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Abstract

In this paper, we verify the convergence and stability of implicit (modified) finite difference scheme.
Knowing fully that consistency and stability are very important criteria for convergence, we have
prove the stability of the modified implicit scheme using the von Newmann method and also verify
the convergence by comparing the numerical solution with the exact solution. The results shows
that the schemes converges even as the step size is refined.

Keywords: Finite difference scheme; Crank-Nicolson scheme; stability; modified Crank-Nicolson
scheme; diffusion equations.

2010 Mathematics Subject Classification: 35420, 35435, 35B35.

*Corresponding author: E-mail: johnsonomowol@gmail.com;


https://www.sdiarticle5.com/review-history/78606

Omowo et al.; JAMCS, 36(10): 58-67, 2021; Article no. JAMCS.78606

1 Introduction

One of the most important aspect of Mathematics that is used to model many physical problems
in other field such as chemistry, engineering, physics among others is partial differential equations.
Solving partial differential equations can be done by using analytical methods and It is interesting to
note that not all partial differential equations can be solve analytically, hence the need for numerical
methods. Numerical method is a way of computing approximate solutions to problems on differential
equations. There are different types of numerical methods, they are; finite difference methods, finite
element methods, mesh method, spectral method among others. In this work we shall concentrate
on finite difference methods for finding the solution of a partial differential equations by discretizing
the domain into finite number of regions and compute the solution at the mesh points of the domain.

Different numerical experts and researchers in Mathematics and related fields have used the finite
difference methods a lot. [1] Compared the exact solution of parabolic equations with its numerical
solution using modified Crank-Nicolson scheme. A practical method for numerical solution to partial
differential equations of heat conduction type was considered by [2]. [3] Investigated the stability
of Modified Crank-Nicolson scheme using von-Newmann method. They show that the scheme is
consistent, convergent and stable. [4] compared modified Crank-Nicolson scheme with the classical
Crank-Nicolson scheme. [5] modified the simple explicit scheme and prove that it is much more
stable than the simple explicit case, enabling larger time steps to be used. [6] established an
improved 6 method to improve the 6-iterated Crank-Nicolson scheme to second order accuracy. [7]
Modified the Crank-Nicolson scheme to get a 3-level implicit finite difference scheme similar to the
Crank-Nicolson scheme, there method utilizes an extra grid point at the lower level and the result is
shown to be more accurate than the Crank-Nicolson scheme. There are lot of comprehensive texts
on this area of research, such text include [8,9,10,11,12 and 13]

In this work, we propose a modified implicit finite difference scheme and show that it is unconditionally
stable and convergent by investigating it stability using von-Newmann method. The convergence is

tested for using a numerical example, we compare the numerical solution with the exact solutions,
refined the mesh size and compared with the exact solution.

2 Problem Definition and Methodology

The following parabolic second order linear partial differential equation of the form

dp D
kA 1
ot Ox? (1)
with initial condition
p(a,0) = f(x), a <z <Db (2)
and boundary conditions
Lp(a7t):,2’1, @(b’t)zz% 0<t<d (3)

is considered. Equation (1) - (3) is referred to as one dimensional heat equation and it is generally
called initial boundary value problem.

For the equations (1) - (3) above, the following finite difference approximations are required;

Op _ pit1,j = $ij

3 5 + O(h) forward difference approximation
x

Op _ $ivry —$ic1g | O(h?)

central difference approximation
Ox 2h
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0p _ $ij — Pij-1 + O(h) backward difference approxzimation

ot k
o i1 —2pi5+ i1, 2
_ = 2 3. 9. h
Ox? h2 +O(R)

There are different types of finite difference schemes for solving equation (1) -(3) above, they are
explicit scheme, implicit scheme and Crank-Nicolson scheme. This work focuses on the Implicit
scheme, its derivation and the modification which is as follows:

2.1 Derivation of the implicit scheme

The implicit scheme for the heat equation (1) is derived as follows; we replace the time derivative and
the second order partial derivative with the following finite difference approximations £+ —*%d

s . 72 P + . . . .
and HLi =P b LA LIEL regpectively, then equation (1) becomes

Pig+1 = Pij _ Pimlit1 = 20541 + Pit1,541
k h?
k
Piitl = Pij = 33Pi-1it1 — 20541+ Pir1m

k 2k k
TPig T Picli+l T Pl T 5 Pig + 7,2 Pit L+

k 2k k
Pig = gz Pi-Litl + @i j+1 + 2 Pid+l T g Pt

k 2k k
Pij = Ty Pimlitl + |1+ 72 ) it T33Pt

which is the same as

@ij = —7 (Pim1j+1 + Piv1j+1) + (1 +2r) @i 41 (4)
Equation (4) is the implicit scheme, where r = %

2.2 Derivation of modified implicit scheme

The modified implicit scheme is derived by replacing the time derivative and the second order
partial derivative of equation (1) with the finite approximations £:4—2%3=1 and (Pi’l‘j_QfLé’jﬂo”l'j
respectively, then equation (1) becomes

