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Abstract

In this paper, we compare the performances of several models for fitting over-dispersed binary
data. The distribution models considered in this study include the binomial (BN), the beta-
binomial (BB), the multiplicative binomial (MBM), the Com-Poisson binomial (CPB) and the
double binomial (DBM) models. Applications of these models to several well known data sets
exhibiting under-dispersion and over-dispersion were considered in this paper. We applied these
models to two frequency data sets and two data sets with covariates that have been variously
analysed in the literature. The first relates to the Portuguese version of Duke Religiosity Index
in a sample of 273 (202 women, 71 Male) postgraduate students of the faculty of Medicine of
University of Sao Paulo. The second set that employs the Generalize Linear Model (GLM) is the
correlated binary data which studies the cardiotoxic effects of doxorubicin chemoteraphy on the
treatment of acute lymphoblastic leukemia in childhood. In the first data set, we have a single
covariate, Sex (0,1) and two covariates in the second data set (dose and time).
Our results indicate that all the models considered here (excluding the binomial) behave
reasonably well in modeling over-dispersed binary data with or without covariates, although both
the multiplicative binomial and the double binomial models slightly behave better for these
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specific data sets. While this result may not be necessarily generalized to other variety of over
and under-dispersed data, we would however, encourage the investigation of all possible models
so that the right applicable model can be employed for a given data set under consideration. All
analyses were carried out using PROC NLMIXED in SAS.

Keywords: Beta-binomial; double binomial; multiplicative binomial; Com-Poisson binomial; over-
dispersion; under-dispersion.

2010 Mathematics Subject Classification: 53C25, 83C05, 57N16.

1 Introduction

Data with binary outcomes are very common and are widely encountered in many real world
applications. The baseline model for binary data is of course the binomial distribution model.However,
in many situations the binomial model fails to fit such data, simply because the variance of the
observed often exceeds the expected variance of niπ̂i(1 − π̂i) under the binomial model, which
consequently leads to over-dispersion in the binomial data.

To overcome this problems, several distributions have been utilized, especially mixture models such
as the beta-binomial in [1], the Kumarasmawany in [2] and most recently the McDonald’s generalized
beta-distribution (McGBB) in [3]. Each of these distributions, separately models the probability of
success π with beta, Kumaraswany, and exponential (continuous type) distributions respectively.
The Beta-Binomial (BB) distribution has received considerable attention in the literature. While all
these mixture distributions have been studied extensively in the literature, unfortunately, none of
them can handle comprehensively all the complexities arising from various overdispersed binomial
data.In other words no single mixture distributions fits all possible over-dispersed binary data.
Thus, we continue to explore and investigate an alternative or even an already well established
distribution in the pursuit of overcoming over-dispersion in binary data.

In this paper, we present both the multiplicative [4] [5], the Com-Poisson binomial [6] and the
double binomial [7], [8] and [9] models as alternatives to the binomial model. We also compare our
results to those obtained from the beta-binomial.

Our focus in this paper is based on a recent paper by [9] which compares the performances of the
multiplicative binomial and the double binomial models to data arising from ink transmissions onto
paper [9]. Because the Com-Poisson binomial distribution is also a member of the two-parameter
exponential family, this model is therefore considered along with the multiplicative and double
binomial models. SAS PROC NLMIXED is employed to estimate the parameters of these models
after formulating their log-likelihoods.

We present in the following sections, brief descriptions of the models and their means and variances,
together with their log likelihoods. Four example data sets are employed, two dealing with frequency
counts and the other two data sets having single covariates. These data sets are appropriately
described at the relevant sections of this paper.

2 The Binomial (BIN) Model

The random variable Y =
∑
yi, where yi ∼ Bernoulli(p) has for a fixed n the binomial distribution:

f(y, π) =

(
n

y

)
πy(1− π)n−y; , y = 0, 1, . . . , n, 0 < π < 1. (2.1)
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The mean and variance of the BIN are given respectively as:

E(Y ) = nπ, (2.2a)

Var(Y ) = nπ(1− π). (2.2b)

The corresponding one-parameter exponential family representation of the binomial is given by:

f(y, π) =

(
n

y

)
(1− π)n × exp

[
y log

π

1− π

]
.

3 The Multiplicative Binomial (MBM) Model

In [5], an alternative form of the two-parameter exponential family generalization of the binomial
distribution first introduced in [4] which itself was based on the original representation in [10] is
given by,:

f(y) =

(
n

y

)
ψy(1−ψ)n−y ωy(n−y)

n∑
j=0

(
n

j

)
ψj(1−ψ)n−j ωj(n−j)

, y = 0, 1, . . . , n. (3.1)

where 0 < ψ < 1 and ω > 0. When ω = 1 the distribution reduces to the binomial with π = ψ. If
ω = 1, n→ ∞, and ψ → 0, then nψ → µ and the MBD reduces to Poisson(µ).

In [11], the author presented some elegant characteristics of the multiplicative binomial distribution,
including its four central moments. The author’s treatment includes generation of random data from
the distribution as well as the likelihood profiles and several examples-some of which are similarly
employed in this presentation.

