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Abstract

This paper introduces and develops a novel variable importance score function in the context
of ensemble learning, and demonstrates its appeal empirically. Our proposed score function
is simple and more straightforward than its counterpart proposed in the context of random
forest, and by avoiding permutations, it is by design computationally more efficient than the
random forest variable importance function. Just like the random forest variable importance
function, our score handles both regression and classification seamlessly. One of the distinct
advantage of our proposed score is the fact that it offers a natural cut off at zero, with
all the positive scores indicating importance and significance, while the negative scores are
deemed indications of insignificance. An extra advantage of our proposed score lies in the
fact it works very well beyond ensemble of trees and can seamlessly be used with any base
learners in the random subspace learning context. Our examples, both simulated and real,
demonstrate that our proposed score does compete mostly favorably with the random forest score.
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1 Introduction

Consider a data set D = {(x1,y1), · · · , (xn,yn)} where xi is a p-dimensional vector of attributes
of potentially different types observable on some input space denoted here by X , and yi are the
responses taken from Y . We shall consider various scenarios, but mainly the regression scenario
with Y = R and the classification scenario with Y = {1, 2, · · · ,K}. We consider the task of

building the estimator f̂(·) of the true but unknown underlying f , and seek to build f̂(·) such that
the true error (generalization error) is as small as possible. In this context, we shall use the average
test error AVTE(·), as our measure of predictive performance, namely

AVTE(f̂) =
1

R

R∑
r=1

{
1

m

m∑
j=1

ℓ(y
(r)
j , f̂ (r)(x

(r)
j ))

}
, (1.1)

where
(
x
(r)
j ,y

(r)
j

)
is the jth observation from the test set at the rth random replication of the split

of the data. Throughout this paper, we shall use the zero-one loss (1.2) for all our classification
tasks.
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0 otherwise.
(1.2)

For regression tasks, we shall use the squared error loss (1.2), namely

ℓ(y
(r)
j , f̂ (r)(x

(r)
j )) = (y

(r)
j − f̂ (r)(x

(r)
j ))2. (1.3)

Besides seeking the optimal predictive estimator of f , we also seek to select the most important
(useful) predictor variables as a byproduct of our overall learning scheme. Indeed, while accurate
prediction is very important in and of itself, it’s often desirable or even crucial in some cases,
provide the added description of the importance of the variables involved in the prediction task.
The statistical literature is filled with thousands of papers on variable selection and measurement
of variable importance. [1] and [2] propose a measure of variable importance for random forest.
[3] and [4] have written many interesting contributions to the estimation of variable importance
specifically in the context of classification and regression trees and their random forest ensemble
learning extension. [5] implements some of those measures of variable importance for tree-based
learning in their wonderful R package caret. [6] give a nice summary of variable importance and
[7] also touches on this subject. [8] proposed a bias-correction improvement to the above measures
of variable importance. Unlike all these authors whose work on variable importance measures
concentrated solely on tree-based models, we herein propose a measure that goes beyond tree-based
methods.

2 Construction of the Prediction Error Reduction
Function

2.1 Definitions and tools for defining the score function

We consider the common framework of a p-dimensional input space X with typical input vector
x = (x1, · · · , xp)⊤. We also consider building different models with different subsets of the p original
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variables. Let γ = (γ1, · · · , γp)⊤ denote the p-dimensional indicator such that

γj =

{
1 if xj is active in the current model indexed by γ
0 otherwise.

(2.1)

Assume that we are given an ensemble (collection or aggregation) of models, say

H = {g(·,γ(1))), g(·,γ(2))), · · · , g(·,γ(B)))} (2.2)

where g(·,γ(b))) denotes the function built with only those variables that are active in the bth model

of the ensemble (aggregation), and γ(b) = (γ
(b)
1 , · · · , γ(b)

p ) with

γ
(b)
j =

{
1 if xj is active in the b-th model of the ensemble
0 otherwise.

