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Abstract

In this paper, we prove some results for compatible and weakhpatible may in nor-Newtonian
metric spaces. We also introduce E.A. and CLRT propertyeircontext of non-Newtonian metric space
and prove the corresponding fixed point results. We also proxademes to illustrate the concepts.
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1 Introduction
The dawn of the fixed point theory starts when in 1912 Brouwewegt a fixed point result for

continuous self maps on a closed ball. In 1922, Banacbd\ig a very useful result known as the Banach
Contraction Principle. After which a lot of implicationsBanach contraction came into existence ([2-5]).
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A major shift in the arena of fixed point theory came in 19en Jungck [6], defined the concept of
commutative maps and proved the common fixed point refodtsuch maps. After which, Sessa [7]
introduced the concept of weakly compatible, and JungcR]j[étroduced the concepts of compatibility
and weak compatibility. In 2002, Aamri and Moutawakil [Iffoduced a generalisation of non compatible
maps as property E.A. Recently, Sintuanavarat and Kumanirttéguced the “common limit in the range
of g (i.e. CLRg)" property. Certain altercations ofemutativity and compatibility can also be found in [12-
16].

The study of non-Newtonian calculi has been started i2 b§7Grossman and Katz [17]. These provide an
alternative to the classical calculus and they include tbengtic, anageometric and bigeometric calculi,
etc. In 2002 Cakmac and Basar [18], have introduced the dooicepn-Newtonian metric space. Recently,

Binba,sio™glu, et al. [19] discussed some topologicaperties of the non-Newtonian metric space and also
introduced the contraction principle in non-Newtonian metricespa

2 Preliminaries

A generatoris defined as an injective mapR — R where the range is a subsetRofThe necessary and
sufficient condition that each generator generates onlemagiic is each arithmetic is generated by one
generator.

Let @ be an exponential function defined as

a:R - R*Y,
x—ax)=e*=y,

whereR™ is the set of positive real numbers.

Suppose that this functianis a generator, that is,df = 1,1(x) = x V x € R, thena generates the classical
arithmetic. Ifa = exp, exp(x) = e*Vx € R, thena generates geometrical arithmetic.

The setR(N) is defined as
R(N) == {a(x): x € R},
andR(N) is said to be the set of non-Newtonian real numbers.

All concepts ofa-arithmetic have similar properties in classical arghim a-zero,a-one and othew-
integers are formed as

v, a(=1),a(0),a(1), ....

Let @ be any generator with range A. Then, the operatiwaddition,a -subtractiong -multiplication,a -
division anda -order are defined in the following way for all,y € R, respectively:

a-addition x+y = afa”(x) + a1 (y)},
a-subtraction  x=y = af{a"1(x) — a 1 (y)},
a —multiplication x Xy = a{a~1(x) x a”*(y)},
a —division x/y = a{a ' (x) + a ' (y)},
a —order x<yeak) <al).

The fundamental properties that are provided in theicklssalculus are also provided in non-Newtonian
calculus, too.
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Forx € A c R(N), a number -square is described byx x and denoted by?VN. The symboI\/EN denotes

¢ = a{Ja i)

which is the uniquer nonnegative number whoee-square is equal to and which means’” = x, for each
a nonnegative number. Throughout this papexPM denotes th@th non-Newtonian exponent. Thus we
have

xpN = x(p_l)N X X = a{[a_l(x)]p}'

We denote byx|, thea -absolute value of a numbere A c R(N) defined ast(Ja~1(x)|) and also

[een = x|y = a{la”(x)1}
Thus,

X, x > a(0),
x|y =1 «(0), x=a(0),
a(0)=x, x < a(0).

Forx,,x, € A € R(N), the non-Newtonian distan¢gy, is defined as
lxi =22 |y = afla™ (x) — a™ (x,)1}.
This distance is commutative; i.gx; —x, |y = |x3—x1 |-

Take anyz € R(N), if z > a(0), thenz is called a positive non-Newtonian real numbeg; & a(0), then z

is called a non-Newtonian negative real number and=fa(0), then z is called an unsigned non-
Newtonian real number. Non-Newtonian positive real numbegsdenoted bR*(N) and non-Newtonian
negative real numbers R/ (N) [18].