Following [11], the probability π of success for the Bernoulli trial, that is, P (Y = 1) can be computed
from the following expression in (3.2) as:

π1 = ψ
κn−1(ψ,ω)

κn(ψ,ω)
, (3.2)

where:

κn−a(ψ,ω) =

n−a∑
y=0

(
n− a

y

)
ψy(1−ψ)n−a−y ω(y+a)(n−a−y). (3.3)

with π defined as in (3.2), ψ therefore can be defined as the probability of success weighted by the
intra-units association measure ω which measures the dependence among the binary responses of
the n units. Thus if ω = 1, then π = ψ and we have independence among the units. However, if
ω ̸= 1, then, π ̸= ψ and the units are not independent.
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We may note here that the relationship between the probability of success π defined in [9] in the
multiplicative binomial is related to ψ with the expressions below. The mean and variance of the
MBD are given respectively as:

E(Y ) = nπ1, (3.4a)

Var(Y ) = nπ1 + n(n− 1)π2 − (nπ1)
2, (3.4b)

where,

πi = ψ
i κn−i(ψ,ω)

κn(ψ,ω)
. (3.5)

and with κ(.) as defined previously in (3.3). Thus, π1 and π2 are computed respectively as:

π1 = ψ

[
κn−1(ψ,ω)

κn(ψ,ω)

]
and π2 = ψ2

[
κn−2(ψ,ω)

κn(ψ,ω)

]
, (3.6)

and from (3.3), we have:

κn(ψ,ω) =

n∑
y=0

(
n

y

)
ψy(1−ψ)n−y ωy(n−y),

κn−1(ψ,ω) =

n−1∑
y=0

(
n− 1

y

)
ψy(1−ψ)n−1−y ω(y+1)(n−1−y),

κn−2(ψ,ω) =

n−2∑
y=0

(
n− 2

y

)
ψy(1−ψ)n−2−y ω(y+2)(n−2−y).

(3.7)

The corresponding two-parameter exponential family representation is also given by:

f(y|ψ, ω) =

(
n

y

)
1

n∑
j=0

(
n

j

)
ψj(1−ψ)j ωj(n−j)

× exp

(
y log

ψ

1−ψ + (n− y)y logω

)
. (3.8)

4 The Com-Poisson Binomial (CPB) Model

The probability density function for the Com-Poisson Binomial distribution is given by:

f(y|n, p, ν) =
(
n
y

)ν
πy(1− π)n−y

n∑
k=0

(
n

k

)ν

πk(1− π)n−k

, y = 0, 1, . . . , n, (4.1)

With π ∈ (0, 1) and ν ∈ R. If ν = 1, the model reduces to the binomial distribution and values of
ν > 1 indicate underdispersion, while values of ν < 1 similarly indicate overdispersion with respect
to the binomial distribution.

The Com-Poisson distribution [12] is given in (4.2),

f(yi) =
λyi
i

(yi!)ν
1

Z(λi, ν)
, yi = 0, 1, 2, · · · , λi > 0, ν ≥ 0. (4.2)
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where the the normalizing term Z(λi, ν) is defined as:

Z(λi, ν) =

∞∑
j=0

λj
i

(j!)ν
. (4.3)

An approximation to the CPB distribution in the limit n → ∞ and with λ = nνp is given in [13].
Following [6], if we let θ be defined as:

θ =
π

1− π
. (4.4)

and dividing both the denominator and numerator of the expression in (4.1) by a factor of (1 −
π)m(m!)ν , we thus have:

f(y|n, θ, ν) = θy

(y!)ν
1

Z(θ, ν)
, y = 0, 1, 2, · · · , θ > 0, ν ≥ 0, (4.5)

where the the normalizing term is defined as:

Z(θ, ν) =
n∑

j=0

θj

[j!(n− j)!]ν
. (4.6)

The various properties of the CPB or the Com-Poisson have been presented in various papers [6],
[13], and [14] applied the CPB to the number of killings in rural Norway.

For the analysis of the data sets in our examples in this paper, we shall employ SAS PROC
NLMIXED to implement the models discussed in this paper. PROC NLMIXED uses several
optimization techniques in its computations. We have adopted the dual Quasi-Newton and conjugate-
gradient techniques for our computation. The chosen method of integral approximations of the
marginal likelihood is the adaptive Gaussian quadrature as defined in [15].

