamics – planet–disk interactions – planets and satellites: detection – planets and satellites:
formation – protoplanetary disks – submillimeter: planetary systems

1. Introduction

Discoveries over the past few decades show that planets are
common. The demographics of exoplanets have put constraints
on planet formation theory (e.g., see the review by Chabrier
et al. 2014; Johansen et al. 2014; Raymond et al. 2014).
Unfortunately, most discovered exoplanets are billions of years
old and have therefore been subject to significant orbital
dynamical alteration after their formation (e.g., review by
Davies et al. 2014). To test planet formation theory, it is crucial
to constrain the young planet population right after they are
born in protoplanetary disks. However, the planet search
techniques that have discovered thousands of exoplanets
around mature stars are not efficient at finding planets around
young stars (<10Myr old) mainly due to their stellar variablity
and the presence of the protoplanetary disks. Fewer than 10
young planet candidates in systems <10Myr have been
detected so far (e.g., CI Tau b, Johns-Krull et al. 2016; V
830 Tau b, Donati et al. 2016; Tap 26 b, Yu et al. 2017; PDS 70
b, Keppler et al. 2018; LkCa 15 b, Sallum et al. 2015).

On the other hand, recent high resolution imaging at near-IR
wavelengths (with the new adaptive optics systems on 10 m
class telescopes) and interferometry at radio wavelengths
(especially the ALMA and the VLA) can directly probe the
protoplanetary disks down to astronomical unit scales, and a
variety of disk features (such as gaps, rings, spirals, and large-
scale asymmetries) have been revealed (e.g., Casassus et al.
2013; van der Marel et al. 2013; ALMA Partnership et al. 2015;
Andrews et al. 2016; Garufi et al. 2017). Despite that there are
other possibilities for producing these features, they may be
induced by young planets in these disks, and we can use these
features to probe the unseen young planet population.
Planet–disk interactions have been studied over the past three

decades with both analytical approaches (Goldreich & Tremaine
1980; Tanaka et al. 2002) and numerical simulations (Kley &
Nelson 2012; Baruteau et al. 2014). While the earlier work focused
on planet migration and gap opening, more recently efforts have
been dedicated to studying observable disk features induced by
planets (Wolf & D’Angelo 2005; Dodson-Robinson & Salyk 2011;
Zhu et al. 2011; Gonzalez et al. 2012; Pinilla et al. 2012;
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Ataiee et al. 2013; Bae et al. 2016; Kanagawa et al. 2016; Rosotti
et al. 2016; Isella & Turner 2018), including the observational
signatures in near-IR scattered light images (e.g., Dong et al. 2015;
Fung & Dong 2015; Zhu et al. 2015a), (sub)millimeter dust
thermal continuum images (Dipierro et al. 2015; Picogna & Kley
2015; Dong & Fung 2017; Dong et al. 2018), and (sub)millimeter
molecular line channel maps that trace the gas kinematics at the
gap edges or around the planet (Perez et al. 2015; Pinte et al. 2018;
Teague et al. 2018).

Among all these indirect methods for probing young planets
at various wavelengths, only dust thermal emission at (sub)
millimeter wavelengths allows us to probe low-mass planets,
because a small change in the gas surface density due to the
low-mass planet can cause dramatic changes in the dust surface
density (Paardekooper & Mellema 2006; Zhu et al. 2014).
However, this also means that hydrodynamical simulations
with both gas and dust components are needed to study the
expected disk features at (sub)millimeter wavelengths. Such
simulations are more complicated due to the uncertainties about
the dust size distribution in protoplanetary disks. Previously,
hydrodynamical simulations have been carried out to explain
features in individual sources (e.g., Jin et al. 2016; Dipierro
et al. 2018; Fedele et al. 2018). With many disk features
revealed by the Disk Substructures at High Angular Resolution
Project (DSHARP; Andrews et al. 2018), a systematic study of
how the dust features relate to the planet properties is desirable.
By conducting an extensive series of disk models spanning a
substantial range in disk and planet properties, we can enable a
broad exploration of parameter space that can then be used to
rapidly infer young planet populations from the observations,
and we will also be more confident that we are not missing
possible parameter space for each potential planet.

In this work, we carry out a grid of hydrodynamical
simulations including both gas and dust components. Then,
assuming different dust size distributions, we generate intensity
maps at the observation wavelength of DSHARP. In Section 2,
we describe our methods. The results are presented in
Section 3. The derived young planet properties for the
DSHARP disks are given in Section 4. After a short discussion
in Section 5, we conclude the Letter in Section 6.

2. Method

We carry out 2D hydrodynamical planet–disk simulations
using the modified version of the grid-based code FARGO
(Masset 2000) called Dusty FARGO-ADSG (Baruteau &
Masset 2008a, 2008b; Baruteau & Zhu 2016). The gas
component is simulated using finite difference methods (Stone
& Norman 1992), while the dust component is modeled as
Lagrangian particles. To allow our simulations to be as scale-
free as possible, we do not include disk self-gravity, radiative
cooling, or dust feedback. These simplifications are suitable for
most disks observed in DSHARP. Most of the features in these
disks lie beyond 10 au where the irradiation from the central
star dominates the disk heating such that the disk is nearly
vertically isothermal close to the midplane (D’Alessio et al.
1998). Although the dust dynamical feedback to the gas is
important when a significant amount of dust accumulates at gap
edges or within vortices (Fu et al. 2014; Crnkovic-Rubsamen
et al. 2015), simulations that have dust particles but do not
include dust feedback to the gas (so-called “passive dust”
models) serve as reference models and allow us to scale our
simulations freely to disks with different dust-to-gas mass

ratios and dust size distributions. As shown in Section 4,
passive dust models are also adequate in most of our cases
(especially when the dust couples with the gas relatively well).
Simulations with dust feedback will be presented in C. Yang &
Z. Zhu (2019, in prepration).

2.1. Setup: Gas and Dust

We adopt polar coordinates (r, θ) centered on the star and fix
the planet on a circular orbit at r=1. Since the star is
wobbling around the center of mass due to the perturbation by
the planet, indirect forces are applied to this noninertial
coordinate frame.
We initialize the gas surface density as

r r r , 1g g,0 0
1S = S -( ) ( ) ( )

where r0 is also the position of the planet and we set r r 1p0 = = .
For studying gaps of individual sources in Section 4, we scaleΣg,0

to be consistent with the DSHARP observations. We assume
locally isothermal equation of state, and the temperature at radius r
follows T r T r r0 0

1 2= -( ) ( ) . T is related to the disk scale height
h as h/r=cs/vf where c RT Ps

2 m= = S and μ=2.35. With
our setup, h/r changes as r1/4. In the rest of the text, when we
give a value of h/r, we are referring to h/r at r0.
Our numerical grid extends from 0.1 r0 to 10 r0 in the radial

direction and 0 to 2π in the θ direction. For low viscosity cases
(α=10−4 and 10−3), there are 750 grid points in the radial
direction and 1024 grid points in the θ direction. This is
equivalent to 16 grid points per scale height at r0 if h/r=0.1.
For high viscosity cases (α=0.01), less resolution is needed
so there are 375 and 512 grid points in the radial and θ
direction. For simulations to fit AS 209 in Section 4.1.1, the
resolution is 1500 and 2048 grid points in the radial and θ
direction to capture additional gaps at the inner disk. We use
the evanescent boundary condition, which relaxes the fluid
variables to the initial state at r<0.12r0 and r>8r0. A
smoothing length of 0.6 disk scale height at r0 is used to
smooth the planet’s potential (Müller et al. 2012).
We assume that the dust surface density is 1/100 of the gas

surface density initially. The open boundary condition is
applied for dust particles, so that the dust-to-gas mass ratio for
the whole disk can change with time.
The dust particles experience both gravitational forces and

aerodynamic drag forces. The particles are pushed at every
timestep with the orbital integrator. When the particle’s
stopping time is smaller than the numerical timestep, we use
the short friction time approximation to push the particle. Since
we are interested in disk regions beyond tens of astronomical
units, the disk density is low enough that the molecular mean-
free path is larger than the size of dust particles. In this case, the
drag force experienced by the particles is in the Epstein regime.
The Stokes number St for particles (also called particles’
dimensionless stopping time) is

t
s s

St

2
1.57 10

1 g cm 1 mm

100 g cm
,

2

p p

g

stop

gas

3
3

2p r r
= W

=
S

= ´
S

-
-

-

( )

where ρp is the density of the dust particle, s is the radius of
the dust particle, and Σg is the gas surface density. We
assume ρp=1 g cm−3 in our simulations. We use 200,000 and
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100,000 particles for high and low resolution runs, respectively.
Each particle is a super particle representing a group of real dust
particles having the same size. The super particles in our
simulations have Stokes numbers ranging from 1.57×10−5 to
1.57, or physical radii ranging from 1 μm to 10 cm if Σg,0=
10 g cm−2 and ρp=1 g cm−3. We distribute super particles
uniformly in log(s) space, which means that we have the same
number of super particles per decade in size. Since dust-to-gas
back reaction is not included, we can scale the dust size
distribution in our simulations to any desired distribution.

During the simulation, we keep the size of the super-particle
the same no matter where it drifts to. Thus, the super-particle’s
Stokes number changes when this particle drifts in the disk,
because the particle’s Stokes number also depends on the local
disk surface density (Equation (2)). More specifically, during
the simulation, the Stokes number of every particle varies so as
to be inversely proportional to the local gas surface density.

Turbulent diffusion for dust particles is included as random
kicks to the particles (Charnoz et al. 2011; Fuente et al. 2017).
The diffusion coefficient is related to the α parameter as in
Youdin & Lithwick (2007) through the so-called Schmidt
number Sc. In this work, Sc is defined as the ratio between the
angular momentum transport coefficient (ν) and the gas
diffusion coefficient (Dg). We set Sc=1, which serves as a
good first-order approximation, although that Sc can take on
different values and its value can differ between the radial and
vertical directions (Zhu et al. 2015b; Yang et al. 2018),

2.2. Grid of Models

To explore the full parameter space, we choose three values
for h r 0.05, 0.07, 0.1r0( ) ( ), five values for the planet–star
mass ratio (q≡Mp/M*=3.3×10−5, 10−4, 3.3×10−4,
10−3, 3.3×10−3 M*, or roughly Mp=11M⊕, 33M⊕,
0.35MJ, 1MJ, 3.5MJ if M* =Me), and three values for the
disk turbulent viscosity coefficient (α= 0.01, 0.001, 0.0001).
Thus, we have 45 simulations in total. We label
each simulation in the following manner: h5am3p1 means
h/r=0.05, α=10−3 (m3 in h5am3p1 means minus 3),
Mp/M*=3.3×10−5 M* (p1 refers to the lowest planet mass
case). We also run some additional simulations for individual
sources (e.g., AS 209, Elias 24) which will be presented in
Section 4.1 and Guzmán et al. (2018).

This parameter space represents typical disk conditions.
Protoplanetary disks normally have h/r between 0.05 and 0.1
at r 10 au> (D’Alessio et al. 1998). While a moderate
α∼10−2 is preferred to explain the disk accretion (Hartmann
et al. 1998), recent works suggest that a low turbulence level
(α< 10−2) is needed to explain molecular line widths in TW
Hya (Flaherty et al. 2018) and dust settling in HL Tau (Pinte
et al. 2016). When α is smaller than 10−4, the viscous timescale
over the disk scale height at the planet position (Hp

2 n) is
longer than 104/Ωp or 1.6 million years at 100 au, so that the
viscosity will not affect the disk evolution significantly. In
Section 4.1, we carry out several simulations with different α
values to extend the parameter space for some sources in the
DSHARP sample. As shown below, when the planet mass is
less than 11M⊕, the disk features are not detectable with
ALMA. When the planet mass is larger than 3.5MJ, the disk
features have strong asymmetries, and we should be able to
detect the planet directly though direct imaging techniques.

We run the simulations for 1000 planetary orbits (1000 Tp),
which is equivalent to 1Myr for a planet at 100 au or 0.1 Myr
for a planet at 20 au. These timescales are comparable to the
disk ages of the DSHARP sources.

2.3. Calculating Millimeter Continuum Intensity Maps

For each simulation, we calculate the millimeter continuum
intensity maps assuming different disk surface densities and
dust size distributions. Since dust-to-gas feedback is neglected,
we can freely scale the initial disk surface density and dust size
distribution in simulations to match realistic disks.
Both the disk surface density and dust size distribution have

large impacts on the millimeter intensity maps. If the dust
thermal continuum is mainly from micron sized particles and
the disk surface density is high, these dust particles have small
Stokes numbers (Equation (2)). Consequently, they couple to
the gas almost perfectly and the gaps revealed in millimeter are
very similar to the gaps in the gas. If the millimeter emission is
dominated by millimeter sized particles and the disk surface
density is low, the dust particles can have Stokes numbers close
to 1 and they drift very fast in the disk. In this case, they can be
trapped at the gap edges, producing deep and wide gaps. To
explore how different dust size distributions can affect the
millimeter intensity maps, we choose two very different dust
size distributions to generate intensity maps. For the distribu-
tion referred to as DSD1, we assume n(s)∝s−3.5 with a
maximum grain size of 0.1 mm in the initial condition
(p 3.5= - and smax=0.1 mm. This is motivated by recent
(sub)millimeter polarization measurements (Kataoka et al.
2017; Hull et al. 2018), which indicate that the maximum
grain size in a variety of disks is around 0.1 mm. In the other
case referred to as DSD2, we assume n(s)∝s−2.5 with the
maximum grain size of 1 cm (p=−2.5 and smax=1 cm). This
shallower dust size distribution is expected from dust growth
models (Birnstiel et al. 2012) and consistent with SED
constraints (D’Alessio et al. 2001) and the spectral index at
millimeter/centimeter wavelengths (Ricci et al. 2010a, 2010b;
Pérez et al. 2015). Both cases assume a minimum grain size of
0.005 μm. We find that the minimum grain size has no effect
on the dust intensity maps since most dust mass is in larger
particles. Coincidentally, these two size distributions lead to the
same opacity at 1.27 mm (1.27 mm is the closest wavelength to
1.25 mm in the table of Birnstiel et al. 2018) in the initial
condition (the absorption opacity for the smax= 0.1 mm case is
0.43 cm2 g−1, while for the smax= 1 cm case it is 0.46 cm2 g−1

based on Birnstiel et al. 2018). More discussion on how to
generalize our results to disks with other dust size distributions
can be found in Section 3.2.2.
For each simulation, we scale the simulation to different disk

surface densities. Then for each surface density, we calculate
the 1.27 mm intensity maps using DSD1 or DSD2 dust size
distributions. For the smax=0.1 mm dust size distribution
(DSD1), we calculate the 1.27 mm intensity maps for disks
with Σg,0=0.1, 0.3, 1, 3, 10, 30, and 100 g cm−2 (seven
groups of models). The maximum-size particle in these disks
(0.1 mm) that dominates the total dust mass corresponds to
St=1.57×10−1, 5.23×10−2, 1.57×10−2, 5.23×10−3,
1.57×10−3, 5.23×10−4, and 1.57×10−4 at r=rp. For the
smax=1 cm cases (DSD2), we vary Σg,0 as 1, 3, 10, 30, and
100 g cm−2 (five groups of models), and the corresponding St
for 1 cm particles at r=rp is 1.57, 5.23×10−1, 1.57×10−1,
5.23×10−2, and 1.57×10−2. For each given surface density
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above, we only select particles with Stokes numbers smaller
than the corresponding St in our simulations and use the
distribution of these particles to calculate the 1.27 mm intensity
maps. For the smax=1 cm dust distribution (DSD2), we do not
have Σg,0=0.1, 0.3 g cm−2 cases since 1 cm particles in these
disks have Stokes numbers larger than the largest Stokes
number (1.57) in our simulations.

Here, we lay out the detailed steps to scale each simulation to
the disks that have surface densities of Σg,0 listed above, and
then calculate the millimeter intensity maps for these disks.