Pig = Pig-1 _ Pi=1,j = 29ij + Pit1
k h?

k
Pij — Pii—1 = 33Pin15 — 20i5 + Pit1;

k 2k k
TPig-1 T 35 Pi-1g T Pig T 5P T 5Pt

k k k
TPig-1 T 35 Pi-1g T Qi T 5P T 5Pt

k 2k k
Pij =3Pt 1+ 72 ) Pid T ety

which can be written as

@i j—1 = =1 (Pi—1,j + @it1,5) + (1 +2r) i 5 (5)
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Equation (5) is the modified implicit scheme, where r = % and it can be written in matrix form
Ap = b defined as follows:

1+ 2r ) 7r2 0 8 11 by

—-r + 2r —r 021 by
0 —r 1420 .0 | [wsar] = |bs (6)

S :

0 0 0 —r 142r] L¥ni-1 bn

2.3 Stability of modified implicit scheme by Von-Newmann method

The stability of the modified implicit scheme for the parabolic partial differential equation (1) - (3)
is investigated below;

using equation (5):
Pij—1 =1 (Pim1,j + it1;) + (L4 2r) i
Let the solution of the finite difference approximation be given in separable form as stated below
€y = €wih€zﬁjk — E’yih+z§jk
where v = v(8) is complex, define £ = "™ which is the amplification factor, then we have
= gigzﬁjk (7)
substituting equation (7) into (5) we have
(1+2r) giezﬁjk o (Eiszﬁ(j—l)k + §i€zﬁ(j+1)k) _ £i71€zﬁjk
which gives
giePik [(1 o) — r(g—zﬂk + &_zﬁk)} — gigPhg—1

€7 = (14 20) = r(e™ P 4 7) (5)

from trigonometry identity we have that

2cos Bk = e Pk 4 7Pk

and

1 — cos Bk = 2sin? (%)

substituting into equation (8) we have

£ =1 +2r)—r(2cos Bk) = 1+ 2r(1 — cos Bk)

571 = {1 + 47 sin® (%)]

1
— - 9
= [+ arsin? (5] ®)
from equation (9), it is apparent that |£| < 1 for all values of r, and therefore, the modified implicit
scheme is unconditionally stable.
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3 Numerical Examples

For the purpose of convergence, the following numerical examples and definition of convergence are
considered: a finite difference approximation is said to be convergent if

€i,j = llpi; — @ijll = 0as hyk =0

Where 5, ; is the exact solution, ¢, ; is the numerical approximation and ¢;,; is the error. This is
demonstrated and represented in the tables below.

Example 1:

Consider the following parabolic partial differential equation [3]:

do  0%p

e 1 1
% " a2 0, 0<z< (10)
with boundary conditions
©(0,t) =¢(1,t) =0, 0 <t (11)
and initial condition
p(z,0) =sin(rz), 0 <z <1 (12)
In this numerical example, the step size h = 0.1, r = 0.05. The exact solution of the problem (10)
- (12) is given by et sin(mx).

Solution

solving problems (10) together with the initial and boundary condition, using equation (5) gives
the following tri-diagonal matrix for 1 <i¢ <9 at j =1,

[ 1.1 —0.05 0 0 0 0 0 0 0 [1,1] [0.3090]]

—0.05 1.1 —0.05 0 0 0 0 0 0 $2,1 0.5878

0 —0.05 1.1 —0.05 0 0 0 0 0 ¥3,1 0.8090

0 0 —0.05 1.1 —0.05 0 0 0 0 V4,1 0.9511

0 0 0 —0.05 1.1 —0.05 0 0 0 ps,1| = [1.0000

0 0 0 0 —0.05 1.1 —0.05 0 0 ¥6,1 0.9511

0 0 0 0 0 —0.05 1.1 —0.05 0 w71 0.8090

0 0 0 0 0 0 —0.05 1.1 —0.05| |[¢ps,1 0.5878

. O 0 0 0 0 0 0 —0.05 1.1 | [po9,1] 10.3090 |

the results of the next steps 1 <17 < 10, and 2 < j <9 is given in the Table 1.
Table 1. Table of results at k£ = 0.0005, » = 0.05 and h = 0.1