The means and variance of Yi are respectively given as:

E(Y ) =
n∑

j=0

j θj

Z(θ, ν)[j!(n− j)!]ν
, and (4.7a)

Var(Y ) =

n∑
j=0

j2 θj

Z(θ, ν)[j!(n− j)!]ν
− [E(Y )]2. (4.7b)

The two-parameter exponential family representation of the distribution is presented in (4.8).

f(y|n, π, ν) =

(
n

y

)ν
1

n∑
k=0

(
n

k

)ν (
π

1− π

)k
× exp

(
y log

π

1− π

)
. (4.8)
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5 The Double Binomial (DBM) Model

In [9], the double binomial distribution was presented, having the pdf form:

f(y;π, ϕ) =

(
n

y

)
[yy(n− y)n−y]1−ϕ [π/(1− π)]yϕ

n∑
j=0

(
n

j

)
[jj(n− j)n−j ]1−ϕ[π/(1− π)]jϕ

, y = 0, 1, . . . , n. (5.1)

and following [9], the double binomial can be written as a two parameter exponential family
distribution in the form:

f(y;π, ϕ) =

(
n

y

)
yy(n− y)n−y 1

n∑
j=0

(
n

j

)
(jj(n− j)n−j)1−ϕ(π/(1− π))jϕ

× exp

(
−[y log(y + (n− y) log(n− y)]ϕ+ yϕ log

π

1− π

)
.

We see that the expression above factorizes appropriately.

6 The Beta-Binomial (BB) Model

The beta-binomial in [1] is, of course, a mixture of the binomial Bin(n, π) and the beta distribution
Beta(α, β), where,

Y |π ∼ Bin(n, π), and π ∼ Beta(α, β).

That is, Bin(n, π) ∧ Beta(α, β) ∼ BB, with resulting unconditional pdf presented in (6.1).

f(y;α, β) =

(
n

y

)
B(α+ y, β + n− y)

B(α, β)
, y = 0, 1, . . . , n. (6.1)

The mean and variance of the beta-binomial are given by:

E(Y ) = nπ and Var(Y ) = nπ(1− π)[1 + ρ2(n− 1)]. (6.2)

where

π =
α

α+ β
, and ρ2 =

1

α+ β + 1
.

7 Estimation

For a single observation, the log-likelihoods for the binomial, the multiplicative binomial, the Com-
Poisson binomial, the double binomial and the beta-binomial are displayed in expressions (7.1a) to
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(7.1e) respectively.

LL1 = log

(
n

y

)
+ y log(π) + (n− y) log(1− π) (7.1a)

LL2 = log

(
n

y

)
+ y log(ψ) + y(n− y) logω − log

[
n∑

j=0

(
n

j

)
ψj(1−ψ)n−j ωj(n−j)

]
(7.1b)

LL3 = yi log θi − ν log[yi!(m− yi)!]− logZ(θi, ν) (7.1c)

LL4 = log

(
n

y

)
+ (1− ϕ)[y log y + (n− y) log(n− y)] + yϕ log

(
π

1− π

)

− log

[
n∑

j=0

(
n

j

)(
jj(n− j)n−j

)1−ϕ
(

π

1− π

)jϕ
]

(7.1d)

LL5 = log

(
n

y

)
+ log[B(α+ y, β + n− y)]− log[B(α, β)] (7.1e)

Maximum-likelihood estimations of the above models are carried out with PROC NLMIXED in
SAS, which minimizes the function −LL(y,Θ) over the parameter space Θ numerically. The
integral approximations in PROC NLMIXED is the Adaptive Gaussian Quadrature [15] and several
optimization algorithms: namely:the quasi-Newton algorithm (QUANEW), the Nelder-Mead Simplex
method(NMSIMP), the Newton-Raphson method with line search (NEWRAP) and the Conjugate
Gradient method (CONGRA) of [16] [17]. Convergence is often a major problem here and the choice
of starting values is very crucial. For each of the cases considered here, the above four optimizing
algorithms were applied in turn to ascertain accuracy and consistency.

For the double binomial however, while the parameters are estimated via PROC NLMIXED in SAS
with the above optimization and integration techniques, the corresponding estimated probabilities
are estimated using the function ddoublebinom(0, 36, 0.9968, 0.0187) in package rmutil [18]
in R.

8 Applications

We apply the models discussed above to the frequency of males in 6115 families with 12 children
in Sax-ony, previously analyzed in [19]. The data is originally from Geissler [20] and had similarly
been analyzed in [6]. The data is presented in Table 1.

Table 1. Distribution of Males in 6115 families with 12 children

Y 0 1 2 3 4 5 6 7 8 9 10 11 12
count 3 24 104 286 670 1033 1343 1112 829 478 181 45 7

Here Y ∼ binomial(12, π). The frequencies are presented as counts having a total sum of 6115.

8.1 Results

We present in Table 2, the parameter estimates under the binomial (BN), the beta-binomial (BB),
the multiplicative binomial (MBM), the Com-Poisson binomial (CPB) and the double binomial
(DBM) models.