(1) First, given a g,0S , we find the relationship between the
particle size in this disk and the Stokes number of super-
particles in simulations. For each particle in the simulation, we
use its Stokes number in the initial condition to calculate the
corresponding particle size s (Equation (2) with known Σg).
The Stokes number of test particles at r=rp in the initial
condition ranges from Stmin=1.57×10−5 to Stmax=1.57,
or in terms of grain size, s St 2 pmin

code
min gas pr= ´ S ( ) and

s St 2 pmax
code

max gas pr= ´ S ( ) from Equation (2). For instance,
a 1 μm particle in a disk with Σg=10 g cm−2 at the planet
position corresponds to the particle with St=1.57×10−5 at
r=rp in the initial setup of the simulation. For dust grains with
St<Stmin=1.57×10−5, we use the gas surface density
Σg(r, θ) in our simulations to represent the dust, assuming
small dust grains are well coupled with the gas.

(2) Then, with a given Σg,0, we use the assumed particle size
distributions (DSD1 and DSD2) in the initial condition to
calculate the mass weight for each super-particle in the
simulation. Note that during the simulation, the resulting dust
size distribution at each radius is different from the initial dust
size distribution since particles drift in the disk. As mentioned
above, we divide the dust component in the disk into two parts:
(a) the small dust particles s smin

code<( ) represented by the gas
component in the simulation and (b) large dust particles
s smin

code( ) represented by the super-particles in the simulation.
We calculate the initial mass fractions of the dust contributed
by parts (a) and (b). The mass fraction of small particles (part
(a)) with respect to the total dust mass is

f s ds s ds, 3sd
s s

s s
p

s

s
p

min ,

min ,
3 3

min min
code

max min
code

min

max

ò ò= + + ( )
{ }

{ }
/

and the mass fraction of large particles using dust super-
particles (part (b)) is

f f1 . 4ld sd= - ( )

We want to explore two dust size distributions n(s)∝s−3.5 and
s−2.5, given the minimum and maximum dust size smin and smax.
However, the super-particles in our setup have a different
distribution. The number of super-particles N(s) follows a uniform
distribution in the log(s) space, N s ds d slogò µ( ) ( ). Thus for
dust in part (b), if fld>0, we give each particle (having size s) a
mass weight to scale them into the desired distribution:

w s
M

N

s

s s ds
, 5i

p
s s s ds

s

s

tot

part

3
max ,

1 1

s p
min min

code max 3

min
code
max
code

ò

ò
=

+

- -

+

( ) ( ){ }
/

/

where Mtot is the total dust mass in the disk and Npart is the total
number of super-particles in the simulation.

(3) Next, we assign the opacity for each particle to derive the
total optical depth. DSHARP opacities are produced by
Birnstiel et al. (2018), which contains a table of absorption

and scattering opacities for a given wavelength and grain size,
κ(λ, s). For part (b)’s dust component, we assign each particle a
DSHARP absorption opacity κabs,i(si) at 1.27 mm based on the
particle’s size, where si is the s value in the table that is closest
to this particle size. If the particle size is smaller than the
minimum size in the opacity table, we take the opacity for the
minimum sized particle in the table, namely using a constant
extrapolation, since the opacity is already independent of the
particle size at the lower size end of the opacity table. We bin
all super-particles in each numerical grid cell to derive the total
optical depth through the disk for particles in part (b):

f
w s s

A
, 6ld ld

i i iabs,

cell

å
t

k
=

( ) ( )
( )

where the sum is adding all particles in the cell, and Acell is the
surface area of the grid cell. The optical depth contributed by
part (a) is simply

f 100, 7sd sd gmat k= S ( )

where

s s ds 8
s s

s s
p

ma
min ,

min ,

abs
3

min min
code

max min
code

òk k= +( ) ( )
{ }

{ }

is the mass-averaged opacity of the small dust within the range
of dust sizes in part (a). The final optical depth for each grid
cell at (r, θ) is the sum of both components,

r r r, , , . 9sd ldt q t q t q= +( ) ( ) ( ) ( )

Note that we do not consider dust and gas within one Hill
radius rH around the planet for our analysis since our
simulations are not able to resolve the circumplanetary region.
Thus, we impose the optical depth there to be the minimum
optical depth within the annulus (r0−rH)<r<(r0+rH).
(4) Then, we calculate the brightness temperature or intensity

for each grid cell as

T r T r e, 1 , 10b d
r,q = - t q-( ) ( )( ) ( )( )

and we assume that the midplane dust temperature follows the
assumed disk temperature. Thus,

T r T r
r

r
. 11d d 0

0

0.5

=
-⎛

⎝⎜
⎞
⎠⎟( ) ( ) ( )

Because we seek to derive a scale-free intensity for different
systems, the Rayleigh–Jeans approximation is made here. For
the young solar system and the HR 8799 calculations in
Section 5.1, and the detailed modeling of AS 209 and Elias 24
in Sections 4.1.1 and 4.1.2, we use the full Planck function at
ν=240 GHz to derive more accurate intensities.
The normalized brightness temperature (Tb(r, θ)/Td(r0)) is

adequate for the gap width and depth calculation in
Section 3.2.2. But for individual sources, we would like to
calculate the absolute brightness temperature. Then, we need to
multiply the normalized brightness temperature by the disk
temperature at r0 (T rd 0( )). We estimate Td(r0) using

T r
L

r8
, 12d 0

0
2

SB

1 4

*f
p s

=
⎛
⎝⎜

⎞
⎠⎟( ) ( )

where L* is the stellar luminosity and f is a constant of 0.02
coming from an estimate from Figure3 in D’Alessio et al. (2001).
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This disk midplane temperature is the same as Equation(5) in
Dullemond et al. (2018), and more details can be found there. We
calculate Td(r) for each DSHARP source using the stellar
properties (L*) listed in Andrews et al. (2018). Knowing Td(r),
we can simply derive h/r at the gap position using h/r=cs/vf
(the M* that is used to calculate vf is also given in Andrews et al.
2018).

(5) Finally, we convolve these intensity maps with two
different Gaussian beams. The beam size is σ=0.06rp and
σ=0.025rp respectively. For a protoplanetary disk 140 pc
away, this is equivalent to full width at half maximum
(FWHM) beam sizes of 0 1 and 0 043 if rp=100 au, or 0 05
and 0 021 if rp=50 au.

3. Simulation Results

3.1. Gas

We will first present results for the gas component in the
simulations, including gaseous gap profiles (Section 3.1.1) and
the sub/super-Keplerian gas motion at the gap edges
(Section 3.1.2).

3.1.1. Density

Figure 1 shows the two-dimensional gas density maps for all
the simulations at 1000 planetary orbits. The left, middle, and
right panel blocks show simulations with h/r=0.05, 0.07, and
0.1. Within each panel block, α=10−4, 10−3, and 10−2 cases
are shown from left to right. Some large-scale azimuthal
structures are evident in the figure. First, low α disks exhibit
noticeable horseshoe material within the gap. Since the planet
is at (x=1, y=0) and orbiting around the star in the

counterclockwise direction, most horseshoe material is trapped
behind the planet (around the L5 point). This is consistent with
the shape of the horseshoe streamlines around a nonmigrating
planet in a viscous disk (Masset 2002). Second, the gap edge
becomes more eccentric and off-centered for smaller h/r,
smaller α, and larger planet mass cases (especially for
Mp�3MJ). Such an eccentric gap edge for the Mp�3MJ

planet is consistent with previous studies (Lubow 1991a,
1991b; Kley & Dirksen 2006; Teyssandier & Ogilvie 2017).
Third, large-scale vortices can be seen at the gap edges for
some of the α=10−4 cases. Although they are not very
apparent in the gas surface density maps, they can trap dust
particles azimuthally, causing a large azimuthal contrast in the
dust continuum images (as shown in Section 3.2).
The azimuthally averaged gas surface density profiles for all

the models are shown in Figure 2. Several noticeable trends in
this figure are:
(1) When the planet mass increases, the gap depth normally

increases. However, when the gap is very eccentric (e.g.,
h5am4p5, h5am3p5), the azimuthally averaged gas surface
density at the gap is actually higher than the cases with lower
mass planets. This is because azimuthal averaging over an
elliptical gap smears out the gap density profile.
(2) With the same planet mass, gaps in h r 0.1= cases are

shallower but wider than the h/r=0.05 cases. This is
consistent with previous studies (Fung et al. 2014; Kanagawa
et al. 2015, 2016).
(3) For a given planet mass and h/r, the gaps are shallower

and smoother with increasing α. With α=0.01 and 10−3, the
gap edge is smooth, and there is only a single gap at r/rp∼1.
With α=10−4, there are clearly two shoulders at two edges of
the gap, and the material in the horseshoe region still remains in

Figure 1. Two-dimensional gas surface density in log scale for h/r=0.05, 0.07, and 0.1 from left to right panel blocks. In each block, the models for α=10−4,
10−3, 10−2 are shown from left to right. The planet mass increases from top to bottom, namely Mp=11 M⊕, 33 M⊕, 0.3 MJ, 1 MJ and 3 MJ, if M*=Me. In each
panel, the star is located at the center, and the plotting region is 3×3 in units of rp, where rp is the distance between the star and the planet. The planet is located at
(x, y)=(1, 0) and orbits counterclockwise around the star. Σmax and Σmin are chosen to highlight the structures in each panel.
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some cases. Especially, for low-mass planets in α=10−4

disks, the gap at r/rp∼1 appears to split into two adjacent
gaps. This is consistent with nonlinear wave steepening theory
(Goodman & Rafikov 2001; Muto et al. 2010; Dong et al.
2011; Duffell & MacFadyen 2012; Zhu et al. 2013), which
suggests that the waves launched by a low-mass planet in an
inviscid disk need to propagate for some distance to shock and
open gaps, leaving the horseshoe region untouched.

(5) For α=10−4 cases, we see secondary gaps at
r/rp∼0.6 in h/r=0.05 disks, r/rp∼0.5 in h/r=0.07
disks, and r/rp∼0.4 in h/r=0.1 disks. For some cases, we
can even see tertiary gaps at smaller radii. These are consistent
with simulations by Bae et al. (2017) and Dong et al. (2017)
and these gaps are due to the formation of shocks from the
secondary and tertiary spirals (Bae & Zhu 2018a, 2018b).

3.1.2. Kinematics across the Gap

Recent works by Teague et al. (2018) and Pinte et al. (2018)
have shown that, using molecular lines, ALMA can detect the
velocity deviation from Keplerian rotation in protoplanetary
disks. Such deviations are caused by the radial pressure

gradient at the gaseous gap edges,
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Equation (13) suggests that the deviation from the Keplerian
motion is
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where Δvf=vf−vK. In a smooth disk where ∂P/∂r∼P/r,
this deviation is very small, on the order of (h/r)2 or �1% in a
typical protoplanetary disk. But if the gaseous disk has a sharp
pressure transition (e.g., at gap edges), the deviation from the
Keplerian rotation can be significantly larger. In Figure 3, we
plot the azimuthally averaged v v v vrot K Kd º -f( ) and Σ in
run h5am4p4. The directly measured δvrot is plotted as the
orange curve in the upper panel, while the calculated δvrot using
the disk surface density profile (presented in the lower panel)
and Equation (13) is plotted as the blue curve in the upper
panel. We can see that Equation (13) reproduces the measured

Figure 2. Azimuthally averaged gas surface density for models of h/r=0.05, 0.07, and 0.1 are shown from left to right. Disks with α=10−4, 10−3, 10−2 are shown
from top to bottom. Blue, yellow, green, red, and purple curves represent the gas surface density for planet masses Mp=11 M⊕, 33 M⊕, 0.3 MJ, 1 MJ, and 3 MJ,
respectively, if M*=Me. The dashed curves show the cases with visible asymmetry at the gap edge in Figure 1.
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azimuthal velocity very well, confirming that the sub/super-
Keplerian motion is due to the radial pressure gradient.

Figure 4 shows δvrot for all our cases. As expected, when the
gap is deeper due to either smaller α, smaller h/r, or a more
massive planet, the amplitude of δvrot is larger. However, when
the gap becomes very eccentric and off-centered (e.g.,
h5am4p5, h5am3p5), the azimuthally averaged δvrot shows
a much wider outer bump, indicating an eccentric outer disk.
We label these cases as dashed curves in Figure 4 and unfilled
markers in panel (a) of Figure 5. Another interesting feature
shown in Figure 4 is that the presence of the gap edge vortices
in α=10−4 cases does not affect the azimuthally averaged
δvrot very much. They look similar to the larger α cases without
vortices. We interpret this as follows: if the vortex is strong
with fast rotation, it has a smaller aspect ratio so that it is
physically small (Lyra & Lin 2013) and contributes little to the
azimuthally averaged gas velocity profile; and if the vortex is
weak, although it has a wider azimuthal extent, its rotation is
small compared with the background shear so again it
contributes little to the global velocity profile.

The radial distance and amplitude of the sub/super-
Keplerian peaks are plotted in panel (a) of Figure 5. Δδvrot is
the difference between the maximum δvrot (at r> rp) and the
minimum δvrot (at r< rp) from Figure 4. Note that these
velocity peaks are not peaks (or rings) at millimeter intensity
images that will be presented in Section 3.2. We first notice that
the distance between these peaks in Δr/r is roughly 4.4 times
h/r, which is not sensitive to either the planet mass or α (upper
panel (a)). Thus, we can use the distance of these sub/super-
Keplerian peaks to roughly estimate the disk temperature. On
the other hand, the amplitude of the sub/super-Keplerian peaks
depends on all of these parameters (lower panel (a)). With
increasing planet mass, the amplitude increases until the gap
edge becomes eccentric. For the same mass planet in the same

h/r disk, the amplitude decreases with increasing α. For the
same mass planet in the same α disk, the amplitude decreases
with increasing h/r.
Thus, using gas kinematics, we can first use the distance

between the peaks to estimate h/r, and then we can use the
amplitude together with the estimated h/r and assumed α value
to derive the planet mass.
Following Kanagawa et al. (2015, 2016), we seek simple

power laws to fit various observable quantities throughout the
Letter so that the fittings can be easily used by the community.
Here, we try to find the best fit for Δδvrot. We define a Kvr

parameter that is proportional to q and has power-law
dependence on h/r and α,

K q h r . 14v
ph pa

r a= ( ) ( )

We try to find the best-fitting parameters ph and pa. If ph=0
or pa=0, it means that the fitting does not depend on the disk
h/r or α, respectively. First, we assign values to ph and pa, and
we can make the v Klog log vrot rdD - plot for all the data
points. Then, we do a linear-regression fitting for these data
points using

v AK . 15v
B

rot r
dD = ( )

The coefficients in the fitting (A and B) are thus determined.
The sum of the square difference of the vertical distance
between the data points and the fitting is σ. Finally, we vary ph
and pa and follow the same fitting procedure until the
minimum σ is achieved. The resulting ph and pa are the best
degeneracy parameters, and A and B are the best-fitting
parameters. For Δδvrot, the fitting formula is:

K q h rv
1.27 0.41

r a= - -( )

with

v K0.11 . 16vrot
0.80
r

dD = ( )

Thus, the sub/super-Keplerian motion is most sensitive to h/r,
followed by q and α. The fitting formula is shown in panel (b)
of Figure 5 together with all measured Δδvrot. The uncertainty
in Kvr

is estimated by measuring the horizontal offset between
each data point and the fitting line. From the distribution of the
offset, the left side error is estimated by the 15.9 percentile of
the distribution and the right side error is 84.1 percentile of the
distribution. The uncertainty in Klog v10 r( ) is 0.099

0.103
-
+ , which is

about a factor of 1.25 of K .vr

3.2. Dust Thermal Emission

After exploring the gaseous gaps, we study the gaps in
millimeter dust continuum maps in Section 3.2.1. We detail our
method to fit the gap width and depth in Section 3.2.2.

