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Abstract

A Neptune-sized exomoon candidate was recently announced by Teachey & Kipping, orbiting a 287 day gas giant
in the Kepler-1625 system. However, the system is poorly characterized and needs more observations to be
confirmed, with the next potential transit in 2019 May. In this Letter, we aid observational follow up by analyzing
the transit signature of exomoons. We derive a simple analytic equation for the transit probability and use it to
demonstrate how exomoons may frequently avoid transit if their orbit is larger than the stellar radius and
sufficiently misaligned. The nominal orbit for the moon in Kepler-1625 has both of these characteristics, and we
calculate that it may only transit ≈40% of the time. This means that ≈six non-transits would be required to rule out
the moon’s existence at 95% confidence. When an exomoon’s impact parameter is displaced off the star, the
planet’s impact parameter is displaced the other way, so larger planet transit durations are typically positively
correlated with missed exomoon transits. On the other hand, strong correlations do not exist between missed
exomoon transits and transit timing variations of the planet. We also show that nodal precession does not change
an exomoon’s transit probability and that it can break a prograde-retrograde degeneracy.

Key words: eclipses – methods: analytical – Moon – planets and satellites: detection – planets and satellites:
dynamical evolution and stability – planets and satellites: general

1. Introduction

In the solar system our understanding of the planets is
enriched by our understanding of their moons. The Moon is
thought to influence Earth’s habitability (Laskar et al. 1993).
The Galilean moons help constrain the early evolution of
Jupiter (Heller et al. 2015; Ronnet et al. 2018). The equatorial
alignment of Uranus’s moons helps us understand the origin of
the planet’s tilt (Kegerreis et al. 2018). As a community we
would benefit immensely from conducting similar science for
moons of extrasolar planets (exomoons).

Detecting analogs of the solar system moons is challenging
due to their small size. Photometry is thought to be the most
promising technique (Kipping et al. 2009), either through
observing individual moon transits (Sartoretti & Schneider
1999), multiple averaged moon transits (Simon et al. 2012;
Heller 2014; Teachey et al. 2017), or inferring the moon’s
existence based on the planet’s transit timing variations (TTVs)
and transit duration variations (TDVs; Sartoretti & Schnei-
der 1999; Kipping 2009a, 2009b, 2011; Heller et al. 2016).
Other techniques with potential include gravitational micro-
lensing (Bennett et al. 2014; Hwang et al. 2018) and
observations of self-luminous giant exoplanets to detect a
variation in polarization (Sengupta & Marley 2016) or in radial
velocity (Vanderburg et al. 2018).

The most plausible exomoon to date is in the Kepler-1625
system. The planet (Kepler-1625b) itself is unremarkable: a gas
giant on a 287 day orbit. The surprise, however, is the size of
the moon (Kepler-1625b-i), as it is potentially similar in mass
and radius to Neptune. Such a large moon is without precedent
in our solar system, but one must remember that so were the
first exoplanet discoveries.

The moon was originally suspected based on three planet
transits within the original Kepler mission (Teachey et al. 2017;

Heller 2018). Asymmetries in the transit profile teased the
presence of a moon, but neither TTVs nor TDVs were detected
to confirm it. The moon’s existence became more likely after a
fourth planetary transit was captured by the Hubble Space
Telescope (HST; Teachey & Kipping 2018). The planet transit
was 70 minutes early, although no TDV was detected.
Furthermore, there is a shallow dip in the light curve after
the egress of the planet transit: a potential moon transit. Table 1
contains basic system parameters used in our Letter, but we
refer the reader to Teachey & Kipping (2018) for significantly
more detail.
In this Letter we are agnostic about the reality of this

particular exomoon. Both Teachey & Kipping (2018) and
subsequent analysis by Heller et al. (2019) encourage new
observations in order to consider the moon confirmed. In this
Letter we aid such future observations by analyzing the
detectability of exomoons, both in general and for Kepler-
1625b-i specifically. We quantify previous intuition that some
moons are not guaranteed to transit every time their host planet
does (Sartoretti & Schneider 1999; Martin 2017). Missed
transits typically occur when the moon’s orbit is both wider
than the stellar diameter and significantly misaligned to the
planet’s orbital plane. The best-fitting, albeit loosely con-
strained orbit for Kepler-1625b-i has both of these character-
istics. Furthermore, within our own solar system we know of
Triton, which is on a highly misaligned, in fact retrograde, orbit
(Figure 1).
In this Letter we derive an analytic transit probability for

exomoons of transiting planets (Section 2), which accounts for
both misalignment and a dynamically varying exomoon orbit.
We then test the correlation between the presence/absence of
moon transits and the TTV and TDV signature of the planet
(Section 3). We apply our work to both exomoons in general
and the Kepler-1625 system specifically (Section 4). The Letter
ends with a brief discussion (Section 5).
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2. Exomoon Transit Probability