7
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Table 2. Parameter estimates under the five Models

Models
BIN BB MBM CPB DBM

π̂ = 0.5192 π̂ = 0.5192 ψ̂ = 0.5165 θ̂ = 1.0682 π̂ = 0.5191

ρ̂ = 0.0150 ω̂ = 0.9742 ν̂ = 0.8434 ϕ̂ = 0.8602
-2LL 25068.34 24986 24986 24985 24824
AIC 25070.34 24990 24990 24989 24828
Mean 6.2304 6.2306 6.2306 6.2306 6.2297
Var 2.9956 3.4897 3.4893 3.4918 3.4878
X2

W 7122.8133 6114.19 6115.0059 6110.4869 6117.5773
d.f 6114 6113 6113 6113 6113

The BB parameters are estimated from the log-likelihood formulation in (7.1e) and the estimated
probability here is given by, α̂/(α̂+ β̂) = 0.5192 and the intra-class correlation ρ2 is estimated to be
0.1225 = 1/(α̂+ β̂ + 1). For the MBM the estimate probabilities are π̂1 = 0.5192 and π̂2 = 0.2733.
The X2

W is the Wald test statistic:

X2 =

N∑
i=0

(yi − m̂i)
2

σ̂2
i

; , N = 6115. (8.1)

The m̂i in Table 2, as above is given by the mean=nπ̂. The estimated variances are also presented
as Var. For the observed data in Table 1, ȳ = 6.2306 and s2 = 3.4898. We see from Table 2, that
while the five models estimate the mean of the data well, the estimated variance under the binomial
model of 2.9956 underestimates the observed variance of the data, and this explains the poor fit to
the data as exhibited by the binomial model. On the other hand, for the other four models, the
variance of the observed data are reasonably well estimated. The Wald’s Goodness-Of-Fit (GOF)
test statistic suggests that the Com-Poisson binomial model fits data best, but again, they all fit
the data well.

In Table 3 are the expected values under each of the five models, the corresponding Pearson‘s X2

and the corresponding degrees of freedom (d.f.). Clearly, for this data set, apart from the binomial
model, all the other four models fit the data, but the double binomial is the most parsimonious in
this case, doing slightly better than the Com-Poisson binomial model.

Table 3. Expected Values under the five models and corresponding Pearson’s X2 Statistic
Values

Y count BN BB MPD COMP DB
0 3 0.9328 2.3487 2.3486 2.6797 2.9390
1 24 12.0888 22.5746 22.5809 23.2758 23.3191
2 104 71.8032 104.8238 104.8482 104.7036 104.1809
3 286 258.4751 310.8757 310.8921 308.7432 307.6766
4 670 628.0550 655.7208 655.6551 653.5383 653.1269
5 1033 1085.2107 1036.2201 1036.0769 1037.6988 1039.2163
6 1343 1367.2794 1257.9632 1257.9074 1262.3570 1265.0121
7 1112 1265.6303 1182.1426 1182.2927 1184.0487 1185.3592
8 829 854.2466 853.5574 853.7711 850.8785 849.7391
9 478 410.0126 461.9057 461.9646 458.6614 456.5902
10 181 132.8357 177.8755 177.7841 177.4821 176.3454
11 45 26.0825 43.7809 43.6925 45.0189 45.0228
12 7 2.3473 5.2109 5.1858 5.9140 6.4723

Total 6115 6115 6115 6115 6115 6115
X2 110.5051 14.4692 14.5354 13.3597 13.0457
d.f 11 10 10 10 10

8
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9 Example II
The data in Table 4 is from [9] and relate to the counts of blocks with Y successfully printed pixels from
sample 201 (B).

Table 4. Counts of blocks with y successfully printed pixels from sample 201 (B)-[9]

y count y count y count y count
0 204 10 265 20 686 30 2257
1 121 11 296 21 728 31 2713
2 132 12 345 22 865 32 3239
3 155 13 355 23 880 33 4022
4 144 14 382 24 1064 34 5551
5 186 15 455 25 1267 35 5999
6 216 16 492 26 1242 36 219,358
7 169 17 502 27 1459
8 254 18 586 28 1753
9 240 19 592 29 1947

It is assumed here that n = 36, and y = 0, 1, 2, . . . , n with probability π. Here, the total sample size
N = 261, 121 and are as distributed in Table 2 We also assume here that Y has an underlying binomial
distribution with parameters n = 36 and success probability π, that is, y ∼ binomial(36, π).

In Table 5, we present the parameter estimates under the five models, together with their corresponding
estimated means and variances and Wald’s GOF test statistic.

Table 5. Parameter estimates under the five Models

Models
BIN BB MBM CPB DBM

π̂ = 0.9639 π̂ = 0.9648 ψ̂ = 0.5303 θ̂ = 1.1237 π̂ = 0.9968

- ρ̂ = 0.6562 ω̂ = 0.8949 ν̂ = −0.2917 ϕ̂ = 0.0187
-2LL 1,840,559 483,556 911,827 632,168 248,647
AIC 1,840,561 483,560 911,831 632172 248,651
mean 34.6987 34.7328 34.6987 34.6987 30.2627
Var 1.2543 19.6483 18.7012 22.6995 59.0810
X2

W 3,893,291 248,458 261,121.48 215,126.94 169, 625.31
d.f. 212,121 212,120 212,120 212,120 212,120