3.2.1. Axisymmetric and Nonaxisymmetric Features

As discussed in Section 2.3, we have 45 simulations with
different h/r, α, and Mp. For each simulation, we generate seven
continuum maps for seven Σg,0 with the DSD1 dust size
distribution and five continuum maps for five Σg,0 with the
DSD2 dust size distribution. Thus, we produce 45×12mmmaps.
The millimeter intensity maps for a Σg,0=3 g cm−2 disk

with DSD1 and DSD2 dust size distributions are presented in
Figures 6 and 7, respectively. We want to emphasize that, if the

Figure 3. Deviation from the Keplerian velocity δvrot (the upper panel) and the
normalized disk surface density (the disk density over the initial disk density,
the lower panel) across the gap for model h5am4p4. In the upper panel, the
directly measured δvrot is plotted as the orange curve, while the δvrot derived
from the radial force balance is plotted as the blue curve.
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opacity is a constant with the maximum dust size (which
roughly stands when the maximum dust size, smax, is not
significantly larger than the wavelength of observation), there is
a degeneracy in the relative intensity maps between different
Σg and smax because only the Stokes number matters for the gas
dynamics. For example, the shapes of intensity maps for the
Σg,0=3 g cm−2 and smax=0.1 mm cases are very similar to
the Σg,0=300 g cm−2 and smax=1 cm cases, since they
have the same Stokes number. Thus, Figure 6 should be
regarded as the dust well-coupled limit, while Figure 7 should
be regarded as the dust fast-drifting limit.

Regarding the gaps and rings, there are several noticeable
trends:

(1) By comparing these two figures, we can see that the rings
are more pronounced when particles with larger Stokes
numbers are present in the disk. For the well-coupled case
(Figure 6), the gap edge is smoothly connecting to the
outer disk and the outer disk is extended. However, for
the fast-drift particle cases (Figure 7), there is a clear
dichotomy: either the disk does not show the gap or the
gap edge becomes a narrow ring. This is because the gap
edge acts as a dust trap so that a small gaseous feature can
cause significant pileup for fast-drifting particles.

(2) The marginal gap-opening cases are in panels that are
along the diagonal line in Figures 6 and 7, which are
similar to the trend for the gaseous gaps in Figure 1.

(3) The narrow gap edge of the fast-drifting particle cases
(Figure 7) becomes wider with a higher α due to
turbulent diffusion. Thus, if we know the particles’
Stokes number at the gap edge, we can use the thickness
of the ring to constrain the disk turbulence, as shown in
Dullemond et al. (2018).

Besides axisymmetric structures, there are also several
nonaxisymmetric features to notice:

(1) The gaps in the lower left panels (h5am4p5, h5am3p5)
are clearly eccentric and off-centered. We may be able to
use the ellipticity of the gap edges to infer the planet
properties. Thus, for every millimeter intensity map, we
find the local maximum in each azimuthal angle and use
the linear fitting method to measure the gap eccentricity
and the distance between the center of the ellipse and the
star. We find that, even in millimeter images generated
from disks with dramatically different Stokes numbers,
the gap eccentricity and off-centered distance are quite
similar. However, the lower planet mass cases for the
DSD1 have mild dust trapped rings thus having lower

Figure 4. Deviation from the Keplerian velocity for all runs, where δvrot=(vf−vK)/vK. The layout is the same as that of Figure 2.
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SNR, while the higher mass cases for the DSD2 have
strong asymmetry, thus leading to half of the rings with
the low SNR. Thus, we combine the fitting results for
both DSD1 and DSD2 at Σg,0=3 g cm−2, and pick up
the smaller values for eccentricity and the off-centered
distance (Figure 8). We also test several cases with the
ring-fitting method described in Section 3.1 in Huang
et al. (2018a; an MCMC fitting of the offset Δx, Δy, the
semimajor axis, the aspect ratio, and the position angle)
and find that the derived eccentricity and the distance
from the central star are very similar to those derived
here. Clearly, both eccentricity and off-centered distance
increase with the planet mass, which is consistent with
gas only simulations in Kley & Dirksen (2006), Ataiee
et al. (2013), Teyssandier & Ogilvie (2017), and Ragusa
et al. (2018). These quantities do not quite depend on h/r
and α except a weak trend that gaps in larger α disks
have higher eccentricities. Unfortunately, due to the
limited number of super-particles in the simulations, the
Poisson noise in the intensity maps prevents us from

measuring the eccentricity very accurately. The adopted
Gaussian convolution kernel to reduce the Poisson noise
has a σc of 0.06 rp. If the major-axis and the minor-axis
have an error of σc/2, the uncertainty of the eccentricity
is e 1 1 0.03 2 0.172 1

2D = - - =( ( ) ) . Thus, any mea-
sured eccentricity smaller than 0.15 is consistent with
zero eccentricity. For the same reason, any off-centered
distance smaller than half of the pixel size (0.015) is
consistent with zero. We mark these uncertainties as the
light gray area in Figure 8. On the other hand, if the
eccentricity and the off-centered distance is above these
limits, our results suggest that the eccentric gap edge may
be a signature of a massive planet in disks. Eccentric and
off-centered gap edges have been measured in HL Tau
(ALMA Partnership et al. 2015) and HD 163296 (Isella
et al. 2016), which may suggest that these gaps are
induced by planets.

(2) For the lowest viscosity cases (α= 10−4), particle
concentration within vortices can be seen at the gap
edge. Even a 33M⊕ planet can induce particle-concen-
trating vortices. Interestingly, the vortex sometimes is
inside the gap edge, e.g., h/r=0.05, Mp=1MJ case
and h/r=0.1, Mp=3MJ case. This is probably because
large particles are trapped at the gap edges, while small
particles move in and get trapped into the vortex. For the
majority of cases, the vortices that cause significant
asymmetry in millimeter intensity maps are at the gap
edge where dP/dr=0. To characterize such large-scale
asymmetries, Figure 9 shows the contrast at the gap edge,
which is the ratio between the intensity of the brightest
part of the ring over the intensity 180° opposites on the
previously fitted ellipse. The figure shows that the case
with a smaller gas surface density tends to show a higher
contrast. We note that the contrast is very large in some
cases. A 33M⊕ planet can lead to a factor of 100 contrast
at the gap edge for a h/r=0.05 disk with St=0.16
particles. Thus, a low-mass planet may also explain some
of the extreme asymmetric systems: e.g., IRS 48 (van der
Marel et al. 2013) and HD 142527 (Casassus et al. 2013).

(3) The dust concentration at L5 or both L4/L5 is seen in
some α=10−4 cases, consistent with previous simula-
tions (Lyra et al. 2009). These features are more apparent
than those in the gas (Figure 1). As pointed out by Ricci
et al. (2018), such features may be observable. On the
other hand, we want to emphasize that the dust
concentration at Lagrangian points is not in a steady
state, and the amount of dust at those points decreases
with time. Thus, in this Letter, we will not use these
feature to constrain the planet properties.

3.2.2. Fitting Gaps/Rings

To derive the relationship between the gap profiles and the
planet mass, we azimuthally average the millimeter intensity
maps as shown in Figure 10. The solid curves are for models
with smax=0.1 mm (DSD1), while the dashed curves are for
models with smax=1 cm (DSD2).
We try to find the relationship between the planet mass and

the gap properties (such as the gap width Δ and depth δ), using
the dust intensity profiles in Figure 10. Previous works such as
Kanagawa et al. (2015), Kanagawa et al. (2016), and Dong &
Fung (2017) studied the relationship between the planet mass

Figure 5. Panel (a): upper panels show the radial distance between the
positions of δvrot maximum and minimum peaks (Δr). Bottom panels show
the difference between δvrot at its maximum and minimum values (Δδvrot). The
star, triangle, and pentagon markers represent models with α=10−4, 10−3,
and 10−2, respectively. The unfilled markers are eccentric cases the same as in
Figures 2 and 4 shown in dashed lines. Panel (b): the fitting formula
(Equation (16)) with all measured Δδvrot in panel A. The numbers inside the
symbols represent cases with different planet masses in ascending order (e.g.,
“1” stands for 11 M⊕). The errorbar is shown in the upper-left corner.
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and the gaseous gap width and depth. However, millimeter
observations are probing dust with sizes up to millimeters/
centimeters and this dust can drift in the gaseous disk. Thus,
studying only the gaseous gap profiles is not sufficient for
explaining millimeter observations and carrying out a similar

study but directly for dust continuum maps is needed. We seek
to first find a relationship between disk and planet properties
(α, h/r, and Mp) using the fitting of the azimuthally averaged
gas surface density profile, and characterize those three
parameters using a single parameter K (for the depth–K

Figure 6. Dust continuum emission maps for cases with h/r=0.05 (left panels), h/r=0.07 (middle panels), and h/r=0.1 (right panels) at 1.27 mm. The initial gas
surface density at the planet position Σg,0 is 3 g cm−2. The initial dust size distribution is assumed to follow n(s)∝s−3.5 with the maximum grain size of 0.1 mm
(DSD1). The layout is the same as that of Figure 1. The images are convolved with a Gaussian kernel with σ of 0.06 rp (or FWHM of 0.14 rp), which is shown in the
bottom right of the panels.

Figure 7. Similar to Figure 6, except that the initial dust size distribution is assumed to follow n(s)∝s−2.5 with the maximum grain size of 1 cm (DSD2).
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relation) or K′ (for the width–K′ relation). Then, we fit the
azimuthally averaged dust intensity profile for our grid of
models and find their depth–K and width–K′ relations. Overall,
our fitting follows Kanagawa et al. (2016) and Kanagawa et al.
(2015) but extend those relationships to dust particles with
different sizes.

The detailed steps are the following:
(1) We measure the gap depth (δ) for both gas surface

density profiles (Figure 2) and millimeter intensity profiles
(Figure 10). From the outer disk to the inner disk, we first find
the outer peak (the first local maximum, which corresponds to
where dust piles up due to the dust trapping) and mark this
point as rpeak, and then find the bottom of the gap (local
minimum) inside rpeak and mark it as rgap. rgap is not
necessarily rp. As demonstrated in Figure 11, the gap can
have the deepest point further out than rp. This is because some
gaps have significant horseshoe material in between. In some
extreme cases with very shallow gaps, only the outer portion of
the gap that is outside the horseshoe region is visible (e.g., the
top middle panel in Figure 10). We define the gap depth δ as

r r , 17peak gapd = S SS ( ) ( ) ( )

for the gas surface density profiles, and

I r I r , 18I mm peak mm gapd = ( ) ( ) ( )

for the dust millimeter intensity profiles.
(2) Measuring the gap width (Δ) for these profiles. To

calculate the width, we first define the edge quantities as the
average between the peak and gap surface densities (for gas) or
the millimeter intensities (for intensity maps):

r r

2
, 19edge

peak gapS =
S + S( ) ( )

( )

and

I
I r I r

2
. 20edge

mm peak mm gap=
+( ) ( )

( )

Then, we find one edge rin at the inner disk and the other rout
at the outer disk, where Σ(rin)=Σ(rout)=Σedge for the gas

surface density or I(rin)=I(rout)=Iedge for the dust intensity
(Figure 11). Thus, we define the gap width Δ for either the gas
surface density or the dust intensity as

r r r . 21out in outD = -( ) ( )

Figure 12 shows Δ for all Σg,0 cases with DSD1 (panel (a))
and DSD2 (panel (b)) dust distributions. If there is some
horseshoe material around r=rp separating the main gap into
two gaps, the horizontal Σedge or Iedge line will cross through
the horseshoe and we treat two individual gaps as a single one
(i.e., the rin is taken to be the rin of the inner gap and rout is
taken to be the rout of the outer gap), but the individual gaps on
either side of the horseshoe region are also plotted in Figure 12
as fainter makers and they are connected to the main gap width
using dotted lines.
Note that our definition of gap width is more convenient to

use than that in Kanagawa et al. (2016), because the width here
is normalized by rout instead of rp as in Kanagawa et al. (2016).
In actual observations, we do not have the knowledge of the
planet position rp within the gap. Another difference between
our defined gap width and the one used in Kanagawa et al.
(2016) is that we use (Σ(rpeak)+Σ(rgap))/2 to define Σedge

while Kanagawa et al. (2016) use Σ0/2 to define the gap edge.
Our definition enables us to study shallow gaps that are
shallower than Σ0/2.
(3) Fitting the width (Δ)–K′ relation. We first use the width

Δ measured from the gas surface density profiles to find the
optimal degeneracy parameter K′ following the same procedure
as in Equation (14). Similarly, a least squares fitting was done
to minimize the sum of the square difference of the vertical
distance between the points and the linear-regression line log
(Δ) versus log(K′). With this procedure, we derive that the
optimal K′ is

K q h r
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With this definition of K′, the best-fitting relationships
AK BD = ¢( ) are found for each initial gas density with two

dust size distributions DSD1 and DSD2. The resulting A and B
for these fits are listed in Table 1. Note that our definition of K′
is equivalent to the square root of K′ defined in Kanagawa et al.
(2016). Compared with the fitting formula for the gas surface
density in Kanagawa et al. (2016), our K′ is less sensitive to h/r
and the gaseous gap width is less sensitive to q. We confirm
that this is largely due to our different definition of the gap
width (compared with their definition, our normalized gap
width is smaller for wide gaps and larger for shallow gaps that
are normally narrow).
Figure 12 shows the fits for all the cases with DSD1 (panel

(a)) and DSD2 (panel (b)) dust size distributions. We can see
that uncertainties of these fittings become large when
Δ0.15. Thus, our fitting procedure does not involve widths
that are smaller than 0.15. For these narrow gaps whose widths
are smaller than 0.15 (labeled as the open symbols with back
numbers in them), their gap profiles start to be affected by the
smoothing kernel with σ=0.06rp. Thus in Figure 12, we also
plot the widths measured from the profiles that are convolved
with a σ=0.025 rp kernel. These widths are plotted as open
symbols with red numbers in them.
(4) Fitting the depth (δ)–K relation. We adopt the same

procedure to fit the depth–K as the width–K′ aforementioned.

Figure 8. Eccentricity (upper panels) and distance between the ellipse center
and the central star (lower panels) for intensity images from Σg,0=3 g cm−2

(Figures 6 and 7).
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Figure 9. Contrast at the outer gap edge for every model. The upper panels use DSD1 dust size distribution while the lower panels use DSD2 dust size distribution.
Contrast is the intensity of the brightest part of the ring over the intensity at Δθ=180° opposite location on the ring.

Figure 10. “Normalized” radial intensity profile for cases with h/r=0.05 (left panels) h/r=0.07 (middle panels), and h/r=0.1 (right panels). From left to right in
each panel block, α=10−4, 10−3, 10−2 in disks. From top to bottom, the planet mass increases (the layout is similar to Figures 1, 6, and 7). The solid curves are
calculated with the DSD1 dust size distribution, while the dotted–dashed curves are calculated with the DSD2 dust size distribution. The seven colors of lines denote
different initial gas surface densities (Σg,0). The profiles are smoothed with a Gaussian kernel with σ=0.06 rp.

12

The Astrophysical Journal Letters, 869:L47 (32pp), 2018 December 20 Zhang et al.



Since no-gap is equivalent to δ=1, we try to find the optimal
degeneracy parameter K by a least squares fitting for log(δ − 1)
versus log(K ),

CK1 , 23Dd - = ( )

for various K. The optimal K is fitted to be

K q h r

24 0.001 0.07 10
. 24

2.81

3

0.38a
=

-

-

-
⎜ ⎟ ⎜ ⎟
⎛
⎝
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⎞
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After K is fixed, we use Equation (23) to fit the relationship
between δ − 1 and K for the dust intensity profiles from
different Σg,0 with DSD1 and DSD2. C and D are found using
linear regression. The resulting C and D in different Σg,0 cases
with either DSD1 or DSD2 are listed in Table 2. Figure 13
shows δ − 1 for all Σg,0 cases with DSD1 and DSD2. The best
fits are also plotted for each panel. Note that open symbols are
not involved in the fitting since these gaps are eccentric and
their depths do not follow the trend for other gaps. Clearly,
with the Stokes number increasing, the fitting becomes worse.
This is expected since particles with larger Stokes numbers
drift faster and the gap profile becomes more irregular.