2.1. Transit Geometry

The transit geometry is shown in Figure 2. The observer
looks from the positive z-axis at the (x, y) sky plane centered on
the star. The planet orbit is modeled by a straight line from left
to right (positive x direction), vertically offset by the impact
parameter b a I RcosP P P = . This assumes aP?Rå

3 and
mP?mM,

4 and throughout this Letter we also assume circular
orbits, i.e., eP=eM=0. The planet’s orbit would be rotated
clockwise by ΩP, but we arbitrarily set ΩP=0 as the transit
geometry are only sensitive to ΔΩ=ΩM−ΩP.

The position of the moon at the time of the planet’s transit
midpoint across the star is fundamental to the transit

phenomenon. Neglecting eccentricity, its projected orbit is an
ellipse with major axis aM and a minor axis a IcosM M∣ ∣, rotated
counter-clockwise by ΩM and offset vertically by bPRå:
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where fM is the true anomaly of the moon. It is important to
remember that fM is the orbital phase of the moon defined
within its orbital plane, not with respect to our (x, y) coordinate
system. In Figure 2 the moon is misaligned and prograde with
the planet’s orbit and projects a counter-clockwise motion. In
Figure 6 we however note that a degeneracy exists between
prograde and retrograde moons (see Section 5.1). The mutual
inclination between the moon and the planet’s orbit (not
equator) is

I I I I Icos cos sin sin cos cos . 2M P M PD = DW + ( )

The moon will transit the star on a given planet transit when
y f RM M <∣ ( )∣ . To make this criterion easier to solve, we
consolidate the expression in Equation (1) for yM from two
trigonometric functions of fM to one:
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We note that while the second line of Equation (3) contains
bP, hence implying that IP is not exactly 90°, the approxi-

mation I Isin cos cos sin2
M

2
M

2
MW + W » D∣ ∣ is derived

from Equation (2) using IP=90°. However, the end result is
a negligible difference between the two lines in Equation (3).
The exomoon transit probability is calculated as the fraction

of angles fM that correspond to y RM <∣ ∣ . The phase shift of
Iarctan cos tanM MW[ ] in Equation (3) does not affect this

fraction, and hence we simplify Equation (3) by defining
f f Iarctan cos tanM M M M¢ = - W[ ]. The function y fM M

¢( ) is
symmetric over f 180M

¢ = . Between 0 and 180° we define the
range of transits to be [A, B], where
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If fM
¢ (and hence yM) is static during the planet’s transit then

the exomoon transit probability is simply the ratio
pM=(B− A)/180°. However, this static assumption is only
applicable when TM Pt , where τP is the planet’s transit

Table 1
Parameters of the Kepler-1625 Exomoon Candidate System

Param. Unit Value 1σ Min 1σ Max Note

Host Star

må (Me) 1.04 0.98 1.12
Rå (Re) 1.73 1.51 1.97

Planet

mP (MJup) 6.85 1.2 12.5 (a)
RP (RJup) 1.04 0.90 1.18
TP (days) 287.37278 287.37213 287.37353
aP (au) 0.87 0.85 0.89 (b)
bP 0.104 0.038 0.188
IP (deg) 89.94 89.88 89.98 (c)
ΩP (deg) 0 0 0 (c)

Moon

mM (M⊕) 36.2 4.4 68 (a)
RM (R⊕) 4.90 4.18 5.69
TM (days) 22 13 39
aM (au) 0.022 0.017 0.030 (d)
IM (deg) 42 24 57 (e)
ΩM (deg) 0 −83 142 (e)

Relative Orbit

I90 M-∣ ∣ (deg) 48 33 66 (f)