The estimated π’s under the binomial and the double binomial for example are respectively, 0.9639 and
0.9968. For the binomial for instance, the mean=36 × 0.9639 = 34.6987 and the variance is estimated as
36×0.9639×(1−0.9639) = 1.2543. However, for the observed data in Table 4, ȳ = 34.6987 and s2 = 18.7013.
We see again from Table 5, that while the five models estimate the mean of the data well, the estimated
variance under the binomial model of 1.2543 grossly underestimates the observed variance of the data, and
this again explains the very poor fit to the data as exhibited by the binomial model. On the other hand,
the beta-binomial and the multiplicative binomial reasonably estimated the observed data variance of this
data set well. The Com-Poisson estimate is also not too far from the 18.7013 but the double binomial over-
estimates the variance of the observed data. The Wald’s GOF test statistic seems to fit best in the double
binomial model. The Akaike Information Criterion (AIC) and -2LL values also support the double binomial
asthe model providing the best fit for this data set. The estimated probabilities under the multiplicative
model are respectively, π̂1 = 0.9638 and π̂2 = 0.9429.

In Table 6 are presented the expected values under each of the five models. The beta-binomial fits this data
best when the data is aggregated over the various values of y, that is, grouped.

9
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Table 6. Expected Values under the five models and
corresponding X2 Statistic Values

Y count BN BB MPD CPB DBM
0 204 0.0000 114.5162 1595.5381 2490.1177 1689.5201
1 121 0.0000 150.0848 1329.0081 983.8881 763.9615
2 132 0.0000 175.5709 671.9961 479.7792 673.1709
3 155 0.0000 197.2481 274.7949 265.5642 660.7565
4 144 0.0000 217.1259 102.1481 161.2576 678.8770
5 186 0.0000 236.1422 36.7842 105.4470 714.9485
6 216 0.0000 254.8381 13.3538 73.3948 764.4623
7 169 0.0000 273.5765 5.0216 53.9480 825.7038
8 254 0.0000 292.6319 1.9946 41.6385 898.1945
9 240 0.0000 312.2343 0.8491 33.6031 982.1153
10 265 0.0000 332.5931 0.3917 28.2629 1078.0635
11 296 0.0000 353.9129 0.1976 24.7119 1186.9435
12 345 0.0000 376.4046 0.1097 22.4175 1309.9198
13 355 0.0000 400.2950 0.0674 21.0658 1448.4024
14 382 0.0000 425.8357 0.0460 20.4808 1604.0517
15 455 0.0000 453.3135 0.0350 20.5819 1778.7984
16 492 0.0000 483.0617 0.0298 21.3645 1974.8754
17 502 0.0000 515.4747 0.0283 22.8959 2194.8642
18 586 0.0000 551.0262 0.0302 25.3258 2441.7548
19 592 0.0000 590.2943 0.0361 28.9111 2719.0277
20 686 0.0000 633.9940 0.0484 34.0646 3030.7609
21 728 0.0000 683.0242 0.0726 41.4384 3381.7747
22 865 0.0000 738.5321 0.1216 52.0678 3777.8291
23 880 0.0000 802.0095 0.2271 67.6248 4225.8995
24 1064 0.0007 875.4339 0.4714 90.8702 4734.5709
25 1267 0.0086 961.4874 1.0828 126.4873 5314.6165
26 1242 0.0971 1063.9042 2.7375 182.6678 5979.8765
27 1459 0.9585 1188.0473 7.5662 274.2401 6748.6415
28 1753 8.2153 1341.9109 22.6634 429.0942 7645.9291
29 1947 60.4299 1537.9704 72.7552 702.0030 8707.4329
30 2257 375.9784 1796.8532 246.7011 1205.9636 9986.8351
31 2713 1940.3788 2155.3386 866.5108 2187.8086 11570.5117
32 3239 80,84.2671 2686.1279 3,068.2483 4,224.7488 13,610.5244
33 4022 26,128.8818 3,556.2415 10,524.8583 8785.2897 16,410.8568
34 5551 61,474.8218 52,55.2783 32,818.7076 20,041.6599 20,711.9560
35 5999 93,668.4528 10,122.0242 82,761.7158 51,897.1772 29,118.7833
36 219,358 69,378.5091 219,016.6420 126,694.051 165,853.1380 79,775.7891
X2 > 1.2E50 2,870.6458 82,519,387.7 237,058.033 351,757.251

The corresponding degrees of freedom are 35 d.f. for the binomial and 34 d.f. for the other four models.
Clearly, none of the models fit this data.

10 Generalized Linear Model Application
In this section, we would employ the BN (logistic model), MBM, CPB and the DBM models to data having
covariates. For data having covariates (x1, x2, . . . , xp)′, the probability of success π can be modeled as:

πij =
1

1 + exp(−x′b)
,

where (b0, b1, b2, . . . , bp)′ are parameter estimates to be estimated. We apply the five models to two sets of
binary response data having covariates. These are presented in the next section.