Proposition 2.1. [19]. The triangle inequality with respect to non-Newtondistancg-|y, for anyx,y €
R(N) is given bylx+y|y < |x|y+1yIn-

Definition 2.2. [19]. LetX # @ be a set. If a functiod,: X x X —» R*(N) satisfies the following axioms for
allx,y,z € X:

(NM1) dy(x,y) = a(0) = 0 if and only ifx = y,
(NM2) dy (x,y) = dN(y'x)v.
(NM3) dy(x,y) < dy(x, 2)+dy(z, ),

Then it is called a non-Newtonian metric ¥rand the paifX, dy) is called a non-Newtonian metric space.

Definition 2.3. [1] Let(X,dy) be a non-Newtonian metric spageg X ande > 0, we now define a set
BY(x)={y € X: dy(x,y) < &}, which is called a non-Newtonian open ball of radiwgth centerx.
Similarly, one describes the non-Newtonian closed bafds) = {y € X : dy(x,y) < €}.

Example 2.4. Consider the non-Newtonian metric sp&aRe (N), d;). From the definition ofly, we can
verify that the non-Newtonian open ball of radius< 1 with centerx, appears agx,~¢, x,+¢) € R*(N).

Definition 2.5. [1] Let (X, d¥) and(Y,d}) be two non-Newtonian metric spaces andfletY —» Y be a

function. If f satisfies the requirement that, for every 0, there existss > 0 such thatf (BY (x)) c
BY (f (x)), thenf is said to be non-Newtonian continuous functiom a X.
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Example 2.6. Given a non-Newtonian metric spaCg dy), define a non Newtonian metric &nx X by
p((x1,%2), 1, ¥2)) = dy(x1,v1) + dy(x2,¥,) . Then the non-Newtonian metrigly: X X X —
(R*(N),| - |y) is non-Newtonian(nN) continuous function ¥rx X. To show this, ley,, y,), (x;,x;) €
XxX.

Since we havédy (y1, ;) — dy(x1, %)y < dy(x1,¥2) + dy(x2,y,), it is clear thatly is non-Newtonian
continuous function oX x X. Now, we emphasize on some properties of convergent sexguena non
Newtonian metric space.

Definition 2.7. [1] A sequencéx,) in a metric spac& = (X,dy) is said to be convergent if for every
givene > 0 there exist am, = ny,(¢) € Nand x € X such thaty(x,, x) < ¢ for alln > n,, and it is
N

denoted by'lim,,_,,, X, = x Orx,, = x, asn — oo .
Definition 2.8. [1] A sequencéx,) in a non-Newtonian metric spa&e= (X,dy) is said to be non-
Newtonian Cauchy if for every > 0 there exists an, = ny(¢) € N such thatd,(x,,x,,) < ¢ for all

m,n > n,. Similarly, if for every non-Newtonian open bal (x), there exists a natural numbgy such
thatn > ngy, x,, € BY(x), then the sequenge,,) is said to be non-Newtonian convergentto

The space is said to be non-Newtonian complete if every non-NewtoniarciBasequence ik converges
[19].

Proposition 2.9. [19] LetX = (X, dy) be a non-Newtonian metric space. Then

(i) a convergent sequenceXnis bounded and its limit is unique,
(i) a convergent sequencelns a Cauchy sequenceXn

Lemma 2.10. [19] Let(X,dy) be a non-Newtonian metric spa¢e,) a sequence & andx € X. Then
N N .
X, = x(n - o) ifand only ifdy(x,,x) > 0(n - o).

Lemma 2.11. [1] Let(X,dy) be a non-Newtonian metric space and(igf) be a sequence . If the
sequencéx,,) is non-Newtonian convergent, then the non-Newtonian limit poumigue.

