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Abstract

Manual fits to spectral times series of Type Ia supernovae have provided a method of reconstructing the explosion
from a parametric model but due to lack of information about model uncertainties or parameter degeneracies direct
comparison between theory and observation is difficult. In order to mitigate this important problem we present a
new way to probabilistically reconstruct the outer ejecta of the normal Type Ia supernova SN 2002bo. A single
epoch spectrum, taken 10 days before maximum light, is fit by a 13-parameter model describing the elemental
composition of the ejecta and the explosion physics (density, temperature, velocity, and explosion epoch). Model
evaluation is performed through the application of a novel rapid spectral synthesis technique in which the radiative
transfer code, TARDIS, is accelerated by a machine-learning framework. Analysis of the posterior distribution
reveals a complex and degenerate parameter space and allows direct comparison to various hydrodynamic models.
Our analysis favors detonation over deflagration scenarios and we find that our technique offers a novel way to
compare simulation to observation.

Unified Astronomy Thesaurus concepts: Supernovae (1668); Type Ia supernovae (1728); Bayesian statistics
(1900); Radiative transfer (1335)

1. Introduction

Type Ia supernovae (SNe Ia) are a spectral class of supernovae
defined by their lack of hydrogen lines and the presence of silicon
lines. SNe Ia are caused by the thermonuclear explosion of
carbon–oxygen white dwarfs in binary systems forming a large
amount of 56Ni, which drives the behavior of their light curves
(Colgate & McKee 1969). They contribute significantly to the
chemical evolution of their host galaxies through the dispersion of
iron-peak elements formed during the explosion (Kobayashi et al.
2020, see their Figure 39).

Their ability to act as standardizable candles (Phillips 1993) has
served as a powerful tool in constraining cosmological parameters
(Branch 1992; Riess et al. 1998), though there remains significant
variation in their brightness that is unaccounted for (e.g., Blondin
et al. 2012). Furthermore, the identification of the ignition
mechanism leading to SNe Ia remains an area of active research
(see e.g., Polin et al. 2019).

The community has identified multiple promising pathways to
explosions, many of which originate in a binary system. For
example, nuclear burning may be ignited by either the merger of
two CO white dwarfs (e.g., Nomoto 1982; Webbink 1984; Iben &
Tutukov 1984; van Kerkwijk et al. 2010; Livio & Riess 2003;
Kashi & Soker 2011), or accretion from a companion star-forming
a near-Chandrasekhar-mass CO white dwarf causing a central
ignition (e.g., Whelan & Iben 1973), or accretion of a helium layer
onto a sub-Chandrasekhar-mass white dwarf (e.g., Woosley &
Weaver 1994; Fink et al. 2010a; Shen et al. 2018; Polin et al. 2019)

leading to a surface helium detonation that propagates inward
triggering central ignition.
Various models have been proposed to describe the processes

underlying SNe Ia. In particular, the speed at which the nuclear
burning propagates through the star remains poorly understood.
Reconstructing the explosion from spectral time series (also
known as abundance tomography) is a crucial tool to understand
the explosion scenario (see e.g., Mazzali et al. 2007). Previous
work into abundance tomography (e.g., Stehle et al. 2005; Sauer
& Mazzali 2008) has begun to show us a picture of how SN Ia
explosions compare to theoretical models, but they lack a
probabilistic interpretation of their parameters.
SN 2002bo is a “Branch normal” (Branch et al. 1993; Benetti

et al. 2004; Branch et al. 2006) SN Ia discovered in NGC 3190
that has been modeled extensively in the literature (e.g., Stehle
et al. 2005; Sauer & Mazzali 2008; Benetti et al. 2004;
Kerzendorf 2011). Specifically, Stehle et al. (2005) used a
multi-line Monte-Carlo code to manually reconstruct the explo-
sion mechanism using 13 epochs of spectra. Their inference
suggests an SNe Ia with moderate amounts of mixing of 56Ni and
intermediate-mass elements, as well as a lack of carbon in the
ejecta, indicating a possible explosion asymmetry and orientation
effects.
While these results offer a good foray into the investigation

of the abundance tomography of SNe Ia, the lack of uncertainty
or error analysis limits our ability to constrain the range of
possible explosion scenarios. Physical sources of uncertainty
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such as line-blending, as well as potential parameter degen-
eracies, warrant the need for probability distributions.