(5) The uncertainty of the fittings. We apply the same
measure to calculate the uncertainty of the gap width/depth
fitting as that of v Kvrot rdD – relation mentioned in Section 3.1.2.
That is, we measure the horizontal offset (in log10(K′) or
log10(K )) between each point and the fitting line at each set of
dust configurations and also the gas surface density. From the
distribution of the offset, the left side error is estimated by the
15.9 percentile of the distribution and the right side error is
84.1 percentile of the distribution. These uncertainties are
summarized in Tables 1 and 2 and marked in gray color at the
top of each panel in Figures 12 and 13. For widths that are
larger than 0.15, the uncertainties for the fittings are less than a
factor of two for K′ (or q) when St5×10−3 and around a
factor of three for K′ (or q) when 5×10−3<St5×10−2.
When St10−1, particles drift to the central star quickly and
most of the gaps only have a single ring left at the outer disk so
that Δ∼1 and the uncertainties for K′ at a given Δ is very
large. For these cases, we cannot use the gap width to estimate
the planet mass.

Finally, we summarize all the fits for the width and depth in
Figure 14. In the Appendix, we provide gap depth δ and width Δ
of our whole grid of models. In spite of the dramatically different
dust size distributions between DSD1 and DSD2, the fits for
DSD1 are quite close to fits for DSD2 as long as the Stokes
number for the maximum-size particles is the same (e.g., red solid
and dotted–dashed lines). This is reasonable since only the Stokes
number matters for the dust dynamics, and DSD1 have a similar
opacity as DSD2. For 1mm observations, the opacity is roughly a
constant when smax1 cm (the opacity is slightly higher when
smax∼1mm, see Birnstiel et al. 2018). Thus, different disks with
different surface densities (Σg,0) and different dust size distribu-
tions have the same intensity profiles as long as their Stokes
numbers for maximum-size particles (where most of the dust mass
is) are the same and smax1 cm. Thus, our derived relationships
can be used in other disks with different surface densities and dust
size distributions as long as the Stokes number of the maximum-
size particles is in our simulated range (1.57×10−4 to 1.57). For
disks with Stokes numbers smaller than 1.57×10−4, their gap
profiles should be similar to the disks with St=1.57×10−4

since dust is well coupled to the gas.

3.2.3. Secondary Gaps/Rings

Previous simulations have shown that a planet can introduce
many gaps/rings in disks having very low viscosities (Zhu
et al. 2014; Bae et al. 2017; Dong et al. 2017). These gaps can
be grouped into two categories: (1) two gaps adjacent to the
planet that are separated by the horseshoe material (e.g., two
troughs at 0.9 rp and 1.1 rp in Figure 11, also mentioned in
Section 3.1.1), and (2) secondary shallower gaps much further
away into the inner and outer disks (e.g., the gap at 0.6 rp in
Figure 11). The two gaps in the first category form because (a)
the spiral waves, especially those excited by low-mass planets,
need to propagate in the radial direction for some distance to
steepen into spiral shocks and induce gaps (Goodman &
Rafikov 2001), (b) the horseshoe material has a slow relative
motion with respect to the spiral shocks thus this material takes
a long time to be depleted. Eventually, these two gaps may
merge into one single main gap, which is studied in
Section 3.2.2. The gaps in the second category are induced
by additional spiral arms from wave interference (Bae &
Zhu 2018a). Instead of disappearing, these gaps will become
deeper with time in inviscid disks. Thus, they are useful to
constrain the planet and disk properties (Bae & Zhu 2018b).
We label the positions of all these additional gaps and rings

in Figure 15. We find that the positions of these rings and gaps
in dust intensity radial profiles are similar to those in gas
surface density profiles. Thus, we plot the positions based on
the gas density profiles. It turns out that only disks with
α�10−4 can form noticeable multiple gaps. Thus, if we find a
system with multiple gaps induced by a single planet (e.g., AS
209 in the next section), the disk viscosity has to be small.
From Figure 15, we can see that the distance between the
secondary gap and the main gap mainly depends on the disk
scale height (h).
For the secondary gap at ∼0.5–0.7, following our fitting

procedure before, we find that the position of the secondary gap
(rIG2) and rp is best fitted with

r

r
q h r1 2.3 . 25IG

p

2 0.02 0.58 0.01a- = -( ) ( )

Figure 11. Example of our definition of the gap depth (δ) and width (Δ). rpeak
(marked by a star) and rgap (marked by a triangle) are first found and are used to
calculate Iedge, which is the average between I(rpeak) and I(rgap). rout and rin are
positions where the intensity equals Iedge. The gap width (Δ) is (rout − rin)/rout.
The depth (δ) is I(rpeak)/I(rgap). (This example is taken from model h5am4p3
with Σg,0=10 g cm−2 and DSD1.)
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This clearly shows that the position of the secondary gap is
almost solely determined by the disk scale height. Thus, if the
secondary gap is present, we can use its position to estimate the

disk scale height (h/r). The fitting is given in Figure 16. The
α=10−5 cases are the AS 209 cases, which will be discussed
in the next section. We caution that the fitting has some scatter.

Figure 12. Fitting of gap widthsΔ vs. K′ for different models with dust size distribution {smax, p}={0.1 mm, −3.5} (panel (a)) and {smax, p}={1 cm, −2.5} (panel (b)).
The first panel is the fitting of the gas surface density, which is used to calibrate the index above h/r and α. The best fit is K q h r 0.18 0.31a¢ = - -( ) . The stars, triangles, and
pentagons represent models of α=10−4, 10−3, and 10−2, respectively. Models for h/r=0.05, 0.07, and 0.1 are in blue, orange, and green respectively. The labels 1, 2, 3, 4,
and 5 within symbols represent the planet mass from 10M⊕ to 3MJ increasingly. The rest of the panels are fits of gaps in dust intensity profiles. From left to right and top to
bottom, they are models scaled to the initial gas density Σg,0=0.1, 0.3, 1, 3, 10, 30, 100 g cm−2. The best fits using Equation (22) are plotted as the dashed lines and the
constants A and B are shown in Table 1. We neglect outliers (shown in unfilled markers) when fitting the line. The outliers either have very shallow gaps, or have double gaps
(horseshoe in between), thus have widths smaller than their counterparts. For cases that clearly show that the major gap is split into two by the horseshoe region, the widths of
the two individual gaps around the horseshoe are also presented and they are connected to the main gap width with the vertical dotted line. The open symbols with red
numbers in them are derived from images that are convolved with a smaller beam of σ=0.025rp. The gray errorbar on top of each plot shows the uncertainty of the fitting.
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Within each h/r group in Figure 16, the rIG2/rp depends on the
planet mass. But this dependence seems to be different for
different h/r groups, so that the fitting using all h/r suggests a
weak dependence on the planet mass. We also note that our fit
is different from the recent fit by Dong et al. (2018), which has
a q−0.2(h/r)1.3 dependence (note that their planet mass is
normalized by the thermal mass). The difference may be due to
the following: (1) the disks in Dong et al. (2018) are thinner,
where their main set of simulations uses h/r=0.03, and
(2) Dong et al. (2018) fit the gap positions at different times for
different simulations while we fit the gap positions at the same
time in the simulations.

4. Planet Properties

With all the relationships derived in previous sections
regarding the planet mass and gap profiles, we can now put
them together to constrain the mass of potential planets in the
DSHARP disks. We use the measured radial intensity profiles
from Figure2 in Huang et al. (2018a). These profiles are
derived by deprojecting the observed images to the face-on
view and then averaging the intensity in the azimuthal
direction. Details regarding generating the radial intensity
profiles are given in Huang et al. (2018a). By using these
intensity profiles, we can derive the planet mass following the
flowchart given in Figure 17.

First, for each source, we plot the observed radial intensity
profile and identify gaps that have Δ�0.15. As shown in

Figure 12, Δ0.15 have large scatter and are sensitive to the
size of the convolution beam. By examining the surface density
profiles in detail, we find that such narrow gaps are also very
shallow and they are actually the outer of the double gaps around
the horseshoe region. Since these gaps are very shallow, the inner
one does not cause enough disk surface density change to be
identified as a gap. Thus, for narrow gaps with Δ0.15, we do
not use the fitting formula to derive the planet mass. Instead, we
try to directly match the gap Δ with data points in Figure 12 by
eye to get a rough planet mass estimate. For these narrow gaps,
the size of the convolution beam matters. Thus, if the gap is at tens
of astronomical units, we use the widths derived in images with
the σ=0.06rp beam, and if the gap is at ∼100 au we use the
widths derived in images with the σ=0.025rp beam.
Second, we estimate the gas surface density, using the

observed millimeter flux at the outer disk and/or some other
constraints. We integrate the observed intensity from 1.1 rgap to
2 rgap where rgap is the gap center. Using Td derived by
Equation (12) and the dust opacity of 0.43 cm2 g−1

(Section 2.3), we calculate the averaged dust surface density
(Σd) from 1.1 to 2 rgap. We have done the same exercise for all
our simulations, and Figure 18 shows the relationship between
Σg,0 and the averaged Σd at the outer disk for the simulations.
Figure 18 indicates that, with a smaller gas surface density or
larger particles (higher Stokes numbers), the ratio between Σd

and Σg,0 increases because particles with larger Stokes numbers
are more easily trapped at the gap edges. We can then use
Figure 18 to estimate Σg,0 based on the derived Σd from the
observation, the estimated h/r, and the assumed α and planet

Table 1
The Relation between the Gap Width Δ and K′

Parameters Δg d p,0 1D d p,0 3D Δd,1 Δd,3 Δd,10 Δd,30 Δd,100

(1) (2) (3) (4) (5) (6) (7) (8) (9)

Stmax (DSD1) L 1.57×10−1 5.23×10−2 1.57×10−2 5.23×10−3 1.57×10−3 5.23×10−4 1.57×10−4

A {p=−3.5, smax=0.1 mm} 1.05 1.09 1.73 2.00 1.25 1.18 0.98 1.11
B {p=−3.5, smax=0.1 mm} 0.26 0.07 0.24 0.36 0.27 0.29 0.25 0.29
Uncertainty in log10(K′) 0.12

0.03
-
+

1.12
0.86

-
+

0.63
0.53

-
+

0.50
0.21

-
+

0.16
0.22

-
+

0.17
0.14

-
+

0.14
0.16

-
+

0.16
0.13

-
+

Stmax (DSD2) L L L 1.57 5.23×10−1 1.57×10−1 5.23×10−2 1.57×10−2

A {p=−2.5, smax=1 cm} L L L L 1.10 1.13 1.55 2.00
B {p=−2.5, smax=1 cm} L L L L 0.05 0.09 0.23 0.36
Uncertainty in Klog10 ¢( ) L L L L 1.06

0.80
-
+

0.77
0.70

-
+

0.59
0.65

-
+

0.29
0.28

-
+

Note. AK BD = ¢ , where A and B are fitting parameters here. K q h r 0.18 0.31a¢ = - -( ) .

Table 2
The Relation between δ − 1 and K, Where δ Is the Gap Depth

Parameters δg − 1 d p,0 1d − 1 d p,0 3d − 1 δd,1 − 1 δd,3 − 1 δd,10 − 1 δd,30 − 1 δd,100 − 1
(1) (2) (3) (4) (5) (6) (7) (8) (9)

Stmax (DSD1) L 1.57×10−1 5.23×10−2 1.57×10−2 5.23×10−3 1.57×10−3 5.23×10−4 1.57×10−4

C {3.5, 0.1 mm} 0.002 14.9 1.18 0.178 0.244 0.135 0.0917 0.0478
D {3.5, 0.1 mm} 2.64 0.926 1.36 1.54 1.25 1.21 1.18 1.23
Uncertainty in log10(K ) 0.13

0.08
-
+

0.71
0.82

-
+

0.57
0.74

-
+

0.48
0.53

-
+

0.26
0.32

-
+

0.23
0.19

-
+

0.24
1.20

-
+

0.18
0.18

-
+

Stmax (DSD2) L L L 1.57 5.23×10−1 1.57×10−1 5.23×10−2 1.57×10−2

C {2.5, 1 cm} L L L 271 998 25.5 1.46 0.069
D {2.5, 1 cm} L L L 1.22 0.533 1.17 1.50 1.94
Uncertainty in log10(K ) L L L 1.26

1.45
-
+

3.38
2.64

-
+

1.18
1.08

-
+

0.56
0.78

-
+

0.52
0.56

-
+

Note.δ − 1=CKD, where C and D are fitting parameters here. K q h r 2.81 0.38a= - -( ) .
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mass. After we derive the planet mass, we will go back to this
step to see if the derived planet mass is consistent with our
assumed mass. Otherwise, we iterate these processes again with
the new assumed planet mass. On the other hand, this estimate
is prone to large errors. If we have more ways to estimate the
gas surface density, such as using molecular tracers or
constraints from the gravitational instability (GI), we should
adopt these constraints.

Third, with known Σg,0 and the assumed dust size
distribution, we can calculate Stmax and use the Δ–K′
relationship (Section 3.2.2 and Table 1) to derive the K′
parameter. Given the sensitivity limits of ALMA, we decide
not to use the gap depth (δ) to estimate the K parameter. For
example, two gaps with different depths, one being a factor of
105 deep and the other being a factor of 103 deep, can look
similar if the signal-to-noise ratio of the observation is 100.

Figure 13. Similar to Figure 12 but for fits of the gap depths minus one (δ − 1) vs. K. The panel (a) adopts the dust size distribution of DSD1 {smax, p}={0.1 mm,
−3.5}, while the panel (b) adopts DSD2 {smax, p}={1 cm, −2.5}. The best-fit parameters are listed in Table 2.
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Next, we need to constrain the disk scale height and the disk
α parameter to break the degeneracy of K′ in order to derive q.
For each major gap, if there is a shallower gap at
r/rp∼0.5–0.7, the shallower gap may be the secondary gap
induced by the planet. The distance between the secondary gap
and rp is very sensitive to h (Section 3.2.3 and Equation (25)).
Thus, the presence of the secondary gap at the right radii not
only makes the planet gap-opening scenario more plausible but
also gives constraints on the disk scale height. If there is no
secondary gap, we may need to use radiative transfer
calculations or Equation (12) to estimate the disk temperature.
The existence of the secondary gap also implies that the disk
viscosity parameter α10−4. Without the presence of the
secondary gap, the α parameter can then be constrained by the
symmetry of the disk structures. If the rings/gaps are highly
axisymmetric, α is likely to be larger than 10−4.