Theorem 2.12. [1] Let (X,d¥) and(Y,d),) be two non-Newtonian metric spacgs, X — Y a mapping
and(x,) any sequence ik. Thenf is non-Newtonian continuous at the poine X if and only if f(x;,)

2 f(x) for every sequencg,,) with x,, 2 x(n - ).

Definition 2.13. [1] LetX be a set an@ a map fromX to X. A fixed point ofT is a pointx € X such that
Tx = x. In other words, a fixed point @fis a solution of the functional equatitw = x,x € X.

Definition 2.14. [1] Suppose thatX, dy) is a nhon-Newtonian complete metric space BndX — X is any
mapping. The mappin@ is said to satisfy a non-Newtonian Lipschitz condition witte R(N) if
dy(T(x),T(y)) £ k X dy(x,y) holds for allx,y € X.

If k < 1, thenT is called a non-Newtonian contraction mapping.

Theorem 2.15. [1] LetT be a non-Newtonian contraction mapping on a non Newtoroaiplete metric
spaceX. ThenT has a unique fixed point.

Aamri and Moutawakil [10] introduced weakly compatible map# &itA. property, defined as follows:
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Defintion 2.16: LetS andT be two self maps of a metric spa@gd). The pair(S,T) is said to satisfy the
property (E.A.) if there exists a sequereg} in X such thatlim,,_,, Sx, = lim,_,, Tx, = t, for some
tex.

Sintunavarat and Kumam [11] introduced the concept of “Commmit in the Range of” property (i.e.
CLRg property) and defined it as follows:

Definition 2.17: Suppos€X, d) is a metric space anfdg: X — X are two mappings th¢grandg are said to
satisfy the common limit in the range gfproperty if there exists a sequereg} in X such that

lim,,_ fx, = lim,_, gx, = gx for somex € X.
3 Main Results
3.1 Compatible maps

Theorem 3.1.1: Let (X, dy) be a complete non-Newtonian metric space,SaddT be two self maps oK,
satisfying following conditions:

() T&X) cs&)
(i) S orT is continuous
(ii}) dy(Sx,Sy) < p x max{dy(Tx,Ty), dy(Tx, Sx),dy(Tx,Sy),dy(Ty,Sx),dy(Ty,Sy)} for all

x,y € X andu € (O,a (%))
ThensS andT have a unique fixed point iXi, providedS andT are compatible maps.

Proof: Letx, be an arbitrary point i¥. Now by condition (i), we can chooseg € X, such thaSx, = Tx;.
In general, we can choosg, ;, such thay, = Sx, = Tx,,,n =123, ...

From (iii), we have

dN(Txn! Txn+1)r dN (Txn' an): }

5 dN (Txn! an+1)r dN (Txn+1r an)! dN (Txn+1r an+1)

dy (Vs Yn+1) < i X max{dy n-1, ¥n)r Ay Vn-1, Yn), Ay V-1, Yn+1) Ay 0o ), Ay (Vs Y1)}
S uXdyn-1,Yne1) < a(2) X u X dyYn-1,¥n)

dy(Sxp, Sxpe1) < u X max{

Clearly, sinceu € (O,a G)) the sequence is a Cauchy sequence.

Therefore, by completeness of the sp#ficeéhe sequencgy,}, converges to some poinin X. We have
lim,, o ¥, = lim, o Sx,, = lim,,_,,, Tx,, ., = t. Since eithe§ orT is continuous, we can assume thas

continuous. So we conclude thhty,,_,,, TSx, = lim,_ TTx,,; = Tt. Further,S andT are compatible,
thereforelim,,_, o, dy (STx,, TSx,) = 0 implies thaflim,,_,,, STx,, = Tt.