10
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10.1 Example data I: The intrinsic religiosity index
The data in Table 7 is reproduced from [21] and relates to Portuguese version of Duke Religion Index in a
sample of 273 (202 women, 71 Male) postgraduate students of the faculty of Medicine of University of Sao
Paulo. The index is a five-item measure of religious involvement; for details, see [22]. The maximum number
of points on the scale is n = 18 and the counts in the data are the number of points scored by Women and
Men. The means and variances of men and women are respectively, Men={ȳm = 13.5352, s2m = 13.1095};
women={ȳw = 15.4158, s2w = 6.3635}.

Table 7. Counts of Points in IR sub-scale for women and Men individuals

Number of Points (r)
Sex 6 7 8 9 10 11 12 13 14 15 16 17 18

Women 3 2 3 1 3 2 5 12 21 24 55 31 40
Men 4 3 4 2 4 1 4 5 8 8 12 10 6
Total 7 5 7 3 7 3 9 17 29 32 67 41 46

The five models discussed in the previous sections are now applied to this data set, with sex (1 for women,
0 for men) as the single covariate.

10.2 Results
For the multiplicative model we employ the log-link for parameter ψ such that 0 < ψ < 1 and the association
parameter is modeled with a log-link such that log(ω) = a0. For the Com-Poisson binomial, we model the
dispersion parameter ν similarly with a log-link. For the double-binomial model, both the probability of
success π and the dispersion parameter ϕ are modeled respectively with the logit and the log links. The
model of interest is then given by:

πij = Pr[Yij = 1|Sexj ],

log

(
rij

n− rij

)
=

eβ0+β1Sexj

1 + eβ0+β1Sexj
; i = 6, 7, . . . , 18; j = 0, 1.

(10.1)

where, n = 18 and,

Sex =

{
1 if Women

0 if Men

The results of our analysis are presented in Table 8. Based on Wald’s test statistic, we observe that the
multiplicative binomial (MBM) model gives the best fit with X2

W = 226.3633 on 273-3=270 degrees of
freedom as compared with 851.268 on 271 d.f. from the baseline binomial model.

Table 8. Parameter estimates and GOF X2 under various Models

Parameters BN BB MBM CPB DBM

β̂0 1.1091 1.1503 0.5043 1.2136 1.6962

β̂1 0.6769 0.5942 0.0497 0.2933 2.2501
â0 na -0.6757 0.8681 0.0852 -2.4040
π̂M 0.7520 0.7596 0.7346 0.7709 0.8450
π̂W 0.8564 0.8513 0.8547 0.8185 0.9810

Mean-M 13.536 13.6721 13.2223 13.535 13.1231
Var - M 3.357 9.6424 17.3143 10.9841 10.3415
Mean-W 15.415 15.3227 15.3595 15.4158 14.7728
Var - W 2.2136 6.6851 7.3916 6.4278 6.0105

Disp. na ρ̂ = 0.1137 ω̂ = 0.8681 ν̂ = 0.8681 ϕ̂ = 0.0899
X2

w 851.268 286.901 226.3633 282.534 316.392
d.f 271 270 270 270 270

-2LL 1465.40 1209.1 1178.8 1198.4 954.9
AIC 1469.4 1215.1 1184.8 1204.4 960.9

11
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In terms of the -2LL and AIC as measures of fit, the double-binomial seems to be the best and is followed
by the multiplicative binomial. The Com-Poisson binomial performs better than the beta-binomial in this
example with GOF X2

W of 282.534 and 286.901 respectively. Thus based on this data, we would probably
recommend the multiplicative binomial model. Based on this model, we must note that the parameter ψ
in the multiplicative binomial probability distribution in (3.8) is not the success probability. For our data,

under the MBM, ψ̂M = 0.5043 and ψ̂W = 0.5541, with ω̂ = 0.8681. Consequently, using expressions in
(3.5) and (3.6), we have π̂M =

π1 = ψ

[
κn−1(ψ,ω)

κn(ψ,ω)

]
.

For this data, κn−1(ψ,ω) and κn(ψ,ω) are computed as 0.000206331 and 0.000133972 respectively for
Women and 0.000048785 and 0.000071058 for men. Thus, from (3.5), we have,

π̂M
1 = ψM

κn−1(ψ,ω)

κn(ψ,ω)
=

0.50432× 0.000048785

0.000071058
= 0.73457,

π̂W
1 = ψW

κn−1(ψ,ω)

κn(ψ,ω)
=

0.55406× 0.000206331

0.000133972
= 0.85331.

Similarly, with κn−2(ψ,ω) = {0.000325101, 0.000112154} for women and men respectively. It is not
too difficult therefore to compute π̂2 from (3.6) as: π̂M

2 = 0.58471 and π̂W
2 = 0.74492. Consequently, the

means and variances are computed using expressions in (3.4) and these values are displayed in Table 8.

10.3 Example data II

This example is from [23] and was originally published http://www.stat.sc.edu/ kerrie/cardiodata.html. The
data is a correlated binary data which studies the cardiotoxic effects of doxorubicin chemoteraphy on the
treatment of acute lymphoblastic leukemia in childhood. The data set is presented in Table 9.