(2.3)

For instance, we may consider a homogeneous ensemble, i.e, an ensemble in which all the functions
are of the same family, like the case where all the base learners are multiple linear regression
(MLR) models differing by the variables upon which they are built. Consider a score function
score(g(·,γ(b))) used to assess the performance of model indexed by the variables active in γ(b).
We propose a variable importance score in the form of a function that measures the importance of
a variable xj in terms of the reduction in average score

PERF(xj) =
1

B

B∑
b=1

score(g(·,γ(b)))− 1

Bj

B∑
b=1

γ
(b)
j score(g(·,γ(b))) (2.4)

where Bj is the number of models containing the variable xj , specifically Bj =
∑B

b=1 1{γ(b)
j =1}. In

words,

PERF(xj) = Average score over all models− Average score over all models with xj

2.2 Properties and benefits of the PERF score function

Intuitively, PERF(xj) somewhat measures the impact of variable xj . In a way similar to the approach
used by sports writers to decide the Most Valuable Player (MVP) on a team or in a league, PERF(xj)
looks at the overall performance of the whole ensemble and then for each variable xj computes the
direction and magnitude of the change to that overall performance of the ensemble brought by its
presence in models. In a sense, the variable with the highest PERF score is the Most Valuable
Predictor (MVP) variable. In other words, if

j⋆ = argmax
j=1,··· ,p

{PERF(xj)} , then xj⋆ = MVP(x1, · · · , xj , · · · , xp).

From the above definition, it follows that If a variable xj is important, then its presence in any
model will cause that model to perform better in the sense of having a lower than common average
error (score). The average score of all models containing an important variable xj should therefore
be lower than the overall average score. Essentially, (i) |PERF(xj)| measures the magnitude of the
importance/impact. (ii) sign(PERF(xj)) measures the direction of the impact. (iii) If sign(PERF(xj)) =
+1 and |PERF(xj)| is relatively large, then xj is an important variable. Some of the benefits of the
PERF score include the following: (a) The PERF score is seamlessly applied to both large p small
n and small p large n machine learning settings, whether it be a classification or a regression task.
(b) All variables with PERF(xj) ≤ 0 are unimportant and can be discarded. (c) The PERF(·) score
can be used whenever an ensemble H is available along with a suitable score function for each base
learner. (d) This works with any base learner and can be adapted to parametric, nonparametric
and semi-parametric models and one can imagine ensembles with any base learners as its atoms. (e)
A great advantage over the traditional variable importance [1], [2] score functions is that the clear
cut-off at zero, in the sense that all variables with PERF(xj) > 0 are kept and all those variables
with PERF(xj) ≤ 0 are thrown away.
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2.3 Random subspace learning estimation of PERF

A natural implementation of PERF(·) can be done using the ubiquitous bootstrap along with the
random subspace learning scheme. The Out-of-Bag (oob) error in the bagging or random subspace
learning context is a good (in fact excellent) candidate score function, especially when the goal if
the selection of variables that lead to the lowest prediction error. The advantage of using oob as
the score lies in the fact that the score is obtained as part of building the ensemble in the random
subspace learning framework. Consider the training set D = {zi = (x⊤

i , yi)
⊤, i = 1, · · · , n}, where

x⊤
i = (xi1, · · · , xip) and yi ∈ Y are realizations of two random variables X and Y respectively. Let

xi,πj = (xi,1, · · · , xi,πj , · · · , xi,d). The permutation πj acts the |D̄(b)|-dimensional jth column of

the out-of-bag data matrix. Essentially, πj simply permutes the |D̄(b)| elements of the jth column
of the out-of-bag data matrix.

Algorithm 2.1.
Choose a base learner ĝ(·) ◃ e.g.: Trees, MLR
Choose an estimation method ◃ e.g.: Recursive Partitioning or OLS
Initialize all the P̂ERF(xj) and V̂I(xj) at zero

for b = 1 to B do
Draw with replacement from D a bootstrap sample D(b) = {z(b)1 , · · · , z(b)n }
Draw without replacement from {1, · · · , p} a subset V (b) = {j(b)1 , · · · , j(b)d } of d variables.

Form the indicator vector γ(b) = (γ
(b)
j , · · · , γ(b)

p ) with

γ
(b)
j =

{
1 if j ∈ {j(b)1 , · · · , j(b)d }
0 otherwise.