Now, we claim thatTt = t. We have

dy(TTx,, Tx,),dy(TTx,, STx,,),dy(TTx,, an),}

L
(ST, S5 & p X ma | A (T, ST), dy (T, )

Taking limit asn — oo, and using condition (iii), we have

dy(Tt, t) < ux dy(Tt,t) implies thatdy (Tt, t)(1~u) £ 0= Tt = ¢.
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Next, we will show thatSt =Tt =t. For this purpose, we take,=x,, y =t in (i), we have,
dy(Sxy, St) < p X max{dy (Txp, Tt), dy (Txy, Sxy), dy(Txy, St), dy (Tt, St), dy (Tt, Sx,)}

Taking limit asn - oo, we haved,y (t,St) < u X dy(t,St), i.e.,t = St.
Thus,t is the common fixed point ¢f andT .
We now assume thai(= t) is another fixed point & andT. Then,
dy(t,u) = dy(St,Su) < u X max{dy (Tt, Tw), dy (Tt,St),dy(Tt, Sw), dy (Tu, St), dy (Tu, Su)}
which implies thatd, (t,u) < u x dy(t,u). So,t = u.
So,S andT have a unigue common fixed point.

3.2 Weakly compatible maps

Theorem 3.2.1: Let, S andT are weakly compatible self maps of a non-Newtoniarrimspace(X, dy)
satisfying:

() SC) STX)

(i) Any one of the subspa®X) or T(X) is complete.
(iii) dy(Sx,Sy) < u x max{dy(Tx,Ty),dy(Tx, Sx),dy(Tx,Sy),dy(Ty,Sx),dy(Ty,Sy)} for all

x,y €Xand0d < pu < a(%).
Then,S andT have a unique fixed point ix.
Proof: From theorem 3.1.1, we conclude tHat,} is a non-Newtonian Cauchy sequenc« irSince, either
S(X) or T(X) is complete, for definiteness assume théx) is complete subspace &f, then the
subsequence ¢, } must converge to a limit ifi(X), sayt. Let,u = T~1t. Then,Tu = t, as{x, } is a non-
Newtonian Cauchy sequence containing a convergent subsequereley the convergence of subsequence
of the convergent sequence. Now, we showS$hat t.
From condition (iii), we have,

dy(Sxy, Su) < pux max{dy (Txy, Tw), dy(Txy, Sxy), dy(Txy, Su), dy(Tu, Sxy,), dy (Tu, Su)}
Taking limit asn — o, we have,

dy(t,5u) < uxdy(t,Su) = dy(t,Su) =0

Hence,Su = Tu =t. Thus,u is a coincidence point ¢fandT. Since,S andT are weakly compatible, it
shows thaTu = TSu, i.e.,St = Tt.

Now, suppose thaft # t, therefored, (St, t) > 0. Now, from (iii), we have,

dy (Tt, Tw), dy (Tt, St), dy (Tt, Su),}

s
d(St,5u) < px max{ dy (Tw, St), dy (Tw, Su)

So, we have,

dy(St,t) < u x max{dy(Tt,t),dy(St,t)} = u X dy(St, t)
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which is a contradiction gs € (Oa(%)) HenceSt =t = Tt. And hence is a common fixed point of
andT. Uniqueness follows easily. S9,andT have a uniqgue common fixed point.

3.3 E.A. Property in non Newtonian metric spaces

Defintion 3.3.1: LetS andT be two self maps of a non- Newtonian metric sgace,). The pair(S,T) is
said to satisfy the property (E.A.) if there exists a secpefx,} in X such that,
lim,, o Sx, = lim,_,,, Tx,, = t, for somet € X.

Now, we prove a common fixed point theorem for the mapsfgaity (E.A.) property in non-Newtonian
metric spaces.

Theorem 3.3.2. Let, S andT be self maps on a non Newtonian Metric sp@¢aly), satisfying the
conditions:

() dy(Sx,Sy) < uxdy(Tx,Ty) forallx,y € X andu € (0,1)
(i) S andT satisfy the property (E.A.)
(iii) T(X) is a closed subspace Xf

ThenS andT have a unique fixed point i, providedS andT are weakly compatible maps.