Note. Parameter key: m: mass, R: radius, T: period, a: semimajor axis, b:
impact parameter, I: inclination, Ω: longitude of the ascending node. (a) No
nominal value is given for the planet or moon mass, only upper and lower
bounds, so the value that we provide here is simply an average. (b) Teachey &
Kipping (2018) gave a 0.98P 0.13

0.14= -
+ au, but this is inconsistent with their

values for TP=287 days and M 0.98 0.06
0.08

 = -
+ Me so we recalculate aP and our

value matches Heller (2018). (c) IP is not given by Teachey & Kipping (2018);
calculated from our value of aP and the given values of bP. ΩP=0° arbitrarily
because transits are not sensitive to both ΩP and ΩM individually, only ΔΩ.
(d) Not given by Teachey & Kipping (2018); calculated from their values of
a R 45M P 5

10= -
+ . (e) We take IM and ΩM to be calculated with respect to the

observer, although we note that ΩM is essentially unconstrained by the data,
with a 225° 1σ confidence interval. The inclination value is also modulo 90°,
i.e., a degeneracy exists. (f) Equivalent to ΔI from Equation (2) with ΩM=0°
and IP=90°. We use this as the moon’s mutual inclination because Teachey &
Kipping (2018) did not give a value and ΩM is so poorly constrained.

3 Very tight-orbiting planets are thought unlikely to host moons anyway
(Namouni 2010).
4 Care must be taken when generalizing our work to “binary planets” (Lewis
et al. 2015), although our work is likely applicable to “moon–moons”
(Forgan 2018), “moon–moon–moons,” or indeed moonn.
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To approximately account for shorter-period moons we add to
pM the fraction of the orbit covered during the planet’s transit:
τP/TM. With this, our derived exomoon transit probability is
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2.2. Orbital Dynamics

The orbit of an exomoon may be subject to various
dynamical perturbations. When the moon and planet orbits
are misaligned, one such effect is a nodal precession induced
by the three-body interactions between the Sun, planet, and
moon. From Mardling (2010) the rate of precession is
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This effect may be quenched by a competing torque on the
moon’s orbit induced by the equatorial bulge of the planet.
Burns (1986) calculated a critical moon semimajor axis, for
which the dynamics of interior orbits are dominated by the
planet’s equatorial bulge:
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where J2 is the first gravitational harmonic. See also Boué &
Laskar (2006) and Tremaine et al. (2009) for more details. In
this Letter we are predominantly interested in moons that are
long-period and misaligned (such that moon transits are
sometimes missed) and planets that are short-period (so planet

transits are more frequent). For such moons the dominant effect
is a three-body nodal precession. The Earth’s moon exhibits
three-body nodal precession with a period of 17.9 yr (according
to Equation (8)). For Kepler-1625 aM,crit=0.008 au, which is
almost three times less than the nominal value aM=0.022 au,
and hence we also expect three-body nodal precession in this
system, with a calculated period of 20.5 yr.
With respect to the orbital plane of the planet, which remains

(essentially) fixed, nodal precession makes the moon orbit
circulate at a constant rate given by Equation (8), while
maintaining a constant mutual inclination ΔI. With respect to
the observer, Martin (2017) showed that IM librates over time t
around the constant IP according to

I t I
T

t t Icos
2

, 10M
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0 P
p

= D - +
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where t0 corresponds to IM,0. With respect to the observer,
ΩM(t) also librates and can be calculated by combining
Equations (2) and (10).
A complication to the nodal precession arises in highly

misaligned orbits, such that I90 50 - D ∣ ∣ . In such cases
Kozai–Lidov cycles occur, which cause ΔI and eM vary, even
for initially circular orbits (Lidov 1961, 1962; Kozai 1962).
The expression for yM in Equation (3) does depend on the time-

dependent quantities IM and ΩM. However, these quantities only
phase shift fM and do not change the fractional range of fM corres-
ponding to transits, which is why they could be ignored when
calculating the quantities A (Equation (4)) and B (Equation (5)).
These quantities are functions of ΔI, but this is constant5 for

Figure 1. Left: orbits of the seven most massive solar system moons (red) and the exomoon candidate Kepler-1625b-i (the shaded blue region denotes the 1σ aM error
bars) compared with the host star disk, ignoring eccentricity. Right: mutual inclination (ΔI) measured counter-clockwise from the planet orbital plane (black dashed
horizontal line) to the moon orbital plane. The massive solar system moons are shown as individual red lines, although most closely overlap. For Kepler-1625 we estimate
ΔI≈90° − IM from Equation (2) with ΔΩ=0 and IP=90°. For the error in ΔI we take the given 1σ errors for IM. A blue shaded region shows the 1σ confidence
interval and is mirrored for retrograde. Note that Titan is actually almost coplanar to its host Saturn’s equator, but the planet is tilted by ΔI=27° from its orbital plane.