In this work, we present a method of Bayesian inference of
supernova parameters by applying the radiative transfer code
TARDIS, accelerated by a machine-learning framework
(Kerzendorf et al. 2021), to a single spectrum of SN 2002bo
taken 10 days before maximum light (Benetti et al. 2004). We
begin with a description of our model and associated
parameters in Section 2. The sampling of the parameter space,
including a discussion on prior distributions and resulting
posterior distributions, is given in Section 3. A summary of
results can be found in Section 4. Appendices are included to
provide general background on the techniques used for spectral
synthesis acceleration as well as additional data used in our
analysis. In Appendix A, we outline a machine-learning
framework used to accelerate TARDIS evaluation. Finally, in
Appendix B, links to data sources and data products are
provided in order to assist researchers who wish to replicate our
findings.

2. Explosion Model

The optical spectrum of SN 2002bo 10 days before max-
imum light is modeled with spectral synthesis produced by the
radiative transfer code TARDIS. TARDIS is a modular
framework that allows for the use of various physics modules
and has been widely used for modeling a range of photospheric
SNe (e.g., Magee et al. 2016; Barna et al. 2017; Boyle et al.
2017; Gillanders et al. 2020; Vogl et al. 2020; Williamson et al.
2021). TARDIS approximates the radiation field in the ejecta
with an optically thick inner boundary and an optically thin
homologously expanding ejecta above. There is no energy
generation in the simulation area and the energy injection is
purely set by the temperature, Tinner, and radius, rinner, of this
inner boundary. The optically thin ejecta is divided into a series
of concentric shells in velocity space. The velocity of each shell
is determined by the inner boundary velocity, vinner, and
increases linearly up to an outer velocity boundary. The radius
of the inner boundary, rinner, and consequently the radius of the

shells, are set by the product of vinner with the time since the
explosion, texp.
We employ a power-law relationship of the density with the

velocity parameterized by the power-law index αρ such that
r µ arvshell shell.

12 In previous works (Stehle et al. 2005;
Kerzendorf 2011), the density profile of SN Ia ejecta has been
described by a one-dimensional parameterized explosion model
known as W7 (see, e.g., Nomoto et al. 1984), which can be
approximated as a power law between velocity and density
with an exponent of −7 (Branch et al. 1985). In order to
account for deviations from the W7 power-law profile, we have
left the power-law index as a free parameter in our study, the
prior for which can be found in Table 1.
We approximate the elemental composition of the ejecta by

assuming a uniform distribution of abundances above the
photosphere (the same abundance values are used in each
shell). We explored a set of abundances commonly used in the
literature (e.g., Stehle et al. 2005; Sauer & Mazzali 2008;
Kerzendorf 2011), namely carbon, magnesium, silicon, sulfur,
calcium, titanium, and chromium. Iron, cobalt, and nickel
abundances were split up into the decay chain of the isotope
56Ni and stable iron. These elements account for the majority of
the mass in explosion models and are well constrained by the
spectra of SNe Ia (Filippenko 1997). The set of abundances (C,
Mg, Si, S, Ca, Ti, Cr, Festable, and 56Ni) and explosion
parameters (Tinner, vinner, texp, and αρ) all together compose a
13-dimensional parameter space to model our spectra.
For the plasma state, we have chosen the nebular

ionization approximation implemented in TARDIS and the
dilute-lte excitation approximation. The radiation-matter
interaction is modeled using the macroatom prescription. We
have also set the number of packets to be equal to 400,000. The
final spectral calculation uses the formal integral method
(Lucy 1999) rather than straight packet statistics. The
configuration of TARDIS can be found in Appendix B.

Table 1
The Range of Parameters Sampled from Our Prior Distribution along with Their Estimates Determined by the Posterior Distribution

Parameter Prior Bounds Posterior Percentiles

Minimum Maximum 16% 50% 84%

C 2.3 × 10−6 0.17 9.5 × 10−5 0.0015 0.0085
Mg 8.3 × 10−6 0.036 0.00011 0.00049 0.0047
Si 0.029 0.58 0.17 0.21 0.26
S 0.005 0.19 0.074 0.09 0.11
Ca 0.00043 0.039 0.0021 0.0034 0.0084
Ti 4.4 × 10−7 3.7 × 10−5 2.7 × 10−6 4.7 × 10−6 9.7 × 10−6

Cr 3.8 × 10−5 0.0022 0.00021 0.00034 0.00062
Festable 0.0011 0.1 0.044 0.052 0.065
56Ni 0.037 0.85 0.078 0.091 0.13

Tinner (K) 8000 18000 10383 10720 11357
vinner (km s−1) 7000 20000 13100 13508 14291
αρ −10 −6 −6.10 −6.36 −6.63
texp (days) 6 13 6.32 6.64 7.21

log10s −18 −14 −15.91 −15.81 −15.69

Note. The abundance distributions are based upon log-uniform sampling but modifications are made in order to assure that the sum of abundance parameters add to
unity. All other values displayed are sampled uniformly. For a full description of the abundance sampling method, see Section 3.1. Elemental abundances are shown in
terms of mass fractions. Estimates from the posterior distribution are presented as the median with the edges of the 68% confidence interval.