Drop unselected variables from D(b) so that D(b)
sub is d dimensional

Build the bth base learner ĝ(·,γ(b)) based on D(b)
sub

Compute score of the bth base learner ĝ(·,γ(b)) ◃ e.g. Out-of-bag error

s
(b) = score(ĝ(·,γ(b))) =

1

|D̄(b)|
∑

zi /∈D(b)

ℓ(yi, ĝ(xi,γ
(b)))

for j ∈ V (b) do
Generate the permutation of the jth column of D̄(b), namely

πj

Compute the permutation impacted score

s
(b)
πj

= scoreπj (ĝ(·,γ
(b))) =

1

|D̄(b)|
∑

zi /∈D(b)

ℓ(yi, ĝ(xi,πj ,γ
(b)))

Compute the bth instance of the importance of xj

V̂I
(b)

(xj) = s
(b) − s

(b)
πj

end for
end for

Use the ensemble H =
{
ĝ(·,γ(b)), b = 1, · · · , B

}
to form the estimator

P̂ERF(xj) =
1

B

B∑
b=1

score(ĝ(·,γ(b)))− 1

Bj

B∑
b=1

γ
(b)
j score(ĝ(·,γ(b))) (2.5)

V̂I(xj) =
1

Bj

B∑
b=1

γ
(b)
j V̂I

(b)
(xj) (2.6)
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3 Computational Demonstrations

We herein assess the goodness and usefulness of the PERF variable importance score by applying
to both simulated data and real life data. We specifically use benchmark machine learning data
sets like the the spam detection dataset and the pima indian diabetes dataset in the classification
context and the attitude dataset in the regression context. Our first example features simulated
data with different scenarios on the level of correlation among the variables, and the ratio n and p.
In this particular example, the true function is

f(x) = 1 + 2x3 + x7 + 3x9

with x ∼ MVN(19,Σρ) and ϵ ∼ N(0, 1). The dataset in this example is simulated data with different
scenarios on the level of correlation among the variables, and the ratio n and p. Specifically, we
simulate data by defining ρ ∈ [0, 1), then we generate our predictor variables using a multivariate
normal distribution. Throughout this paper, the multivariate Gaussian density will be denoted by
ϕp(x;µ,Σ)

ϕp(x;µ,Σ) =
1√

(2π)p|Σ|
exp

{
−1

2
(x− µ)⊤Σ−1(x− µ)

}
(3.1)

Furthermore, in order to study the effect of the correlation pattern, we simulate the data using a
covariance matrix Σ parameterized by τ and ρ and defined by τΣ where Σ = (σij) with σij = ρ|i−j|.

Σ = Σ(τ, ρ) = τ



1 ρ · · · ρp−2 ρp−1

ρ 1 ρ · · · ρp−2

...
. . .

. . .
. . .

...

ρp−2
. . . ρ 1 ρ

ρp−1 ρp−2 · · · ρ 1


For simplicity however, we use the first Σ with τ = 1 throughout this paper. For the remaining
parameters, we use ρ ∈ {0, 0.25, 0.75} and p ∈ {17, 250}, with the same n = 200. The plots
depicting the comparisons between Random Forest and PERF variable importance scores are given
in subsequent parts of this paper. In each plot, the dimensionalities of the data are appropriately
indicated, and comments are provided as well.

4 Discussion and Conclusion

We have presented a variable importance score function in the context of ensemble learning. Our
proposed score function is simple and more straightforward than its counterpart proposed in the
context of random forest, and by avoiding permutations, it is by design computationally more
efficient than the random forest variable importance function. Just like the random forest variable
importance function, our score handles both regression and classification seamlessly. One of the
distinct advantage of our proposed score is the fact that it offers a natural cut off at zero, with
all the positive scores indicating importance and significance, while the negative scores are deemed
indications of insignificance. An extra advantage of our proposed score lies in the fact it works
very well beyond ensemble of trees and can seamlessly be used with any base learners in the
random subspace learning context. Our examples, both simulated and real, demonstrated that our
proposed score does compete mostly favorably with the random forest score. In our future work,
we present and compare the corresponding average test errors of the single models made up of the
most important variables. We also provide in our future work theoretical proofs of the connection
between our score function and the significance of variables selected using existing criteria. It is also
our plan to address the fact that sometimes the correlation structure among the predictor variables
obscures the ability of our proposed score to correctly identify some significant variables.
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Fig. 1. Variable score for simulated data with high correlation among the variables

in low dimension high sample size setting
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(d) Permutation-based Variable Importance.

Fig. 2. Variable Importance Scores for simulated data with mild correlation among

the variables in low dimension high sample size setting
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Fig. 3. Variable Importance Scores for simulated data with zero correlation among

the variables in low dimension high sample size setting
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Fig. 4. Variable Importance Scores for the Attitude Data Set. n = 30 and p = 6
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Fig. 5. Variable Importance Scores for the Spam Detection Dataset. n = 200, p = 7,
and K = 2 classes
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Fig. 6. Variable Importance Scores for the Spam Detection Dataset, n = 4601, p = 57

and K = 2 classes
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