5 To be precise, ΔI is only constant under the secular regime, i.e., when
calculations are made that average over the orbital periods. There do exist
short-term variations on the timescales of TM and TP, but these are on order
≈2% variations.
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orbits that are circular and without Kozai–Lidov cycles.
Overall, we demonstrate that in our simplified setup the
exomoon transit probability pM is constant during the moon’s
precession period.

2.3. Accuracy of the Analytic Solution

We run n-body simulations for a suite of 1000 randomized
transiting planet plus moon systems and calculate a numerical
transit probability as the ratio of moon to planet transits. The
masses are må=1Me, mPä[0.1, 3]MJup, mMä[0.1, 17]M⊕,
using log-uniform distributions. The planet radii are
calculated using the mass–radius relation of Bashi et al.
(2017): R R m M 0.55=Å Å( ) for m/M⊕<124 and R R =Å
m M 0.01

Å( ) for m/M⊕�124. The orbital parameters for the
planet are TPä[200, 500] days, eP=0, ΩP=0, bPä[0, 0.9],
and fPä[0°, 360°]. The orbital parameters for the moon are
TMä[1, 50] days, eM=0, fMä[0°, 360°]. The mutual
inclination is drawn from ΔIä[0°, 40°]. We randomly choose
the starting phase of the precession period by calculating IM in
Equation (10) with a uniformly random phase betweenä[0°,
360°] and IP calculated from the randomly chosen bP. We then
calculate ΩM from Equation (2).

Each simulation is run over a time span of 100×TP using a
fourth-order Runge–Kutta integrator with a fixed step size of
30 minutes, chosen to match Kepler’s long-cadence observa-
tions. Across all 1000 simulations, the median percentage error
between the analytic and numerical transit probabilities is
1.2%. For 626 of the simulations the numerical transit
probability is less than 1 (i.e., at least one missed moon

transit), and for these simulations the median error is 4.0%.
Contributions to the error include perturbations to the moon’s
orbit, mean motion resonances, other period-ratio effects that
may alias the moon transit sequence, any simplifications in the
derivation of Equation (7), and counting statistics of the
numerically calculated transit probability.

3. Planet Transit Timing and Duration Variations

An isolated, unperturbed planet would transit the star with
perfect periodicity, TP. However, the presence of the moon can
induce TTVs and TDVs on the planet. The main cause is a
small “wobble” of the planet around the planet–moon
barycenter, on top of the planet’s larger-scale orbit around
the star–planet barycenter. This is a Keplerian effect (i.e., it
occurs with static orbits). We briefly discuss the origin of the
barycentric TTVs and TDVs in Section 3.1, and direct the
reader to the seminal papers of Kipping (2009a, 2009b) for a
much more thorough treatment, included detailed analytic
equations. A secondary contribution to TTVs and TDVs is
from non-Keplerian effects, i.e., perturbations to the orbital
elements. We do not discuss these effects but they are naturally
included in our n-body simulations. Finally, we do not discuss
the TTVs and TDVs of the moon itself, but they are expected to
significantly larger than those of the planet.

3.1. Origins of Barycentric TTVs and TDVs

A planet exhibits a TTV when slightly offset along the
horizontal axis (i.e., parallel with its transit chord). This change

Figure 2. Observer’s view of a transiting exoplanet (blue), its host star (yellow), and exomoon (red). Moons within the gray region will transit the star. Dotted regions
of the moon and planet orbits show where those orbits pass behind the projected orbit of the other body.
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adds or subtracts to the time taken to reach the transit midpoint.
A horizontal offset is induced by the planet’s wobble around
the planet–moon barycenter. The TTV is calculated as the time
taken for the planet to traverse this offset at its orbital velocity
around the star of vP,å=2πaP/TP.