Proof: SinceS andT satisfy (E.A.) property, there exists a sequefpgg in X such thatlim,,_,, Sx,, =
lim,,_,., Tx, = t, for somet € X. SinceT(X) is a closed subspace Xf there exists an € T(X) such that
lim, o T(x,) =Ta =t = lim,,_, S(x;,).

We claim thatSa = Ta = t.

By condition (i)dy (Sx,, Sa) < u X dy(Tx,, Ta).

Taking limitn — o, dy(t, Sa) < 0 which implies thaSa = t = Ta. So,a is a coincidence point ¢f and
T. SinceS andT are weakly compatible, it follows th&Ta = TSa.

We can therefore infer
dy(Sa,SSa) < uxdy(Ta,TSa) = u X dy(Sa,STa) = u X dy(Sa, SSa).

Hencedy(Sa,SSa) x (1 — ) < 0. Sincep € (0,1), Sa = SSa = TSa, i.e.Sa is common fixed point of
andT.

To see tha§ andT can have only one common fixed point, supposexthatlx = Sx andy = Ty = Sy.

Then (i) implies thatly (x,y) = dy(Sx, Sy) £ u % dy(Tx,Ty) = u x dy(x,y), ordy(x,y) x (i-p) £ 0.
Sinceu < 1,x =y.

So,S andT have a unigue common fixed point.

Theorem 3.3.3: Let, S andT be self maps on a non Newtonian Metric sp@¢aiy), satisfying the
conditions:

. .. dy(Tx,Ty),dy(Tx,Sx),dy(Tx, Sy),
(i) dy(Sx,Sy) <ux max{ d,.(Ty, 5x), dyy (Ty, Sy)

(i) S andT satisfy the property (E.A.),

(iiiy T(X) is a closed subspace Xf

} forallx,y € X andu € (O,a G))
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ThenS andT have a unique fixed point i, providedS andT are weakly compatible maps.

Proof: SinceS andT satisfy (E.A.) property, there exists a sequefpgg in X such thatlim,,_,. Sx,, =
lim,,_, Tx, = t, for somet € X. SinceT(X) is a closed subspace Xf there exists an € T(X) such that
lim, e T(x,) =Ta =t = lim,,_,, S(x;,).

We claim thatSa = Ta = t.

By condition (i)

dN (an' Sa) S u X max {dN (Txn: Ta): dN (Txn: an): dN (Txn: Sa);}

dy(Ta,Sx,),dy(Ta,Sa)

Taking limit asn - oo, dy(t,Sa) < u X dy(t, Sa) which implies thaSa = t = Ta. So,a is a coincidence
point of S andT. SinceS andT are weakly compatible, it follows th&T'a = TSa.

We can therefore infer
dy(Ta,TSa),dy(Ta,Sa),dy(Ta,SSa),

B
dw(Sa,55a) < p X max{ dy(TSa, Sa), dy (TSa, SSa)
=ux dy(Sa,SSa).

} — 4 % dy(Sa,STa)

Hencedy(Sa, SSa)(1 — u) £ 0. Sinceu € ((),a G)) Sa = SSa = TSa, i.e.Sa is common fixed point of
S andT.

To see tha§ andT can have only one common fixed point, supposexthatlx = Sx andy = Ty = Sy.
Then (i) implies that
dy(Tx,Ty),dy(Tx,Sx),dy(Tx,Sy),

. L. N dN(Ty,SX), dN(TyrSy)
dy(e,y) x (1=u) £ 0. Sinceu < i,x=y.

dy(x,y) = dy(Sx,Sy) < u x max{ } =uxdy(x,y) , or

So,S andT have a unigue common fixed point.

Remark 3.3.4: It can be easily observed that, the mappings which sdtisfyproperty (E.A.) need not

satisfy the condition of containment of range of one mappit@another, which is necessary for weakly
compatible maps. Moreover, the condition of continuity is majuired for the containment of range,

minimizes the commutativity condition to commutativity ageithcoincidence points. Also, completeness
requirement of the space is replaced with a more natomalitton of closedness of the range.