Finally, we can use Equation (22) to calculate q and thus the
planet mass. With Mp derived, we can go back to Step 2 to
estimate a more accurate gas surface density. We can also do a

consistency check with the derived Mp. For example, we can
check if the sub/super-Keplerian motion at the gap edge could
be detected (Section 3.1.2, Equation (16)), if the planet should
produce large-scale asymmetries (e.g., eccentricity, vortices
Section 3.2.1, Figure 8), and if the gap depth is consistent with
observations (Table 2).
Following this procedure (Figure 17), we identify potential

planets in the DSHARP disks (as summarized in Table 3) using
the intensity profiles from Huang et al. (2018a). All the gaps
with Δ�0.15 in the DSHARP sample have been carefully
measured for their widths and then we use the fitting formula to
estimate the planet mass based on their widths. These are
shown in the upper part of Table 3. Since each fitting line with
a Stokes number comes with an uncertainty in K′ (see
Section 3.2.2 and Table 1), the uncertainties of the planet
mass with the given α and h/r are also included in the table.
For shallow gaps with Δ�0.15, our fitting formulae fail to fit
the gap widths from the simulations and the gap width is also
sensitive to the convolution beam size (Figure 12). Thus, we
only choose those that look similar to shallow gaps in our grid
of numerical simulations and compare them directly with
simulations. Thus, only a subset of the shallow gaps in the
DSHARP sample have been fitted. They are shown in the lower
part of Table 3. Since we compare these shallow gaps with the
simulations by eye, a proper error estimate cannot be provided.
Thus, they are considered not to be robust and complete, and
will not be included in the statistical study later. This also
means that our statistical study may miss low-mass planets. In
the next section, we will comment on each case in detail.
Table 3 gives the gap positions, measured gap widths, outer

disk dust surface densities and estimated h/r. Using the dust-
to-gas mass ratio (Figure 18) in simulations with different dust
size distributions (DSD1 and DSD2), the gas surface densities
are also provided. If the gas surface density is above the GI
limit with Q=1, we use the GI limit as the gas surface density.
Then with Stmax calculated for DSD1 and DSD2, we derive K′
for DSD1 and DSD2 using Δ–K′ relationships. To break the
degeneracy in K′ to derive q, we need to know the disk
viscosity. Thus, for either DSD1 or DSD2, we provide three
possible planet masses with the disk α=10−2, 10−3, and
10−4. These three masses are labeled as Mp,am2, Mp,am3, and
Mp,am4, which are listed in Table 3. The inferred planet mass is
roughly twice as high if α is 10 times larger. This is because
K q h r 0.18 0.31a¢ = - -( ) , so that q∝α0.31 with a given K′ and
h/r. As shown in Table 3, many gaps (especially having low
Σg,0) cannot be fit using DSD2 dust size distribution. This is
because the Stokes number for dust in DSD2 is very large, so
that particles in the inner disk quickly drift to the central star-
forming cavity with a single ring at the gap edge. This is
consistent with the conclusion in Dullemond et al. (2018) that
large particles (centimeter-sized) are not preferred in the
DSHARP disks.
As can be seen from Equation (2) and Table 3, the Stokes

number estimated from DSD1 and DSD2 can differ by three
orders of magnitude. DSD1 with smax=0.1 mm and DSD2
with smax=1 cm can be seen as two extreme cases. Dust with
smax<0.1 mm should have similar profiles as DSD1 since
0.1 mm particles already couple with the gas well in the
sample. Dust with smax=1 cm already drifts very fast and we
can hardly find a mass solution for most of our disks. To cover
a more comprehensive parameter space, we add a new set of
planet masses estimated assuming smax=1 mm (“1 mm”

Figure 14. Upper panel: Δ–K′. Lower panel: (δ − 1)–K. The fits for the gas
surface density are shown as the black dashed lines. The fits for the dust
continuum intensity are shown as solid lines for DSD1 ({smax, p}={0.1 mm,
−3.5}), and the dashed–dotted lines for DSD2 ({1 cm, − 2.5}). Maximum
Stokes numbers (Stmax) under Σg,0 (DSD1, DSD2) are 1.57 (–, 1 g cm−2),
5.32×10−1 (–, 3 g cm−2), 1.57×10−1 (10 g cm−2, 0.1 g cm−2), 5.23×
10−2 (30 g cm−2, 0.3 g cm−2), 1.57×10−2 (100 g cm−2, 1 g cm−2), 5.23×
10−3 (3 g cm−2), 1.57×10−3 (10 g cm−2, –), 5.23×10−4 (30 g cm−2, –),
and 1.57×10−4 (100 g cm−2, –).
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hereafter). The estimated initial gas density Σg,0 are used
between the values of DSD1 and DSD2. Holding Σg,0 constant,
Stmax for “1 mm” is 10 times larger than that of the DSD1 or 10
times smaller for DSD2. Thus, the Stokes number of the “1
mm” models are in between those two extremes. The gap
width-K′ relation of the “1 mm” models are taken from the
corresponding Stmax fits in DSD1. The justification is that only
the Stokes number matters regarding the gap width, as
discussed at the end of Section 3.2.2 and demonstrated in
Figure 14. The estimated Σg,0, Stmax, three planet masses given
α=10−4, 10−3, 10−2 and their uncertainties are all given in
Table 3 in the order of DSD1, “1 mm,” and DSD2 (ascending
smax). Among the nine planet masses estimated for each source,
we prefer Mp,am3 with DSD1 size distribution. The main reason
that α=10−3 is preferred is that most rings of the DSHARP
sample do not show significant asymmetry, indicating that
α10−3. On the other hand, if the gaps are shallow, low-mass
planets in α=10−4 disks can also produce axisymmetric
gaps/rings.

4.1. Comments on Individual Sources

4.1.1. AS 209

AS 209 is a system with many gaps. Fedele et al. (2018)
found two gaps at 62 and 103 au and they proposed that a 0.7

MSaturn planet at ∼103 au can explain both gaps. Huang et al.
(2018a) and Guzmán et al. (2018) identified many gaps in this
system including dark annuli at 9, 24, 35, 61, 90, 105, and
137 au. Following our procedure (Figure 17), we first derive the
K′ parameter for the main gap at ∼100 au. The narrow width of
the gap suggests that it is a sub-Jupiter mass planet. Then we
find that the gap at r=61 au is shallower than the main gap,

Figure 15. Position of gaseous rings (left panels, B: bright ring) and gaps (right panels, D: dark annulus) for simulations having α=10−4. Note that, in the right
panel, two cases with h/r=0.05 have two minima around r=rp because the horseshoe region splits the primary gap into two smaller gaps.

Figure 16. Fit of the position of secondary gaps as a function of q, h/r, and α.

Figure 17. Flowchart to derive the planet mass.
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and it is at 0.5–0.7 rp. Thus, we treat it as a secondary gap induced
by the planet. The distance between the secondary and primary
gaps suggests that h/r∼0.05–0.06 (Equation (25) and
Figure 16). This h/r is slightly smaller than the simple estimate
with Equation (12), but the faint emission at the near-IR scattered
light image (Avenhaus et al. 2018) may support that the disk is
indeed thin (another possibility is that the disk is significantly less
flared). With this h/r and K′, we derive that the 100 au planet has
a mass of q=3×10−4 in a α=10−4 disk or q=10−4 in a
α=10−5 disk. Motivated by the smaller gaps at 24 and 35 au
from the DSHARP data (Guzmán et al. 2018), we carry out
several additional simulations extending the range of α to 10−5.
Since a smaller α is used, we double the numerical resolution for
all simulations that are constructed for AS 209. Surprisingly, the
q=10−4 planet in a α=10−5 and h/r=0.05 disk can explain
all five gaps at 24, 35, 62, 90, and 105 au (Figure 19). Although
we assume that there is another planet at 9 au to explain the 9 au
gap, it is possible that the 9 au gap is also produced by the main
planet at 99 au, considering that our simulation domain does not
extend to 9 au. We want to emphasize that our simulation with
one planet at 99 au not only matches the primary gap around
100 au, but also matches the position and amplitude of secondary
(61 au), tertiary (35 au), and even the fourth (24 au) inner gaps.
This makes AS 209 the most plausible case that there is indeed a
planet within the 100 au gap.

Although the above model reproduces the positions and
intensities of gaps and rings very well, its synthetic image (the
upper middle panel in Figure 19) shows a noticeable horseshoe
region and some degree of asymmetry in the rings. Such
asymmetry disappears when α10−3. On the other hand, the
presence of the tertiary and the forth inner gaps requires a small
α. Thus, we carry out a simulation with a radially varying α
( r r3 10 p

4 2a = ´ - ( ) ). This model reproduces the 2D inten-
sity maps better, as shown in the right panels of Figure 19 and
also presented in Guzmán et al. (2018). Such a radially varying
α disk has also been suggested to explain HD 163296 (Liu
et al. 2018). If these models are correct, they suggest that α in
protoplanetary disks is not a constant throughout, supporting
the idea that different accretion mechanisms are operating at
different disk regions (Turner et al. 2014).
Dullemond et al. (2018) constrained that the α/St for the ring at

74 au has a range roughly between 0.03 and 0.7 from the limits of
pressure bump width argument (see Table 3 therein). Such a
constraint is derived using the particle trapping model and does not
depend on the origin of the ring. In our α=10−5 model,
α/Stmax≈0.003 and in our α varying model, α/Stmax≈0.02.
The actual characteristic St can be smaller, considering that the
Stmax here is the maximum Stokes number at the position of the
planet in the initial condition (t0). Since for both models
n(s)∝s−3.5, 50% of the dust mass in t0 at rp have
St�0.25Stmax. Adopting these values, their α/St≈0.012 and

Figure 18. Averaged dust surface density at the outer disk, integrated from 1.1 rp to 2 rp, for all the models with DSD1 (upper panels) and DSD2 (lower panels).
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Table 3
Inferred Planet Mass from 19 Gaps

Name M* rgap Width Σdust h/r Σg,0 ΣGI g,0
usedS Stmax

used Mp,am4 Mp,am3 Mp,am2 Uncertainty
(Me) (au) (Δ) (g cm−2) (g cm−2) (g cm−2) (g cm−2) (5.23 × 10−4) (MJup) (MJup) (MJup) (log10(Mp))

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13) (14)

AS 209 0.83 9 0.42 1.23 0.04 >100, 100, 100 1278.4 100, 100, 100 0.33, 3, 30 1.00, 0.81, 0.37 2.05, 1.66, 0.76 4.18, 3.38, 1.56 0.16
0.13

-
+ , 0.17

0.14
-
+ , 0.29

0.28
-
+

AS 209 0.83 99 0.31 0.17 0.08 30, 10, 3 19.2a 10, 10, – 3, 30, – 0.32, 0.18, – 0.65, 0.37, – 1.32, 0.75, – 0.17
0.14

-
+ , 0.50

0.21
-
+ , –

Elias 24 0.78 57 0.32 0.52 0.09 100, 30, 10 58.6a 30, 30, – 1, 10, – 0.41, 0.19– 0.84, 0.40, – 1.72, 0.81, – 0.14
0.16

-
+ , 0.16

0.22
-
+ , –

Elias 27 0.49 69 0.18 0.48 0.09 100, 30, 10 25.6a 10, 10, – 3, 30, – 0.03, 0.02, – 0.06, 0.05, – 0.12, 0.10, – 0.14
0.16

-
+ , 0.50

0.21
-
+ , –

GW Lupb 0.46 74 0.15 0.13 0.08 10, 3, 3 19.8 10, –, – 3, –, – 0.01, –, – 0.03, –, – 0.06, –, – 0.17
0.14

-
+ , –, –

HD 142666 1.58 16 0.20 1.63 0.05 >100, 100, 100 814.0 100, 100, 100 0.33, 3, 30 0.15, 0.12, 0.09 0.30, 0.25, 0.19 0.62, 0.50, 0.38 0.16
0.13

-
+ , 0.17

0.14
-
+ , 0.29

0.28
-
+

HD 143006 1.78 22 0.62 0.20 0.04 30, 10, 3 442.7 30, 10, – 1, 30, – 9.75, 2.35, – 19.91, 4.80, – 40.64, 9.81, – 0.14
0.16

-
+ , 0.50

0.21
-
+ , –

HD 143006 1.78 51 0.22 0.14 0.05 30, 10, 3 101.6 30, 10, – 1, 30, – 0.16, 0.14– 0.33, 0.28, – 0.67, 0.57, – 0.14
0.16

-
+ , 0.50

0.21
-
+ , –

HD 163296 2.04 10 0.24 1.43 0.04 >100, 100, 100 2273.0 100, 100, 100 0.33, 3, 30 0.35, 0.28, 0.19 0.71, 0.58, 0.39 1.46, 1.18, 0.79 0.16
0.13

-
+ , 0.17

0.14
-
+ , 0.29

0.28
-
+

HD 163296 2.04 48 0.34 0.41 0.06 30, 10, 10 146.0 30, 10, – 1, 30, – 1.07, 0.54, – 2.18, 1.10, – 4.45, 2.24, – 0.14
0.16

-
+ , 0.50

0.21
-
+ , –

HD 163296 2.04 86 0.17 0.15 0.07 30, 10, 3 52.6 30, 10, – 1, 30, – 0.07, 0.08, – 0.14, 0.16, – 0.29, 0.34, – 0.14
0.16

-
+ , 0.50

0.21
-
+ , –

SR 4 0.68 11 0.45 1.56 0.05 >100, 100, 100 792.8 100, 100, 100 0.33, 3, 30 1.06, 0.86, 0.38 2.16, 1.75, 0.77 4.41, 3.57, 1.57 0.16
0.13

-
+ , 0.17

0.14
-
+ , 0.29

0.28
-
+

DoAr 25b 0.95 98 0.15 0.48 0.07 100, 30, 10 20.0a 10, 10, – 3, 30, – (–, 0.10, –) (0.10, –, –) (–, 0.95, –) –, –, –
DoAr 25 0.95 125 0.08 0.14 0.07 30, 10, 3 13.1a 10, –, – 3, –, – (0.03, –, –) –, –, – –, –, – –, –, –
Elias 20 0.48 25 0.13 0.80 0.08 100, 30, 30 171.9 100, 30, 30 0.33, 10, 100 –, –, – (0.05, 0.05, 0.05) –, –, – –, –, –
IM Lup 0.89 117 0.13 0.20 0.09 30, 10, 3 16.0a 10, –, – 3, –, – (0.09 , –, –) (0.09, –, –) –, –, – –, –, –
RU Lup 0.63 29 0.14 1.13 0.07 >100, 100, 100 144.1 100, 100, 100 0.33, 3, 30 (0.07, –, –) (–, 0.07, 0.07) –, – –, –, –
Sz 114 0.17 39 0.12 0.22 0.10 30, 10, 3 35.3 30, 10, – 1, 30, – (0.02 , 0.02, –) –, –, – –, –, – –, –, –
Sz 129 0.83 41 0.08 0.47 0.06 100, 30, 10 77.7a 30, 30, – 1, 10, – (–, 0.03 , –) (0.03, –, –) –, –, – –, –, –

Notes.(1) Name of the object. (2) Stellar mass in Me (Andrews et al. 2018). (3) Position of the gap in astronomical units. (4) The width calculated using the same method in Section 3.2.2. (5) The averaged dust surface
density from 1.1 rp to 2.0 rp using the observed profiles in Figure 6 of Huang et al. (2018a) and κ=0.43 g cm−2. Here we assume rp=rgap. (6) The aspect ratio at the position of the inferred planet using Equation (12);
the mass and luminosity of the stars are taken from Andrews et al. (2018). (7) The closest gas density Σg,0 found from Figure 18 for DSD1, “1 mm” and DSD2 (the following columns which have three entries separated
by commas are all in this order). (8) The maximum gas surface density calculated from the gravitational instability constraint ΣGI=CsΩK/(πG) (with Toomre Q = 1). The difference between these values and those in
Dullemond et al. (2018) Table 3 is due to the fact that Dullemond et al. calculated ΣGI using Q=2 and at the position of the ring instead of the gap. (9) The initial gas surface density Σg,0 is constrained by ΣGI;
otherwise, it is the same as (7). (10) The Stmax (in unit of 5.23 × 10−4) used (constrained by the gravitational instability) to find the planet mass. (11) Planet mass assuming α=10−4, estimated from DSD1, “1 mm” and
DSD2. (12) Similar to (11) but assuming α=10−3. (13) Similar to (11) but assuming α=10−2. The 12 inferred planets above the horizontal line are estimated from the fits, while the 7 below are estimated by directly
comparing the individual models with the observations (see Figure 17 for the flowchart). (14) The uncertainty of the estimated planet masses given the α and h/r.
a
ΣGI is used to constrain the initial gas density Σg,0, thus the Stokes number. Rows with a have at least the DSD1 or the “1 mm” model exceeding the gravitational instability limit, thus lower available Σg,0 (i.e., higher

Stokes number) are adopted (listed in column 9).
b The gap of the GW Lup at 74 au has width Δ>0.15, while the gap of the DoAr 25 at 98 au has Δ<0.15 before rounding.
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0.08, respectively. Thus, the α=10−5 model is off the lower limit
of α/St by a factor of 3, whereas the α varying model is safely
above the lower limit. Considering that the turbulent diffusion with
the small α (α= 10−5) in our simulations may not have reached a
steady state, we conclude that these models are consistent with
Dullemond et al. (2018).