In this study, 24 patients previously cured of leukemia had a long-term followup visit to determine how the
heart was functioning. Tests of heart functions were conducted. For each subject on a visit, there are six
similar tests of heart function with the result of each test being coded as normal/abnormal. Thus we have
N = 24 clusters, each patient serving as a cluster, and ni = 5 or ni = 6 observations per cluster (some
patients have only 5, and not 6 tests performed). Here, id=Patient number, r is the number of abnormal
heart tests, n is the number of tests, time=time since chemotherapy (in years), and dose=1 if High and 0 if
low dosage.

Let the response variable be Yij from patient i having a jth heart test such that:

Yij =

{
1 if abnormal

0 if normal

Suppose the probability of an abnormal result is πi, then we have:

πi = Pr[Yij = 1|DOSEi,TIMEi],

=
eβ0+β1DOSEi+β2TIMEi

1 + eβ0+β1DOSEi+β2TIMEi
,

(10.2)
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Table 9. Cardiotoxicity study data

id r n dose time
1 4 6 1 13.7
2 0 5 1 15.6
3 3 5 1 4.6
4 4 5 1 13.0
5 0 5 0 6.2
6 1 6 1 15.4
7 2 5 0 6.5
8 0 5 0 4.4
9 1 5 0 9.6
10 3 5 1 11.2
11 3 5 0 8.1
12 3 5 1 13.1
13 1 5 0 10.1
14 4 6 0 8.4
15 1 5 0 4.2
16 1 5 1 13.5
17 1 5 1 17.9
18 1 5 0 8.8
19 2 6 0 5.9
20 3 5 1 13.2
21 4 5 1 14.5
22 4 6 0 8.1
23 0 5 0 8.2
24 4 6 0 8.1

where DOSE is 1 if High and 0 if low, and TIMEi is the time in years since the last chemotherapy.

Model (10.1) therefore becomes:

ln

(
πi

1− πi

)
= x′β, that is,

logiti = β0 + β1 DOSEi + β2 TIMEi.

(10.3)

Our formulation of the above model is based on the fact that there is no significant interaction between dose
and time [23].

Since the binary observations are assumed correlated, suppose we let ρ be the correlation (or overdispersion
parameter) between two heart measurements on the same subject.

The parameters π, ψ and θ and π in the Beta binomial, the multiplicative, Com-Poisson binomial and the

double binomial are modeled with the logit-link function. For the CPB for instance θ = log

(
1

1 + exp(−x′β

)
,

where x′β is as defined in (10.3).

Table 10. Results of analyses for the models

Parameters BN BB MBM CPB DBM
β0 -0.2202 -0.2971 -0.1460 0.8749 1.2071
β1 0.9631 0.9613 0.6689 0.4521 2.5007
β2 -0.0638 -0.0589 -0.0447 -0.0310 -0.2626

na ρ̂ = 0.1139 ω̂ = 0.8698 ν̂ = 0.5184 ϕ̂ = 0.3482
-2LL 81.8958 78.9477 79.6 79.7 55.0
AIC 87.8957 86.9473 87.6 87.7 63.8
X2

W 35.4218 23.9024 25.3575 24.3268 39.0086
d.f. 21 20 20 20 20
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The results of applying these models to the cardiotoxicity Study data in Table 9 are presented in Table 10.
When the binomial model was applied to the data, X2

W = 35.4218 on 21 d.f. giving an estimated dispersion
parameter (DP) of 1.8668 indicating a strong overdispersion of the data. Under the MBM, CPB and the

DBM models, the estimated dispersion parameters are ω̂ = 0.8698, ν̂ = 0.5184 and ϕ̂ = 0.3482 indicating
an over-dispersion in the data. Clearly, based on the -2LL and AIC statistics, the double binomial fits best
with respective values 55.0 and 63.8. However, the Wald test statistic under the DB model gives a value of
39.0086. In Table 11 we present the estimated probabilities, ϕ̂ values, the expected values of each observation
as well as the corresponding variances under the double binomial model. In the last column, the cumulative
values of the Wald test statistic are given. Recall that the Wald test statistic is defined as:

X2
W =

N∑
i=1

(ri − m̂i)
2

var
, i = 1, 2, . . . , N(= 24).

The Wald GOF is very susceptible in this case when r = 0. For instance, note that for cluster 2 and r = 0,
the contribution towards Wald’s GOF here is 5.1626-0.4747=4.6879. Similarly, for clusters 5,8 and 23, the
spikes in the GOF are respectively, 4.6468, 5.3668, 4.1147. The four observations alone contribute a total
of 18.8162 towards X2

W compared to say contributions of 8.7596 for the four cells under the MBM. The
double binomial tends to underestimate the variances for each cluster and more especially for the cases
when r = 0. However, the Pearson’s X2 and the likelihood-ratio test G2 are 20.2674 and 11.5774 under the
double binomial model. These values fit much better than those of the other models. Clearly, the results
will vary with each data set, but based on the results in Examples I and II, each of these models, with the
exception of the binomial, will behave very well in modeling over-dispersed data.