A planet exhibits a TDV for two different reasons. First, the
planet’s motion around the planet–moon barycenter has a
velocity vP,M=2πaMmM/[(mP+mM)TM]. The horizontal
component of this velocity may be additive or subtractive to
vP,å, and hence when the planet transits it may be moving a
little faster or slower than average, causing the transit duration
to vary. Kipping (2009b) called this the “V-TDV.”

The second cause of a TDV is a vertical offset of the planet’s
position (i.e., perpendicular to its transit chord) due to the
barycentric reflex motion induced by the moon. This changes
bP, hence changing τP by Equation (6). Kipping (2009b) called
this the “TIP–TDV.”

3.2. Connecting TTVs and TDVs with Moon Transit
Occurrence

We use the Section 2.3 n-body simulations to test the
correlation between moon transits and planet TTVs and TDVs.
We only take the 626/1000 simulations that have at least one
missed moon transit. For each simulation we calculate
numerically the TTVs and TDVs, which we scale by dividing

each value by the maximum absolute value for the simulation.
We collate the scaled TTVs and TDVs for the simulations,
separate them by moon transit occurrence, and show the results
in a histogram in Figure 3 (left).
For TTVs there is typically no difference between when the

moon does and does not transit. There are two main reasons for
this. First, occurrence of a moon transit is a function of its
vertical position (yM), yet the TTV signal is a function of the
moon’s horizontal position (xM). Consider Figure 2. A positive
xM displaces the planet to the left and hence induces a positive
TTV (late transit), and vice-versa. We see that positive xM
values correspond to both cases where the moon does and does
not transit (only misses above the star). Negative xM values
largely correspond to the moon transiting, but there is also a
small parameter space for missing transits, both above and
below the star. In Figure 2, when averaged over all xM there
will be preference for missed transits to correspond to positive
values of xM, and hence positive TTVs. However, this trend
will be weak except for small aM/Rå, and in that case it would
be rare for the moon to avoid transit anyway. The second
consideration is that nodal precession of the moon rotates its
orbit. After 0.5Tprec the moon orbit in Figure 2 will be mirrored
horizontally, in which case missed moon transits will now
typically correspond to negative values of xM. Our n-body
simulations cover multiple precession periods, and hence any

Figure 3. Left: normalized histograms of TTVs and TDVs, scaled by the maximum amplitude in each simulation and separated to when the moon does transit (moon
transits ON, red) and does not transit (moon transits OFF, blue). The TTVs and TDVs are calculated in the n-body simulations presented in Section 2.3, only taking the
626/1000 simulations with at least one missed moon transit. Right: same TDV results but separated into small (top), moderate (middle), and high (bottom) planet
impact parameters.
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small short-term TTV-moon transit correlations are aver-
aged out.

For TDVs the results contrastingly show a clear difference in
the TDV distribution with and without moon transits. This
matches Figure 2; the moon misses transit when in the
uppermost and lowermost parts of its orbit, but the upper region
is larger due to the asymmetric vertical offset. When the moon
is in this upper region the planet is displaced slightly downward
toward the stellar center, and hence takes longer to transit (a
positive TDV). This does not change throughout the nodal
precession period.

The TDV-transit correlation is only prominent when bP is
significantly non-zero. In Figure 3 (right) we split the
simulations into bPä[0, 0.3], [0.3, 0.6], and [0.6, 0.9]. The

correlation between TDVs and moon transits disappears for
small impact parameters. There are two reasons for this. First,
for the same vertical offset induced by the moon the change in
the path length across the star is less when the planet passes
near the stellar center rather than near the limb. Second, at
small bP the moon’s orbit across the star is nearly symmetric
vertically, and hence is nearly equally likely to miss transit
above or below the star (unlike in Figure 2).
The TDVs for small bP are largely caused by the velocity

change effect, which is dependent on the horizontal position of
the moon and hence is not strongly correlated with the presence
of moon transits.
In Figure 4 we show TTVs and TDVs for three example

simulations. The sole change is bP=0.1, 0.4, and 0.7. The

Figure 4. TTVs (left) and TDVs (right) for a 5M⊕, 2R⊕ moon with TM=20 days (aM=3.05Re) around a 1MJup, 1RJup planet with TP=1 yr orbit around a 1Me,
1Re star, with misalignment of ΔI=30° and planet impact parameters 0.1 (a), 0.4 (b), and 0.7 (c). All simulations start with ΩM=0°, fP=0°, and fM=50°. Red
indicates that moon transits occur, while blue indicates that they did not.
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planet TTV signal remains constant, although the sequence of
moon transits changes. The TDV signal at small bP is small in
amplitude with no correlation with the moon transits. As bP
increases, so does the TDV amplitude and the moon transit
correlation.