4.1.2. Elias 24

Elias 24 (Cieza et al. 2017) is another system that looks very
similar to our planet–disk interaction simulations. It has a deep
gap at 57 au, a narrow ring at 77 au, and an extended outer disk
(Huang et al. 2018a). The narrowness of the ring is suggestive of
particle trapping at the gap edge. Dipierro et al. (2018) estimated
that there is a 0.7MJ mass planet at 57 au, while Cieza et al.
(2017) suggested that the mass of the 57 au planet is 1–8MJ. Our
estimate is roughly consistent with these previous estimates. The
planet mass is ∼0.8MJ with α=10−3 and DSD1. On the other
hand, the clear signature of dust pileup at the outer gap edge may
indicate that dust is larger than 0.1 mm as used in DSD1. If dust
particles in Elias 24 are larger than 0.1 mm, the planet mass can
be lower than our estimates. Based on our grid of simulations,
we run an additional simulation with α=5×10−4,
h/r=0.07, and Mp=0.16MJ(q= 0.2MJ/M*). We put the
single planet at the 57 au gap and the result is shown in
Figure 20. The dust distribution is n(s)∝s−3.5, smax=2mm,
and initial gas surface density Σg,0=15 g cm−2, hence
Stmax=2.09×10−2. Dullemond et al. (2018) estimated that
the α/St is between 0.077 and 0.66 at the 77 au bright ring. Our

estimated α/Stmax=2.39×10−2 is roughly consistent with
their lower limit considering that 50% of the dust mass has
α/St>0.096 under the dust size distribution p=−3.5.

Figure 19. Top panels: (a) the observation image of AS 209 (see Guzmán et al. 2018, Huang et al. 2018a). The distance between two ticks on the axes is 40 au. (b)
The synthetic image from the simulation with a single planet (Mp/M*=0.1 MJ/Me) at 99 au in a α=10−5, Σg,0=15 g cm−2, smax=0.3 mm, and p=−3.5 disk
at 2000 orbits (∼2 Myr). (c) The synthetic image from the simulation with a single planet (Mp/M*=0.1 MJ/Me) at 99 au in a varying α, Σg,0=6.4 g cm−2,
n(s)∝s−3.5, and smax=0.68 mm disk at 1350 orbits (∼1.35 Myr). Bottom panels: the azimuthally averaged intensity profiles. Panel (a) is the profile from the
observation, and (b) and (c) are the profiles from the simulations above. The “DM” and “BM” stand for dark annulus and bright ring in the model, respectively; the
digits coming after mark the position in astronomical units. The gas density profiles of two models are overplotted on the bottom panels in gray in arbitrary units.

Figure 20. Comparison between the observation and the simulation of Elias 24.
Top panels: (a) observation images of the Elias 24 (Andrews et al. 2018), and
(b) our simulation with a single planet at 57 au. The model image is produced
at 1000 planetary orbits, effectively 0.43 Myr at 57 au. The distance between
two ticks on the axes is 40 au. Lower panels: (a) the radial profile of Elias 24
(Huang et al. 2018a), and (b) the radial profile of our simulation. The gas
density profile in arbitrary units is overplotted in gray color. The bright rings
and dark annulus are marked the same way as those in Figure 19.

21

The Astrophysical Journal Letters, 869:L47 (32pp), 2018 December 20 Zhang et al.



4.1.3. Elias 27

The spiral arms detected in Elias 27 (Pérez et al. 2016)
suggest that the disk may be undergoing GI or there is a
massive companion at the outer disk (Meru et al. 2017).
Besides the spirals, there is a shallow annular gap at 70 au
(Huang et al. 2018b). If we follow our procedure to fit this gap,
the planet mass is 0.06MJ using α=10−3 and DSD1. Such a
low-mass planet cannot induce the large-scale spirals as
observed (Zhu et al. 2015a). On the other hand, detecting this
shallow gap means that if there are massive companions in the
system within 200 au (e.g., with masses larger than 0.06MJ),
we should be able to see the induced gaps at the millimeter
continuum images. The lack of deep gaps suggests that there
are no massive companions in this disk within 200 au. The
spirals must be induced by a massive companion outside
200 au or by some other mechanisms (e.g., GI).

4.1.4. GW Lup

GW Lup has two narrow gaps at 74 and 103 au. The former
gap is barely above Δ=0.15 and the latter is extremely
narrow with Δ0.15. We decide to only fit the 74 au gap
since the 103 au gap is too shallow to fit with any of our
models. To produce the 74 au gap, the planet mass must be
very small (∼0.03MJ or 10M⊕). If both 74 and 103 au gaps are
part of a wide gap separated by the horseshoe region, the planet
will be at ∼85 au with Mp,am3=0.36MJ or Mp,am4=0.18MJ.
The K parameter (Equation (14)) is thus ∼11 and the gaseous
gap depth δ is ∼2, which is roughly consistent with the
observations (Huang et al. 2018a). Thus, this more massive
planet solution remains a possibility.

4.1.5. HD 142666

HD 142666 has several shallow dark annuli at 16, 36, and
55 au (Huang et al. 2018a). The outer two dark annuli (36 and
55 au) as identified in Huang et al. (2018a) have widths of 0.05
and 0.04 by our definition, less than the minimum width
measured in our models. Thus, we do not fit those two gaps
either. We only fit the 16 au gap, and it suggests that Mp,am3 is
0.3MJ with DSD1 and 0.2MJ with DSD2.

4.1.6. HD 143006

HD 143006 has two wide gaps at r=22 au and r=51 au
(Pérez et al. 2018). The gap at r=22 au has the widest relative
width (Δ) in all DSHARP disks, which also leads to the highest
inferred planet mass withMp,am4=10MJ andMp,am3=20MJ.
Both submillimeter continuum observations (Pérez et al. 2018)
and the near-IR scattered light observations (Benisty et al.
2018) have suggested that the inner disk inside 10 au is
misaligned with the outer disk. If such misalignment is caused
by a planet on an inclined orbit, the planet mass needs to be
larger than 2MJ in an α=10−3 disk (Zhu 2018), which is
consistent with the high planet mass derived from fitting the
gap profile here. With such a massive planet predicted, HD
143006 is a prime target to look for exoplanets with direct
imaging techniques.

The outer gap at 51 au can be explained by a sub-Jovian
planet in the disk. The 51 au gap also has an interesting arc
feature at the outer edge, which implies that the disk viscosity
may be low (α10−4) and Mp,am4 are preferred in this
system.

Note that such a high inferred planet–stellar mass ratio at
22 au exceeds the largest q (3MJ/M*) in our grid of
simulations. This brings more uncertainties to the estimated
planet mass. Nevertheless, we believe that our extrapolation of
Equation (22) to q=0.01 is justifiable since the dust is well
coupled to the gas due to the small Stokes number under
DSD1, and the previous study with a grid of much higher q
(Fung et al. 2014) showed that the relation between gaseous
gap properties and the planet mass can extend to q=0.01.

4.1.7. HD 163296

HD 163296 is another system with multiple gaps. The
DSHARP observations (Huang et al. 2018a; Isella et al. 2018)
reveal four gaps at 10, 48, 86, and 145 au. Based on the gap
widths, we estimate that the planets at 10 au, 48 au, and 86 au
have masses of 0.71, 2.18, and 0.14MJ in an α=10−3 disk
with DSD1 dust. If the disk α=10−4, the planet masses are
0.35, 1.07, and 0.07MJ with DSD1 dust. Except for the 10 au
gap, the rest of the gaps have been revealed by previous ALMA
observations (Isella et al. 2016). Isella et al. (2016) estimated
that the 48 au planet has a mass between 0.5 and 2MJ and the
86 au planet has a mass between 0.05 and 0.3MJ, which are
roughly consistent with our estimate. Our derived gas surface
density (Σg,0) of 3–30 g cm

−2 at 48 and 86 au is also consistent
with that of ∼10 g cm−2 derived in Isella et al. (2016). Teague
et al. (2018) studied the deviation from the Keplerian velocity
profile as measured from CO line emission and inferred that the
planet at 86 au has a mass around MJ, which is larger than our
derived Mp,am2 by a factor of 3. However, the planet mass
assuming α=10−2 and 1 mm sized particles including 1σ
error can reach ∼0.6MJ. Considering that the uncertainty is a
factor of two in Teague et al. and also the uncertainties in our
adopted gas density, dust size distribution, and disk viscosity,
these results are still consistent. Liu et al. (2018) has adopted a
disk with an increasing α from 10−4 at 48 au to 10−2 at 86 au,
and estimated that planets at 48 and 86 au have masses of 0.46
and 0.46MJ (their same values were purely a coincidence).
This is consistent with our estimate if we adopt the same α
values.
An asymmetric structure is discovered at the outer edge of

the 48 au gap (Isella et al. 2018), implying that the disk
viscosity α10−4. Thus, the Mp,am4 may be more represen-
tative of the 48 au gap.

4.1.8. SR 4

SR 4 has a wide single gap at 11 au. We estimate its mass
Mp,am3=2.16MJ with DSD1 and 0.77MJ with DSD2. The
gap is also quite deep, consistent with the presence of a Jovian
mass planet. Thus, SR 4 may be an interesting source to follow
up to study its gas kinematics or detect the potential planet with
direct imaging observations.

4.1.9. DoAr 25, Elias 20, IM Lup, RU Lup, Sz 114, and Sz 129

These six systems have shallow gaps with Δ<0.15. Thus,
we compare the observed gap widths directly with those
derived in numerical simulations (Figure 12). The inferred
planet mass is less than 0.1MJ for all these gaps. The smallest
planet is 0.02MJ or 6.4M⊕. Note also that IM Lup features
intricate spiral arms inside the gap fit at 117 au (Huang et al.
2018b).
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On the other hand, DoAr 25, Elias 20, and RU Lup have
adjacent double gaps, similar to GW Lup. If we treat these
double gaps as one main gap that is separated by the horseshoe
material, we can derive the planet mass under this scenario. To
explain both the 98 and 125 au gaps in DoAr 25 using a single
planet, the planet is at 111 au with Mp,am3=0.73MJ or
Mp,am4=0.36MJ. To explain the 25 and 33 au gaps in Elias
20, the planet is at 29 au with Mp,am3=0.57MJ or
Mp,am4=0.28MJ. To explain the 21 and 29 au gaps in RU
Lup, the planet is at 24 au with Mp,am3=1.18MJ or
Mp,am4=0.58MJ. To make the gaps as shallow as possible,
we assume DSD1 dust distribution here. Even so, the
corresponding gap depth δ is larger than 2 with these planet
masses. By comparing with the intensity profiles in Huang
et al. (2018a), DoAr 25 has gaps that could be deep enough,
while the gaps in both Elias 20 and RU Lup are too shallow and
this scenario seems unlikely.

4.2. Young Planet Population

Now, we can put these potential young planets in the
exoplanet mass–semimajor axis diagram (Figure 21). Con-
sidering most of these systems do not show asymmetric
structures, we pick the planet mass that is derived using

α=10−3 and DSD1. The mass errorbar is chosen as the
minimum and maximum planet mass among all the nine
masses that have constrained values in Table 3 (columns 11 to
13), adding up the additional uncertainty due to the fitting from
column 14 of the table. Thus, this is a comprehensive estimate
of the error covering different disk α (from 10−4 to 10−2),
particle sizes (smax from 0.1 mm to 1 cm), and the errors of the
fitting. The planet masses that are from very narrow gaps in the
lower part of Table 3 (the ones with brackets) are labeled with
light circles, and we do not count them in the statistical study
below since the narrowness of the gaps leads to large
uncertainties in the mass estimate. Bae et al. (2018) has
collected young planets from previous disk observations in the
literature (most are Herbig Ae/Be stars). Here, we only
consider the DSHARP sample (Andrews et al. 2018). Although
this sample is more homogeneous with similar observation
requirements, it is still slightly biased toward bright disks and
thus high accretion rate disks around more massive stars.
Since the DSHARP observations have resolutions of

∼3–5 au and most disks only extend to 200 au in the dust
continuum images, the planet population we can probe lies
between 5 and 200 au. The probed mass limit is around the
Neptune mass in the outer disk and a little bit higher (a factor of
∼2) in the inner disk (<10 au, with a larger beam size). If there

Figure 21. Planet mass vs. planet semimajor axis. Orange circles with errorbars are 12 inferred planets from eight disks listed in Table 3 using the massMp,am3, DSD1.
The other inferred planet masses with the assumption of α=10−2 and 10−4 (DSD1, “1 mm” or DSD2) are listed in Table 3 as Mp,am2 and Mp,am4. We can see that
ALMA is sensitive to planets that are not detectable using traditional methods. Young planetary systems may harbor Uranus and Neptune mass planets beyond 10 au
similar to our solar system. For reference, small dots with different colors are exoplanets confirmed as of 2018 August (https://exoplanetarchive.ipac.caltech.edu/).
Black circles with white labels are solar system planets, except that the planet Earth is marked in light blue. Light orange open circles are planets inferred from shallow
gaps (also Mp,am3, DSD1). They are not included in the statistics because we lack the knowledge of their uncertainties.
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are planet-induced gaps in the disk, we should always detect
them at almost all the viewing angles unless the disk is very
edge on. Thus, the probability that we are missing gap-induced
planets due to the observational bias is small. Under this
circumstance, we can simply estimate the planet occurrence
rate through dividing the number of planets by the total number
of disks observed. Although DSHARP observes 20 disks, 2 are
certainly in multiple star systems (Kurtovic et al. 2018). Since
we only focus on single star systems here, the total number of
disks is 18.

Since the gaps in protoplanetary disks may not be due to young
planets, our derived planet occurrence rates should be considered
as the upper limits. On the other hand, we may miss planets at the
mass detection limit (∼Neptune mass), as evidenced by the fact
that we do not include those planets that are fitted by eye and have
no error estimates. Thus, the planet occurrence rates for Neptune
mass planets may be higher than our estimates.

By comparing with exoplanets discovered with other
methods, we find the following:

First, we only have one planet that is more massive than 5MJ.
Thus, the occurrence rate for >5MJ planets beyond 5–10 au is
1/18 or 6%. Wide-orbit giant planets are very rare. This is
consistent with the direct imaging constraints that the occurrence
rate for 5–20MJ planets at >5–10 au is 1%–10% (Meshkat et al.
2017; Vigan et al. 2017; Bowler & Nielsen 2018).

Second, using disk features, we may be probing a planet
population that is not accessible by other planet searching
techniques. These are Neptune to Jupiter mass planets beyond
10 au. Young planetary systems may harbor Uranus and
Neptune mass planets beyond 10 au similar to our solar
system. The occurrence rate for 0.2MJMp5MJ planets
beyond 5–10 au is 8/18 or 44%, and the occurrence rate for all
the planets more massive than Neptune and less than 5MJ

beyond 5–10 au is 10/18 or 56%. These rates are comparable
to the 31% giant planet (>0.1MJ) occurrence rates (Clanton &
Gaudi 2014) within 104 days (<9 au for solar mass stars). If we
consider that our derived planets spread from 5 au to 200 au,
the occurrence rate per decade of semimajor axis is 27% and
35%, respectively. This rate is comparable to the occurrence
rate (20%) for giant planets (>0.1MJ) with periods between
103 and 104 days. Thus, giant planet distribution may be flat
beyond several astronomical units to ∼100 au.

Finally, the planet’s mass distribution is almost flat from
Neptune to Jupiter mass. We have ∼five planets with 0.03MJ
Mp0.3MJ, and six planets with 0.3MJMp3MJ.

We bin the planet masses in decade in part due to the number
of sources available and in part because of the uncertainties of
the mass range for each planet (see Figure 21). The
uncertainties for most of the planet masses are around a factor
of 10. We want to emphasize that the derived planet mass has
larger uncertainties due to the unknown disk α and dust size
distribution. On the other hand, as long as all these disks have
similar α values among each other, the derived planet mass will
systematically shift up and down with the same fraction (e.g.,
decreasing the α value by a factor of 10 will decrease the planet
mass by a factor of two for all the planets).