Table 11. Computations of some values under the DBM

Cluster π̂ ϕ̂ r n dose time m̂ s2 G2 X2 X2
W

1 0.52750 0.34823 4 6 1 13.7 3.06993 1.82222 2.1171 0.2818 0.4747
2 0.40399 0.34823 0 5 1 15.6 2.34031 1.16834 2.1171 2.6221 5.1626
3 0.92413 0.34823 3 5 1 4.6 3.37324 0.71392 1.4135 2.6634 5.3578
4 0.57295 0.34823 4 5 1 13.0 2.62094 1.17534 4.7956 3.3890 6.9758
5 0.39625 0.34823 0 5 0 6.2 2.32721 1.16554 4.7956 5.7162 11.6226
6 0.41670 0.34823 1 6 1 15.4 2.78729 1.79826 2.7455 6.8623 13.3990
7 0.37757 0.34823 2 5 0 6.5 2.29534 1.15780 2.1945 6.9003 13.4743
8 0.51290 0.34823 0 5 0 4.4 2.52128 1.18448 2.1945 9.4216 18.8411
9 0.21183 0.34823 1 5 0 9.6 1.98487 1.01588 0.8234 9.9103 19.7959
10 0.68279 0.34823 3 5 1 11.2 2.81067 1.12279 1.2146 9.9230 19.8278
11 0.28495 0.34823 3 5 0 8.1 2.13000 1.09704 3.2695 10.2784 20.5178
12 0.56652 0.34823 3 5 1 13.1 2.61018 1.17694 4.1047 10.3366 20.6469
13 0.19073 0.34823 1 5 0 10.1 1.93912 0.98509 2.7802 10.7914 21.5422
14 0.26917 0.34823 4 6 0 8.4 2.39138 1.60785 6.8956 11.8735 23.1516
15 0.52600 0.34823 1 5 0 4.2 2.54294 1.18358 5.0289 12.8097 25.1630
16 0.54056 0.34823 1 5 1 13.5 2.56703 1.18187 3.1434 13.7662 27.2407
17 0.27035 0.34823 1 5 1 17.9 2.10236 1.08356 1.6573 14.3443 28.3622
18 0.24902 0.34823 1 5 0 8.8 2.06089 1.06157 0.2110 14.8904 29.4224
19 0.41525 0.34823 2 6 0 5.9 2.78355 1.79731 -1.1113 15.1109 29.7640
20 0.56006 0.34823 3 5 1 13.2 2.59941 1.17840 -0.2513 15.1727 29.9002
21 0.47502 0.34823 4 5 1 14.5 2.45876 1.18368 3.6418 16.1388 31.9070
22 0.28495 0.34823 4 6 0 8.1 2.43591 1.63810 7.6096 17.1431 33.4004
23 0.27963 0.34823 0 5 0 8.2 2.11999 1.09227 7.6096 19.2631 37.5151
24 0.28495 0.34823 4 6 0 8.1 2.43591 1.63810 11.5774 20.2674 39.0086

The values of G2 and X2 columns in Table 11 are respectively, the likelihood ratio test statistic and the
Pearson’s test statistic defined as:

G2 = 2

N∑
i=1

ri log

(
ri

m̂i

)
, X2 =

N∑
i=1

(ri − m̂i)
2

m̂i
.

11 Conclusions
Clearly, each of the models under investigation in this paper (excluding the binomial) behave reasonably well
in modeling over-dispersed binary data with or without covariates. While the MBM is most parsimonious
for the religiosity index data, the double binomial fits best the cardiotoxicity data. It is therefore obvious
that no single model fits all possible data and it is always advisable to explore all possible models in other
to come to an informed conclusion.
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It should be noted here that there are other approaches for overcoming overdispersed or under-dispersed
binary data. Some of these are (i)the quasi-likelihood approach resulting in either scaling (viaX2 or deviance-
QL(1)) or employing William’s (QL2) approach. Alternatively, we could employ the GLMM method with the
normal-binomial model and since the data are in clusters, we could also employ the generalized estimating
equations (GEE) in fitting especially the two data sets having co-variates. We present the results of applying
these approaches, for instance to the data in Table 4. These results are presented in the appendix.
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Appendix

Results of applying these procedures to a typical data presented in Table 5.

Parameters BIN Q(1) Q(2) GLMM GEE
β0 1.1091 1.1091 1.1091 1.0473 0.7016

(0.0648) (0.1148) (0.1421) (0.4598) (0.2617)
β1 0.6769 0.6769 0.6769 0.1234 0.0089

(0.0802) (0.1421) (0.1421) (0.6480) (0.3700)
disp na 1.7723 ρ̂ = 0.1259 σ̂2 = 2.6116 ρ̂ = 0.3570
πM 0.7520 0.7520 0.7520 0.7403 0.6685
πW 0.8564 0.8564 0.8564 0.7633 0.6705
-2LL 1465.403 1465.403 1465.403 739.2 na

Standard errors are in parentheses.

Clearly here the Generalized linear mixed model utilizing the normal-binomial model fits best based on the
-2LL.
——————————————————————————————————————————————–
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