3.4 (CLRT) property in non Newtonian metric space

Definition 3.4.1: Suppos€X,d) be a metric space asT: X —» X. The mapping$ andT are said to
satisfy the common limit in the range Bfproperty if there exists a sequereg} in X such that

lim,,_, o Sx,, = lim,_,,, Tx,, = Tx for somex € X.
Theorem 3.4.2; Let, S andT be self maps of a non Newtonian metric spatel,) satisfying

() dy(Sx,Sy) £ udy(Tx, Ty) for allx,y € X andu € (0,1)
(i) CLRT property
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ThenS andT have a unique fixed point iXi, providedS andT are weakly compatible.

Proof: SinceS andT satisfyCLRT property, there exists a sequefieg} in X such that
lim,, e Sx,, = lim,_,, Tx, = Ta = t for someq, t € X.

Now, from condition (i) we havéy (Sx,, Sa) < udy(Tx,, Ta)

Taking limit asn — oo, dy (t, Sa) < 0 which implies thafa = t = Ta. Hencea is a coincidence point ¢f
andT. SinceS andT are weakly compatible, it follows th&éifa = TSa.

We can therefore infer
dy(Sa,SSa) < udy(Ta,TSa) = udy(Sa,STa) = udy(Sa,SSa).

Hencedy(Sa,SSa) x (1 — ) < 0. Sincep € (0,1), Sa = SSa = TSa, i.e.S(a) is common fixed point of
S andT.

To see tha§ andT can have only one common fixed point, supposexthatlx = Sx andy = Ty = Sy.

Then (i) implies thatly (x, y) = dy(Sx,Sy) < pdy(Tx, Ty) = pdy(x,y), ordy(x,y) % (1=u) < 0. Since,
u<ix=y.

So,S andT have a uniqgue common fixed point.
Theorem 3.4.3; Let, S andT be self maps of a non Newtonian metric spatel,) satisfying

() dy(Sx,Sy) < pux max{dy(Tx,Ty),dy(Tx,Sx),dy(Tx,Sy),dy(Ty,Sx),dy(Ty,Sy)} for  all

x,y € X andu € (O,a G)),
(iiy CLRT property

ThensS andT have a unique fixed point iXi, providedS andT are weakly compatible.
Proof: SinceS andT satisfyCLRT property, there exists a sequefieg} in X such that
lim,,_, o Sx, = lim,_,, Tx,, = Ta =t for someq,t € X.
Now, from condition (i) we have
dy(Sxp,, Sa) < u x max{dy(Tx,, Ta),dy(Tx,, Sx,,), dy(Tx,,Sa), dy(Ta,Sx,), dy(Ta,Sa)}

Taking limit asn — oo, dy (t, Sa) < 0 which implies thaSa = t = Ta. Hencea is a coincidence point ¢f
andT. SinceS andT are weakly compatible, it follows th&ifa = TSa.

We can therefore infer

dy(Sa,SSa) < u x max{dy(Ta,TSa),dy(Ta,Sa),dy(Ta,SSa),dy(TSa,Sa), dy(TSa, SSa)}
=uxdy(Sa,STa) = u X dy(Sa,SSa).

Hence,dy(Sa,SSa) x (1 —pu) < 0. Sinceu € (O,a (%)) Sa = SSa = TSa, i.e.S(a) is common fixed
point of S andT.
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To see thaf andT can have only one common fixed point, supposexzatrx = Sx andy = Ty = Sy.

Then (i) implies that

dy(Tx, Ty), dy(T x,Sx),dN(Tx,Sy),}zuk dyGry) . or

dy(x,y) = dy(Sx,Sy) < >'<max{
w(oy) = dy(Sx, Sy) < dy(Ty,$x),dy(Ty, Sy)

x=y.

So,S andT have a uniqgue common fixed point.
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