The impact parameter of the planet Kepler-1625b is well
constrained to be small: b 0.104P 0.066

0.084= -
+ . We therefore expect

TDVs to be small and uncorrelated with missed moon transits,
and indeed no TDVs have been observed so far.

4. Applications

4.1. Transit Probability of Hypothetical Exomoon Systems

The transit probability for the moon is a function of ΔI, bP,
and aM/Rå. Figure 5(a) shows pM (Equation (7)) over a wide
range of parameters: ΔIä[0, 40°], bPä[0, 1], and aM/Rå=
0.5, 1, 1.56, 4.
For aM/Rå<1.56 the transit probability is 1 except for high

values of ΔI and/or bP, where the probability goes to a

Figure 5. (a) pM as a function of the planet’s impact parameter bP, and the mutual inclination, ΔI, for Rå=1Re and four different values of aM. (b) pM of Kepler-
1625b-i using the nominal parameters from Teachey & Kipping (2018), where we scan across ΔI and aM. The gray diamond is the best-fitting value and the dashed
boxes are 1σ error bounds. Note that the transit probability is symmetric between prograde and retrograde orbits, and indeedΔI could be just as likely 132° as its noted
value here of 48°. Note that in (b) for ΔI between 40 and 70° there will be Kozai–Lidov cycles, which would affect the true pM in the long term but are not accounted
for in our equations.
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minimum of 0.5. The parameter space where pM<1 increases
as aM/Rå increases. When aM/Rå>1.56 the moon’s orbit is
so wide that its vertical extent exceeds the stellar diameter and
pM<0.5 for some ΔI and bP.

4.2. Transit Probability of Kepler-1625b-i

In Figure 5(b) we calculate pM for Kepler-1625b-i over a
plausible range of aM and ΔI, while fixing bP=0.1 and
Rå=1Re. Note that when calculating the nominal value of ΔI
we take ΩM=0° and then ΔI≈90°− IM from Equation (2).
This means ΔI=48°, which places the system just within the
nominal Kozai–Lidov regime, but the ΔI and eM variations
should be small enough for our equations to remain applicable.

The Teachey & Kipping (2018) nominal values correspond
to pM=0.4, although this probability varies significantly
within the 1σ error bounds, and they note that the moon could
still have a coplanar orbit, which would mean pM=1.

5. Discussion

5.1. Breaking the Prograde/Retrograde Degeneracy

Observations of a moon that orbits a planet on a non-
evolving orbit are subject to a degeneracy between prograde
(ΔI< 90°) and retrograde (ΔI> 90°) orbits. This degeneracy
is shown in Figure 6. Two orbits are shown: one in solid
red that is prograde and coplanar (ΔI=0°, red solid line), and
one in dashed black that is retrograde but misaligned
(90° <ΔI< 180°). Both orbits yield the same projected x
and y positions and vx and vy velocities of the moon; hence, the
Keplerian TTV and TDV phenomenology would be the same.
However, the side view (left) reveals a clear difference in the
two moon orientations.

This degeneracy may be broken by nodal precession, which
would not occur for the coplanar orbit but would for the
misaligned orbit. Fortunately, for a moon that orbits at a fair
fraction of its planet’s Hill sphere, precession will be rapid,
revealing the magnitude of the misalignment in just tens of
orbits of the planet. Therefore, the dynamically evolving
character of TDV will betray the prograde or retrograde
character of the moon.

If the planetary impact parameter is low then the “TIP–
TDV” may be negligible and the magnitude of non-coplanarity
may not be enough to break the degeneracy. In this case,
higher-order dynamical effects that differ in sign between
prograde and retrograde moons may need to be taken into

account, as envisioned by Lewis & Fujii (2014). Two
alternative methods for breaking the degeneracy, practical only
with Extremely Large Telescopes, were discussed by Heller &
Albrecht (2014).