5. Discussion

5.1. Our Solar System and HR 8799 Analogs in Taurus

Exoplanetary systems are very diverse with systems having
multiple low-mass planets within 1 au (as probed by the Kepler

spacecraft) or systems having multiple giant planets beyond
tens of astronomical units (e.g., HR 8799). Our solar system
has both terrestrial and giant planets. Are any of the DSHARP
sources analogous to our solar system when it was young? Is
DSHARP capable of detecting young solar system analog or
HR 8799 analog?
To answer these questions, we embed planets in our solar

system and HR 8799 into a protoplanetary disk with a
minimum mass solar nebulae surface density

r
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To maximize our chances to detect disk features, we use DSD2
dust size distribution (smax=1 cm). The initial dust-to-gas
mass ratio is 1/100. We run simulations with both α=10−2

and 10−4 to explore the parameter space slightly. The mass of
the HR 8799 central star is 1.47Me, and the four giant planets
in HR 8799are chosen as 7MJ at 14.5 au, 7MJ at 24 au, 7MJ at
38 au, and 5MJ at 68 au Marois et al. (2010). The inner and
outer boundaries of these simulations are 0.1 r0 and 10 r0,
where r0=10 au for two young solar system runs and
r0=20 au for two HR 8799 runs. The α=10−4 run for the
solar system has 1500 and 2048 grid points in the radial and θ

directions, whereas the three other models have 750 and 1024
grids in the radial and θ directions. The solar system simulation
runs for ∼500 orbits at 10 au (due to the higher resolution and
computational cost) and the HR 8799 simulation runs for
∼1000 orbits at 20 au. The millimeter intensity images are
calculated using the temperature structure from Equation (12)
with luminosities at 1 Myr found from D’Antona & Mazzitelli
(1994) given current masses. Before making the ALMA
synthetic images, the dust emission for the young solar system
and HR 8799 runs are convolved with a 2D Gaussian FWHM
1.4 au and 2.8 au, respectively.
Then, we use the CASA simobserve task to generate

synthetic observations with sensitivities and angular resolutions
comparable to those of the DSHARP observations, which are
shown in Figure 22. The angular resolutions in FWHM are
equivalent to ∼5 au in distance and are marked in the lower left
corners in the figure. Each set of synthetic observations consists
of 12 minutes of on-source integration time with the Cycle 5
C43-5 antenna configuration, 35 minutes on-source in the C43-
8 configuration, and 35 minutes on-source in the C43-9
configuration. A precipitable water vapor level of 1.0 mm is
adopted throughout. The resulting synthetic visibilities are
imaged in the same manner as the DSHARP sources, as
described in Andrews et al. (2018). Clearly the DSHARP
observational setup is capable of detecting both our solar
system analogs and HR 8799 analogs at a distance of 140
pc away.
The four giant planets induce a wide gap in the HR 8799

analog. When the disk viscosity is high (α= 10−2), the disk
has an annular ring with an inner cavity, similar to transitional
disks (Espaillat et al. 2014). When the disk viscosity is
low (α= 10−4), we see bright arcs. We also see bright sources
at the inner disk, which are vortices at the gap edge between the
adjacent pair of planets and the horseshoe region of the planets.
In actual observations, we may misinterpret them as planets or
circumplanetary disks. One way to distinguish these possibi-
lities is studying if the bright sources are spatially resolved
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(Zhu et al. 2018). Either the planet or circumplanetary disks
should be smaller than the planet’s Hill radius. If the structures
within the gap are spatially resolved, it is likely that they are
not from the planets or the circumplanetary disks.

For the solar system analog, when the disk viscosity is high
(α= 0.01), we can only observe the gap induced by Jupiter.
When the viscosity is low (α= 10−4), the common gap
induced by Jupiter and Saturn can be seen. Gap edge vortices
and horseshoe regions can also be seen in this case. From the
synthetic observations, we can barely see the disk features
induced by Uranus and Neptune. Even by examining the radial
intensity profiles, we can only see an extremely shallow dimple
at the Neptune position. Thus, Uranus and Neptune in our solar
system analogs are not detectable with DSHARP. The reason
we have Neptune mass planet candidates in Table 3 and
Figure 21 is because either the planet is further away or the
central stellar mass is lower (so that q is larger and gaps are
deeper).

5.2. Caveats

Although we seek to explain gaps with young planets, we
want to point out that there are many other possible
mechanisms to produce gaps and rings, such as ice lines
(Zhang et al. 2015; Okuzumi et al. 2016), the dead zone
transition (Pinilla et al. 2016), MHD zonal flows (Flock et al.
2015; Ruge et al. 2016), the secular GI (Takahashi & Inutsuka
2014), disk winds (Bai 2017; Suriano et al. 2018), and so on.
On the other hand, quantitative predictions from these
mechanisms are desired for the future so that we can test
various ideas and understand the nature of these gaps and rings.

Another major caveat in this work is that we fit the gap
profiles at 1000 planetary orbits. The gap depth and width do
change with time (Rosotti et al. 2016). To get a rigorous
comparison between simulations and observations, we need to
know when planets formed in the disk and how planets grew in
time (Hammer et al. 2017), which we have little knowledge
about. We can only assume that the gap-opening timescale is

similar to the disk lifetime. Although 1000 orbits at ∼100 au is
close to the disk lifetime, it is only 10% of the disk lifetime for
a planet at 20 au. A study similar to this work but also
including the gap’s change with time is needed in the future.
On the other hand, we can do some analytical estimates on the
relationship between the gap width and time. First, we do not
expect that the gap profile can change dramatically over several
thousand orbits if the disk has a large α (e.g., α> 10−3) and
small particles (e.g., St< 10−3). This is because, in these disks,
the viscous timescale over the gap width is much shorter than
1000 planetary orbits and the gas disk has already reached the
steady state. Small particles couple with the gas relatively well
and their drift timescale is much longer than several thousand
orbits. Dust turbulent diffusion with the large α can further
smooth out dust features (Zhu et al. 2012). Second, for particles
that are marginally coupled to the gas (St10−2), they drift
fast in the disk and we expect that the gap width will increase
with time. As long as the gas profile is fixed (e.g., α∼ 10−3),
particles will drift twice further away from the planet over
twice the amount of time. On the other hand, particles with
twice St will drift twice further way from the planet over the
same amount of time. Thus, we expect that the gap width is
proportional to St×t for fast-drifting particles. We have done
a test for disks at different orbits and with fast-drifting dusts
with different Stokes numbers using the Elias 24 simulation
above. We find that if the gas profile is about the same, the time
t and the Stokes number St indeed play the same role in
widening the gap: the gap width at t2 is similar to the gap width
at t from particles with 2St. However, we have not explored the
full parameter space, and the results may change with some
other disk parameters. Especially if α is small, the dramatic
change in the gas profile with time will complicate the issue
and break the degeneracy between St and t. A detailed study
requires adding the time dimension in the parameter space and
is beyond the scope of this Letter.
Dust evolution and feedback to the gas is ignored in our

study so that we can scale the simulations. In reality, particles

Figure 22. Simulation images (the left panel in each panel block) and synthetic observations (the right panel in each panel block, using the same configuration as the
ALMA DSHARP observation) of HR 8799 and solar system at a distance of 140 pc. The top panels adopt α=10−2, while the bottom panels adopt α=10−4. The
field of view for HR 8799 images is 2″ while that for the solar system is 0 5. The distance between two ticks in HR 8799 is 0 5.
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are trapped at the gap edges, which will promote its growth.
When a significant amount of dust is trapped at the gap edge,
the dust-to-gas feedback can affect the gap depth and width
(C. Yang & Z. Zhu 2019, in preparation) or even trigger
streaming instability (Youdin & Goodman 2005). A proper
study with all these effects considered is difficult for 2D
numerical simulations. But it can be incorporated into 1D dust
evolutionary models.

We want to emphasize that, as shown in Section 4, it is
straightforward to derive the planet mass assuming other dust
size distributions besides DSD1 and DSD2. As shown in
Figure 14, only the maximum Stokes number affects the gap
profiles. Thus, we can calculate the Stokes number for any
given dust size distribution, and then use the fits to derive the
planet mass.

6. Conclusion

DSHARP provides a homogeneous sample of young
protoplanetary disks showing a variety of substructures, e.g.,
rings, gaps, spirals, and small-scale asymmetry (Andrews et al.
2018). If these substructures are induced by forming young
planets, they are revealing a hidden young planet population
that has not been probed by direct planet searching techniques.

To explore the potential planet population that is responsible
to observed features in the DSHARP disks, we carry out two-
dimensional hydrodynamical simulations including dust parti-
cles to study the relationships between the gap properties and
the planet mass. We systematically study a grid of 45 gas
models (as in Section 2.2), with three values of α (10−4, 10−3,
10−2), three values of h/r (0.05, 0.07, 0.10), and five values of
planet mass (from 10M⊕ to 3MJ). For each model, we scale
the dust distribution in the simulation to disks with different
surface densities and different dust size distributions. Two
different dust size distributions motivated by (sub)millimeter
polarization measurements (DSD1: smax=0.1 mm, p=−3.5)
and (submillimeter) dust thermal continuum observations
(DSD2: smax=1 cm, p=−2.5) are considered. Overall, for
each model, we generate 12 millimeter images including 7
images using the DSD1 dust size distribution and 5 images
using the DSD2 dust size distribution.

1. First, we study the gas structure in these 45 simulations.
Overall, the gap becomes deeper with higher q, smaller
h/r, and lower α. But when q3MJ in a low α disk, the
gap edge becomes eccentric and the gap depth starts to
decrease. These are all consistent with previous studies.

2. We study the sub/super-Keplerian motion at the gap
edges. We confirm that the deviation from the Keplerian
motion is due to the gas radial pressure gradient. The
distance between the sub/super-Keplerian motion peaks
is roughly 4.4 times h, with a weak dependence on α and
q. The amplitude of the sub/super-Keplerian motion
peaks is fitted with Equation (16), which shows a strong
dependence on h/r.

3. Then, we study the millimeter intensity maps for all our
simulations. The gap edge becomes more eccentric and
off-centered with the increasing planet mass. The
eccentricity and off-centered distances are provided
(Figure 8). Large eccentricity and off-centered distance
may be indications of planets in disks.

4. Particle trapping in gap edge vortices and the horseshoe
region are apparent in millimeter intensity maps for disks

with α=10−4, leading to large-scale asymmetries in the
images. For some parameters, even a 33M⊕ planet can
lead to a factor of 100 contrast between different
azimuthal parts of the disk. In some cases, the vortex
shows up at smaller radii than the gap edge (similar to the
arc structure in HD 163296).

5. We derive several empirical relationships between the
width/depth of the gaps in millimeter intensity maps and
the planet/disk properties. All the fits for the width and
depth are given in Tables 1 and 2 and shown in Figure 14.
We show that different disks with different surface
densities and different dust size distributions have the
same gap shape as long as their Stokes numbers for the
maximum-size particles (where most of the dust mass is)
are the same. Thus, our derived relationships can be used
in other disks with different surface densities and dust
size distributions.

6. A single planet can open multiple gaps. The position of
the secondary gap is fitted with Equation (25). We find
that the position of the secondary gap is almost solely
determined by the disk scale height. Thus, if the
secondary gap is present, we can use its position to
estimate the disk scale height (h/r).

7. With all these relationships, we lay out the procedure to
constrain the planet mass using gap properties (the
flowchart is presented in Figure 17).

8. Applying these steps, we identify potential planets in the
DSHARP disks. We provide planet masses that are
derived using three different values of α and three dust
size distributions.

9. We comment on the potential planets in each disk.
Particularly, for AS 209, we point out that our simulation
matches not only the primary gap, but also the position
and amplitude of the secondary (61 au), tertiary (35 au),
and even the fourth (24 au) inner gaps. This makes AS
209 the most plausible case that there is indeed a planet
within the 100 au gap (also in Guzmán et al. 2018). The
best-fit model also suggests that the disk α increases with
radii in AS 209, which may have implications for
studying disk accretion theory.

10. We make synthetic observations for HR 8799 and solar
system analogs to show that DSHARP is capable of
detecting giant planets in these systems.

11. We plot these potential young planets in the exoplanet
mass–semimajor axis diagram (Figure 21). We find that
the occurrence rate for >5MJ planets beyond 5–10 au is
∼6%, consistent with direction imaging constraints.
Using disk features, we can probe a planet population
that is not accessible by other planet searching techni-
ques. These are Neptune to Jupiter mass planets beyond
10 au. The occurrence rate is ∼50%, suggesting a flat
distribution beyond several astronomical units. Overall,
young planets with Neptune masses and above are
common at 10 astronomical units and beyond in
protoplanetary disks. On the other hand, we caution that
there are large uncertainties for both the origin of these
gaps and the inferred planet mass.
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Appendix

The fitted gap widths and depths for all the models are listed
in Tables 4 and 5. Column 4 shows the gap widths/depths of
the gas; columns 5–11 show the gap widths/depths of the dust
emission with increasing initial gas surface density Σg,0

(decreasing Stokes number Stmax) under dust size distribution
DSD1; similarly, columns 12–16 show the gap widths/depths
of the dust under DSD2. All widths/depths shown in Tables 4
and 5 are derived from the images with a Gaussian convolution
σ=0.06 rp (the larger kernel), except for the bottom of
Table 4 (below the horizontal line and above the double
horizontal lines) where widths are derived using σ=0.025 rp
(the smaller kernel). These widths with a smaller beam are
listed only if the gap widths Δ<0.15 using the larger kernel
(σ=0.06 rp). Rows below the double lines show the
individual widths of the gaps whose common gap is separated
into two due to the horseshoe. The value above the bar shows
the width of the inner gap (Δ1), whereas the value under the bar
shows the width of the outer gap (Δ2).
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Table 4
Gap Widths for the Gas, DSD1, and DSD2

h/r α q Δg d p,0 1D d p,0 3D Δd,1 Δd,3 Δd,10 Δd,30 Δd,100 Δd,1 Δd,3 Δd,10 Δd,30 Δd,100

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13) (14) (15) (16)