14 z J $1, 5 $2, j ¥3, j P4, j ¥s, j 6, j P, j $8, j P9, j
0.0005 | 0.1 | 1 | 0.3075 | 0.3060 | 0.3045 | 0.3030 | 0.3015 | 0.3000 | 0.2986 | 0.2972 | 0.2958
0.001 | 0.2 | 2 | 0.5895 | 0.5821 | 0.5793 | 0.5765 | 0.5737 | 0.5709 | 0.5681 | 0.5653 | 0.5625
0.0015 | 0.3 | 3 | 0.8051 | 0.8012 | 0.7973 | 0.7934 | 0.7895 | 0.7857 | 0.7819 | 0.7781 | 0.7743
0.002 | 0.4 | 4 | 0.9465 | 0.9419 | 0.9373 | 0.9327 | 0.9282 | 0.9237 | 0.9192 | 0.9147 | 0.9102
0.0025 | 0.5 | 5 | 0.9951 | 0.9903 | 0.9855 | 0.9807 | 0.9759 | 0.9712 | 0.9665 | 0.9618 | 0.9571
0.003 | 0.6 | 6 | 0.9465 | 0.9419 | 0.9373 | 0.9327 | 0.9282 | 0.9237 | 0.9192 | 0.9147 | 0.9102
0.0035 | 0.7 | 7 | 0.8051 | 0.8012 | 0.7973 | 0.7934 | 0.7895 | 0.7857 | 0.7819 | 0.7781 | 0.7743
0.004 | 0.8 | 8 | 0.5849 | 0.5821 | 0.5793 | 0.5765 | 0.5737 | 0.5709 | 0.5681 | 0.5653 | 0.5625
0.0045 | 0.9 | 9 | 0.3075 | 0.3060 | 0.3045 | 0.3030 | 0.3015 | 0.3000 | 0.2986 | 0.2972 | 0.2958
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the percentage error is the difference of the solutions expressed as a percentage of the exact solution
of the partial differential equation.

Example 2.

We consider the same parabolic partial differential equation (10) - (12) with a refined mesh size as
given below:

h =0.05, r = 0.05 and k = 0.000125 solving using the modified scheme we obtained the following
tri-diagonal matrix for the refined mesh size.

i - 0.1564
1.1 —005 0 0 - . 0 0.3090
—005 L1 =005 . 0| 0.4540
. ’ 0.5878
0 -0.05 1.1 -0.05 . - 0 2,1 0.7071
. . ) #3,1 0.8090
P 0.8910
0 0 0 0 . ..ol |"] = o951
_ : 0.9877
0 0 0 0 PR 0 ) 1.0000
0 0 0 0 01 loiss

| P19,1 | :
. 0.3090
o 0 0 . —0.05 1.1} 0.1564]

solving the above refined tri-diagonal matrix and comparing the results with the exact solution at
x = 0.5 gives the following results in Table 3.

Table 2, is the comparison of the numerical solutions (modified implicit scheme) with the exact
solutions at h = 0.1, r = 0.05, the two solutions are compared at x = 0.5 for different values of t. In
Table 3, the results of the refined mesh size h = 0.05, r = 0.05 using the modified implicit scheme
are compared with the exact solution at x = 0.5 for different values of t. The percentage errors are
also obtained.

Table 2. Comparison with exact solution at = = 0.5 with different values of ¢

t modi fied Implicit scheme | exact solutions errors percentage error
0.0025 0.9951 0.9903 3x 1077 0.03
0.003 0.9465 0.9419 4x107% 0.04
0.0035 0.8051 0.8012 5x 107 0.05
0.004 0.5849 0.5821 5x 107 0.05
0.0045 0.3075 0.3060 5x 107 0.05

Fig. 1 is the comparison graph of the exact solution and the numerical solution at z = 0.5 which
shows clearly that the scheme is good and efficient as the solutions is very close to exact solutions.
Also, Fig. 2, is the solution curve at ¢ = 0.0025 before refinement while Fig. 3, is the solution
curve after refinement which shows that the refined solution is more finer and it also implies that
the refined solution converges very fast. Finally, Fig. 4 is a 3-D graph of the exact solution which
is typical of heat distribution from a source through a medium of uniform density in one direction.
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Table 3. Comparison of refined tri-diagonal matrix with exact solutions using the
mesh size (h =0.05, » = 0.05) and k = 0.000125 at = = 0.5

t modi fied Implicit scheme | exact solution error percentage error
0.001 0.9904 0.9902 2x 1077 0.02
0.001125 0.9892 0.9890 2x 1072 0.02
0.00125 0.9880 0.9877 3x10°* 0.03
0.001375 0.9868 0.9865 3x1077 0.03
0.0015 0.9856 0.9853 3x 1077 0.03

— Exact solution
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Fig. 1. Comparison graph of the exact solution and numerical solution at x = 0.5
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Fig. 2. Numerical solution graph at t = 0.0025
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Fig. 3. Numerical solution graph at t = 0.000125

Fig. 4. 3D graph of the solution

4 Discussion

Tables 1, 2 and 3 shows that the modified implicit scheme is good and efficient for solving one
dimensional heat equations. It shows that the method performs well, is consistent and agree with
the analytical solutions. The method gives a better results in terms of accuracy and requires the
solution of tri-diagonal system at every time level. We used matlab to generate our results in table
1 and for the refined tri-diagonal matrix and used maple to plot the graphs.
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5 Conclusion

From our results analysis, it is observed that our method gives a good approximates solutions and
converges faster compared to the implicit scheme. Also, the percentage error of our solution is good
as it is less, which shows the scheme is very good. Considering our results from Tables 2 and 3 it is
observed that our scheme is stable and table 3 shows that our method converges as the mesh size
tends to zero, which proves convergent.
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