5.2. The Prevalence of Large TTVs for Long-period Gas Giants

According to the transit times of Table S3 of Teachey &
Kipping (2018), the planet Kepler-1625b has a mean absolute
deviation from a constant-period model, normalized by the
orbital period—a “scatter”—of sO−C/TP=2.40×10−5. The
timings have a median error bar normalized by the orbital
period of σ/TP=1.55×10−5. For the TTV measurements of
Holczer et al. (2016), the data are more precise than that for 40
planets with TP>100 days. Of those 40, 15 planets have
larger TTV scatter, i.e., sO−C/TP>2.40×10−5, and all of
these are deemed significant at plog 8.8< - . The large
amplitude and period of these signals makes them likely due
to planet–planet perturbations. We conclude that Kepler-1625b
may very likely have a TTV signal due to additional planets,
which may be confused for exomoons, or at least contaminate
the exomoon TTV signal. A repeated photometric transit signal
of the exomoon, rather than the TTV induced on the planet, is
likely a more reliable signature.

5.3. Overlapping Moon and Planet Transits

There are two possible scenarios for overlapping moon and
planet transits. First, the moon may be entirely in front of or
behind the planet, in which case the photometric signal would
be identical to that of an isolated planet transit and the moon
would be hidden. Such an event is not explicitly considered in
our equations. We estimate it to be rare though, with a
likelihood on the order of ≈RP/aM if IM=IP=90°, and
significantly less for inclinations that allow the moon to be
offset vertically from the planet at transit. Second, the moon
and planet may pass the star at the same time, but with different
impact parameters. In this case their photometric dips would be
additive and, if telescope precision allowed, a distortion in the
transit shape may be detected. Such an event would be covered
in our equations for pM. Exotic syzygies such as this are treated
in more detail in Kipping (2011), Veras & Breedt (2017), and
Veras (2019).

Figure 6. Exoplanet orbit (blue) with two different exomoon orbits: the red solid line is prograde and coplanar to the planet, and the black dashed line is retrograde and
misaligned to the planet. As seen by the observer (right) there is a degeneracy, as both moons has the same (x, y) position and (vx, yy) velocity, despite the side view
(left) betraying a clear difference between the two orbits. L denotes the angular momentum vectors.
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5.4. Future Observing Prospects

The most effective way to confirm and characterize the
Kepler-1625 system is through continued transit photometry.
Even if the moon only transits ≈40% of the time as we predict,
additional planet transits will provide new TTV measurements,
although probably not new TDV measurements due to the
planet’s small impact parameter. The next planet transit is
scheduled for 2019 May 26. Figure S18 of Teachey & Kipping
(2018) predicts when the moon will transit. Most of their
models show a moon transit before the planet’s ingress, but
they do not quantify the chance of the moon missing transit.6

The Transiting Exoplanet Survey Satellite (TESS; Ricker
et al. 2014) can feasibly observe the planet transit on 2022 July
19 and 2026 June 25, but at Jmag=14.4 the transit will only be
observed at a signal-to-noise ratio of 2.5, which is insufficient
for transit timing or moon spotting.

The James Webb Space Telescope (JWST) will provide
superior photometric precision to HST (Beichman et al. 2014).
From its observing constraints, JWST can observe Kepler-1625
annually from April 22 to November 14, meaning the first
planet transits observable with this facility will occur on 2021
October 5, 2022 July 19, and 2023 May 3. With JWST, the
transit timing will likely be limited by our abilities to model the
granulation features on the stellar surface, which induce
significant correlated noise on ≈20 minute timescales given
the subgiant nature of this star. Transits of a moon signal of the
amplitude and duration claimed by Teachey & Kipping (2018)
will be detectable at the 3σ level.

If the moon does not exist, then a binomial test reveals how
many non-transits are required to prove this to a certain
significance. This assumes that each moon transit would have
been detectable and that the transit probability of individual
moon transits is independent for each planet transit, which
neglects mean motion resonances. The probability of n
undetected transits is p p1n

n
M= -( ) . With our estimated

pM=0.4, for a 95%-confident non-detection we solve
1 0.95 1 0.4 n- = -( ) ( ) to obtain n∼6 well-surveyed yet
undetected exomoon transits. If the moon does exist, then a
similar number of transits would be also be needed to well
characterize its orbit.

The authors are very grateful for the comments of an
anonymous referee, which were used to improve this letter.
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