0.05 10−4 3.3×10−5 0.09 0.69 0.46 0.21 0.16 0.13 0.12 0.12 0.81 0.75 0.64 0.32 0.19
0.05 10−4 1×10−4 0.24 0.80 0.61 0.48 0.25 0.24 0.22 0.21 1.00 0.87 0.76 0.57 0.26
0.05 10−4 3.3×10−4 0.32 0.82 0.57 0.98 0.30 0.29 0.29 0.27 1.00 0.92 0.77 0.55 0.48
0.05 10−4 1×10−3 0.42 0.56 0.56 0.55 0.42 0.40 0.38 0.37 1.00 0.56 0.56 0.56 0.54
0.05 10−4 3.3×10−3 0.55 0.75 0.60 0.97 0.53 0.50 0.49 0.48 1.00 1.00 0.72 0.58 0.98
0.05 10−3 3.3×10−5 0.00 0.00 0.13 0.00 0.00 0.00 0.08 0.00 0.00 0.00 0.00 0.13 0.00
0.05 10−3 1×10−4 0.20 0.77 0.52 0.27 0.20 0.18 0.17 0.16 1.00 0.89 0.72 0.47 0.24
0.05 10−3 3.3×10−4 0.27 0.77 0.54 0.38 0.30 0.27 0.26 0.24 1.00 0.96 0.72 0.51 0.34
0.05 10−3 1×10−3 0.37 0.73 0.56 0.44 0.38 0.36 0.34 0.32 1.00 0.84 0.68 0.54 0.41
0.05 10−3 3.3×10−3 0.57 0.94 0.62 0.54 0.50 0.47 0.46 0.45 0.99 0.98 0.94 0.62 0.53
0.05 10−2 3.3×10−5 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
0.05 10−2 1×10−4 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
0.05 10−2 3.3×10−4 0.21 0.39 0.26 0.21 0.00 0.00 0.00 0.00 0.59 0.52 0.37 0.25 0.19
0.05 10−2 1×10−3 0.30 1.00 0.62 0.38 0.33 0.33 0.31 0.30 1.00 1.00 0.98 0.58 0.35
0.05 10−2 3.3×10−3 0.43 1.00 0.74 0.61 0.53 0.46 0.44 0.42 1.00 1.00 1.00 0.75 0.60
0.07 10−4 3.3×10−5 0.00 0.00 0.00 0.11 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.10
0.07 10−4 1×10−4 0.14 0.78 0.68 0.36 0.25 0.18 0.15 0.14 0.96 0.82 0.73 0.61 0.32
0.07 10−4 3.3×10−4 0.33 1.00 0.75 0.63 0.36 0.33 0.31 0.30 1.00 1.00 0.81 0.68 0.36
0.07 10−4 1×10−3 0.42 0.79 0.76 0.48 0.44 0.41 0.39 0.37 1.00 0.82 0.77 0.64 0.44
0.07 10−4 3.3×10−3 0.56 1.00 1.00 0.84 0.58 0.52 0.50 0.48 1.00 1.00 1.00 0.63 0.82
0.07 10−3 3.3×10−5 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
0.07 10−3 1×10−4 0.00 0.00 0.18 0.15 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.17 0.14
0.07 10−3 3.3×10−4 0.28 0.97 0.70 0.43 0.32 0.29 0.27 0.26 1.00 1.00 0.78 0.63 0.38
0.07 10−3 1×10−3 0.36 0.82 0.71 0.53 0.43 0.37 0.35 0.33 1.00 1.00 0.78 0.66 0.49
0.07 10−3 3.3×10−3 0.52 0.97 0.90 0.68 0.57 0.52 0.48 0.47 1.00 1.00 0.97 0.88 0.65
0.07 10−2 3.3×10−5 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
0.07 10−2 1×10−4 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
0.07 10−2 3.3×10−4 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
0.07 10−2 1×10−3 0.28 0.52 0.37 0.15 0.00 0.00 0.00 0.00 0.76 0.65 0.48 0.35 0.13
0.07 10−2 3.3×10−3 0.40 1.00 0.97 0.58 0.46 0.43 0.41 0.41 1.00 1.00 1.00 0.99 0.53
0.10 10−4 3.3×10−5 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
0.10 10−4 1×10−4 0.00 0.00 0.00 0.00 0.12 0.12 0.11 0.11 0.00 0.00 0.00 0.00 0.10
0.10 10−4 3.3×10−4 0.21 0.83 0.79 0.55 0.43 0.32 0.22 0.19 1.00 0.89 0.80 0.71 0.48
0.10 10−4 1×10−3 0.41 1.00 0.81 0.75 0.50 0.44 0.42 0.40 1.00 1.00 0.84 0.78 0.51
0.10 10−4 3.3×10−3 0.53 0.86 0.84 0.72 0.70 0.54 0.48 0.29 0.75 0.88 0.86 0.72 0.71
0.10 10−3 3.3×10−5 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
0.10 10−3 1×10−4 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
0.10 10−3 3.3×10−4 0.00 0.00 0.00 0.18 0.15 0.15 0.00 0.00 0.00 0.00 0.00 0.00 0.15
0.10 10−3 1×10−3 0.38 1.00 0.82 0.65 0.46 0.40 0.39 0.36 1.00 1.00 1.00 0.76 0.56
0.10 10−3 3.3×10−3 0.49 1.00 0.98 0.74 0.59 0.52 0.49 0.47 1.00 1.00 1.00 0.81 0.68
0.10 10−2 3.3×10−5 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
0.10 10−2 1×10−4 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.31 0.00 0.00 0.00 0.00
0.10 10−2 3.3×10−4 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
0.10 10−2 1×10−3 0.11 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.20 0.00 0.00 0.00 0.00
0.10 10−2 3.3×10−3 0.38 0.72 0.49 0.40 0.15 0.16 0.00 0.00 1.00 0.88 0.69 0.47 0.38

Kernel σ = 0.025rp
0.05 10−4 3.3×10−5 0.09 L L L L 0.13 0.12 0.12 L L L L L
0.05 10−3 3.3×10−5 0.00 L 0.13 0.11 0.11 0.09 0.08 L L L L 0.13 0.11
0.05 10−2 3.3×10−4 0.21 L L L 0.20 L 0.11 0.13 L L L L L
0.07 10−4 3.3×10−5 0.00 L L 0.10 0.09 0.08 0.09 0.09 L L L 0.08 0.09
0.07 10−3 1×10−4 0.00 L L 0.15 0.14 0.12 0.13 L L L L 0.17 0.14
0.07 10−2 1×10−3 0.28 L L L 0.09 0.10 0.09 0.08 L L L L 0.12
0.10 10−4 3.3×10−5 0.00 L L 0.07 0.08 0.08 0.08 0.08 L L L L 0.07
0.10 10−4 1×10−4 0.00 L L 0.10 0.12 0.12 0.11 0.12 L L L 0.09 0.10
0.10 10−3 3.3×10−4 0.00 L L L L L 0.15 0.11 L L L 0.16 L
0.10 10−2 1×10−3 0.11 L L L 0.12 0.08 0.11 L L L L L L
0.10 10−2 3.3×10−3 0.38 L L L L L 0.40 0.13 L L L L L

Common Gaps Separated by Horseshoe 1

2

D
D

0.05 10−4 1×10−4 0.24 L L 0.28

0.10
L L L L L L L L L

0.05 10−4 3.3×10−4 0.32 L L 0.32

0.13
L L L L L L L L 0.29

0.07

0.05 10−4 1×10−3 0.42 0.10

0.19

0.11

0.20

0.10

0.19

0.25

0.15

0.26

0.15
L L L 0.09

0.17

0.10

0.19

0.11

0.20

0.10

0.18
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Table 4
(Continued)

h/r α q Δg d p,0 1D d p,0 3D Δd,1 Δd,3 Δd,10 Δd,30 Δd,100 Δd,1 Δd,3 Δd,10 Δd,30 Δd,100

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13) (14) (15) (16)

0.05 10−4 3.3×10−3 0.55 L L 0.56

0.81
L L L L L L L L 0.54

0.86

0.05 10−3 3.3×10−3 0.57 0.07

0.93
L L L L L L 0.09

0.99

0.09

0.97

0.07

0.93
L L

0.07 10−4 3.3×10−4 0.33 L L 0.41

0.19
L L L L L L L L L

0.07 10−4 1×10−3 0.42 L L L 0.27

0.19
L L L L L L 0.51

0.19

0.25

0.17

0.07 10−4 3.3×10−3 0.56 L L 0.61

0.39
L L L L L L L L 0.59

0.27

0.07 10−3 3.3×10−4 0.28 0.88

0.74
L L L L L L L L L L L

0.07 10−2 3.3×10−3 0.40 L 0.82

0.62
L L L L L L L L 0.81

0.88
L

0.10 10−4 3.3×10−4 0.21 L L L L L L L L L L 0.62

0.18
L

0.10 10−4 1×10−3 0.41 L L 0.57

0.18
L L L L L L L 0.58

0.30

0.27

0.30

0.10 10−4 3.3×10−3 0.53 0.16

0.65

0.19

0.66

0.19

0.63

0.16

0.39

0.35

0.13

0.33

0.02
L 0.14

0.67

0.15

0.65

0.16

0.65

0.17

0.64

0.16

0.42

0.10 10−3 1×10−3 0.38 L L L L L 0.18

0.18

0.17

0.15
L L L L L

0.10 10−3 3.3×10−3 0.49 L 0.85

0.64
L L L L L L L L L L

0.10 10−2 1×10−4 0.00 L L L L L L L 0.12

0.12
L L L L

Note.A summary of the gap widths of the gas surface density profile, and dust emission profile under dust size distributions DSD1 and DSD2. Column 1: aspect ratio
h/r. Column 2: α viscosity. Column 3: planet–stellar mass ratio q. Column 4: the width of the gas surface density. Columns 5–11: the gap width of the dust emission
under DSD1, with initial gas surface density Σg,0=0.1, 0.3, 1, 3, 10, 30, 100 g cm−2 (Stmax=1.57×10−1, 5.23×10−2, 1.57×10−2, 5.23×10−3, 1.57×10−3,
5.23×10−4, 1.57×10−4). Columns 12–16: the gap width of the dust emission under DSD2, with initial gas surface density Σg,0=1, 3, 10, 30, 100 g cm−2

(Stmax=1.57, 5.32×10−1, 1.57×10−1, 5.23×10−2, 1.57×10−2). While the gap widths Δg are found from the unconvolved gas surface density profile, the rest
of Δd are found from smoothed dust continuum intensity. The convolution beam for dust emission σ=0.06 rp for the top rows; σ=0.025 rp for 11 rows horizontal
single and double lines. Bottom rows under the double lines are the gaps with the horseshoe that separates them into two gaps. The value above the bar shows the
width of the inner gap (Δ1), whereas the value under the bar shows the width of the outer gap (Δ2).
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Table 5
Gap Depths log 110 d -( ( )) for the Gas, DSD1, and DSD2

h/r α q 1gd - 1d p,0 1d - 1d p,0 3d - 1d,1d - 1d,3d - 1d,10d - 1d,30d - 1d,100d - 1d,1d - 1d,3d - 1d,10d - 1d,30d - 1d,100d -
(Mp/M*) (log10) (log10) (log10) (log10) (log10) (log10) (log10) (log10) (log10) (log10) (log10) (log10) (log10)

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13) (14) (15) (16)

0.05 10−4 3.3×10−5 −1.03 1.94 1.25 0.62 0.24 −0.03 −0.21 −0.41 3.66 2.93 2.10 1.25 0.50
0.05 10−4 1×10−4 0.34 1.66 1.05 0.57 0.39 0.29 0.23 0.10 3.67 2.62 1.60 0.87 0.32
0.05 10−4 3.3×10−4 1.15 1.56 1.12 0.82 0.64 0.57 0.53 0.53 2.70 2.10 1.54 0.93 0.54
0.05 10−4 1×10−3 3.43 3.12 2.56 2.14 1.90 1.72 1.65 1.56 3.66 3.47 3.13 2.64 2.05
0.05 10−4 3.3×10−3 2.05 4.55 3.90 3.20 2.67 2.26 1.93 1.73 8.75 8.00 6.93 5.75 4.10
0.05 10−3 3.3×10−5 L L −0.55 −0.73 L L L L L L −0.77 −0.61 −0.81
0.05 10−3 1×10−4 −0.27 2.24 1.46 0.72 0.24 0.01 −0.10 −0.26 4.94 3.83 2.55 1.46 0.57
0.05 10−3 3.3×10−4 0.81 3.03 2.26 1.59 1.17 0.82 0.51 0.37 6.67 5.69 4.37 3.03 1.84
0.05 10−3 1×10−3 2.35 2.54 3.08 2.86 2.49 2.17 1.89 1.49 3.40 3.08 2.72 3.23 3.78
0.05 10−3 3.3×10−3 1.96 3.52 2.95 2.43 2.10 1.78 1.48 1.34 L L 5.44 4.22 3.13
0.05 10−2 3.3×10−5 L L L L L L L L L L L L L
0.05 10−2 1×10−4 L L L L L L L L L L L L L
0.05 10−2 3.3×10−4 −0.32 0.81 0.16 −0.25 −0.72 L −0.72 L 1.45 1.20 0.75 0.11 −0.41
0.05 10−2 1×10−3 0.64 1.88 1.24 0.59 0.24 0.04 −0.01 −0.10 L 3.37 2.22 1.27 0.44
0.05 10−2 3.3×10−3 2.69 3.05 2.50 2.01 1.69 1.35 1.05 0.74 4.87 4.12 5.00 3.85 2.60
0.07 10−4 3.3×10−5 L L L −0.49 −0.55 −0.58 −0.65 L L L L L −0.61
0.07 10−4 1×10−4 −0.69 2.31 1.92 1.08 0.51 0.15 −0.04 −0.28 4.06 3.26 2.41 1.73 0.88
0.07 10−4 3.3×10−4 0.59 2.13 1.88 1.32 0.93 0.60 0.39 0.25 3.09 2.32 1.94 1.54 1.03
0.07 10−4 1×10−3 1.86 3.34 2.93 2.20 1.81 1.51 1.29 1.02 4.57 3.89 3.44 2.92 2.20
0.07 10−4 3.3×10−3 2.60 5.10 4.63 3.79 3.24 2.75 2.42 2.04 9.89 9.11 8.10 7.02 5.69
0.07 10−3 3.3×10−5 L L L L L L L L L L L L L
0.07 10−3 1×10−4 L L −0.47 −0.39 −0.63 −0.65 L L L L −0.56 −0.55 −0.54
0.07 10−3 3.3×10−4 0.03 2.85 2.29 1.38 0.83 0.48 0.28 0.09 6.25 5.40 3.86 2.53 1.33
0.07 10−3 1×10−3 1.04 3.50 2.96 2.12 1.64 1.26 0.93 0.72 7.71 6.91 5.78 4.49 2.86
0.07 10−3 3.3×10−3 2.38 4.86 4.36 3.58 3.12 2.78 2.48 2.11 4.69 L 7.61 6.49 4.89
0.07 10−2 3.3×10−5 L L L L L L L L L L L L L
0.07 10−2 1×10−4 L L L L L L L L L L L L L
0.07 10−2 3.3×10−4 L L L L L L L L −0.45 L L L L
0.07 10−2 1×10−3 −0.09 0.84 0.18 −0.37 −0.71 L L L 1.84 1.46 0.79 0.10 −0.49
0.07 10−2 3.3×10−3 1.08 2.09 1.63 1.01 0.58 0.28 0.16 0.11 L L 2.99 1.84 0.87
0.10 10−4 3.3×10−5 L L L L L L L L L L L L L
0.10 10−4 1×10−4 L L L −0.63 −0.29 −0.25 −0.38 −0.57 L L L L −0.80
0.10 10−4 3.3×10−4 −0.33 2.51 2.23 1.49 0.73 0.26 0.00 −0.27 4.10 3.50 3.00 2.20 1.15
0.10 10−4 1×10−3 0.79 2.75 2.42 1.76 1.18 0.71 0.45 0.21 4.55 3.74 3.13 2.40 1.46
0.10 10−4 3.3×10−3 1.84 3.71 3.08 2.81 2.36 1.87 1.52 1.14 5.84 4.47 3.77 3.37 4.29
0.10 10−3 3.3×10−5 L L L L L L L L L L L L L
0.10 10−3 1×10−4 L L L L L L L L L L L L L
0.10 10−3 3.3×10−4 L L L −0.41 −0.58 −0.57 −0.62 L L L L −0.67 −0.67
0.10 10−3 1×10−3 0.17 2.54 2.10 1.33 0.59 0.08 −0.18 −0.34 L 5.06 3.52 2.29 1.14
0.10 10−3 3.3×10−3 1.33 3.19 2.74 2.04 1.40 0.97 0.63 0.26 L 6.64 5.63 4.52 2.92
0.10 10−2 3.3×10−5 L L L L L L L L L L L L L
0.10 10−2 1×10−4 L L L L L L L L L L L L L
0.10 10−2 3.3×10−4 L L L L L L L L L L L L L
0.10 10−2 1×10−3 −1.45 L L L L L L L L L L L L
0.10 10−2 3.3×10−3 0.17 1.24 0.55 −0.07 −0.61 −0.62 −0.62 −0.64 2.87 2.14 1.30 0.48 −0.25

Note.A summary of the gap depths of the gas surface density profiles and dust emission profiles under dust size distributions DSD1 and DSD2. The layout is similar to that of Table 4, except that the depths are listed in
log10(δ − 1) and only σ=0.06 rp kernel is applied to find the depths.
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