12 The reference density is pre-computed from the power-law index to match
that of the W7 model at 10000 km/s.
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2.1. Model Evaluation

Spectral synthesis from our model with TARDIS, on
average, takes approximately 10 minutes of CPU time on an
Intel® Xeon® E5-2670 v2 CPU. Kerzendorf et al. (2021)
estimated the time Required to explore a 20-parameter toy-
model at this rate to be ∼420 yr. Such a time constraint on
model evaluation imposes a restriction upon our ability to use
radiative transfer codes as a method of exploring the posterior
distribution of SN Ia models. In order to subvert this restriction,
we have implemented a technique for speeding up our model
evaluation by eight orders of magnitude based upon the
machine-learning framework developed by Kerzendorf et al.
(2021). The estimation of our models through this technique is
known as emulation and the machine-learning framework we
used will from here on be referred to as the emulator. Details of
the emulator including architecture, accuracy, and error
analysis can be found in Appendix A. We find our emulator
predicts the synthetic spectra produced by TARDIS given a set
of model parameters within 1%, and therefore is an effective
and necessary substitute for model evaluation.

3. Parameter Inference

Vectors of candidate input abundances (carbon, magnesium,
etc.) and explosion parameters, { }


q a= ¼ rtC, Mg, , ,exp , are

drawn from a prior distribution described in Section 3.1. Model
spectra are then produced by the emulator, where the emulated
synthetic spectrum is predicted using the input parameters


q.

We determine the likelihood of a given model through the
application of a likelihood function described in Section 3.2.
We have developed a non-χ2 likelihood function that takes into
account systematic differences between our theoretical and
observed spectra. Lastly, in Section 3.3, we outline the Monte
Carlo sampling technique used to construct the posterior
distribution.

3.1. Prior Distribution

We developed a distribution from which to draw our prior
samples based on parameters of SN Ia abundances taken from
the Heidelberg Supernova Model Archive (HESMA). We
specifically used the set of abundance profiles provided from
various SNe Ia hydrodynamic simulations (Fink et al. 2014;
Noebauer et al. 2017; Kromer et al. 2013, 2015; Sim et al.
2010; Noebauer et al. 2017; Fink et al. 2018; Marquardt et al.
2015; Fink et al. 2010b; Kromer et al. 2010; Sim et al. 2012;
Gronow et al. 2020) to determine the range of input parameters.
We determined the bounds of our prior by taking the 60%
quantile of the distribution of abundances from the HESMA
models where the shell velocity was above 10,000 km s−1 in
order to be consistent with the expected structure of the outer
shells.

Abundances were sampled uniformly in log-space with any
remaining abundance fraction filled in with oxygen such that
all abundance fractions summed to unity. Oxygen is often used
as a “filler” element in supernova fitting (e.g., Hachinger et al.
2017) due to the insensitivity to changes in the spectrum with
respect to the oxygen mass fraction (see Hachinger 2011,
Section 2.2.5.2). Therefore, the oxygen abundance is only
determined implicitly and is not included as a model parameter.

For all other model parameters, we sampled along a uniform
distribution. We used the values for explosion time, ejecta

velocity, photospheric boundary temperature, and density
profile power-law exponent from the fit made by Kerzendorf
(2011) as centroids. We then reviewed the works of Stehle
et al. (2005) and Benetti et al. (2004) to determine reasonable
ranges of uncertainties on these values, which were used to set
the edges of the distribution. The range of values sampled for
each parameter can be found in Table 1.

3.2. Likelihood Estimation

While our emulator accurately recreates the behavior of
TARDIS under our spectral synthesis model, observations of
real spectra are subject to physical and systematic biases. In
order to compare our model spectra, ˆ ( )


qf , to observation, fobs,

we develop a likelihood function, ( )

q , that corrects our model

spectra and compares the results to our observed spectrum.
A correction function, ( ˆ ( ))


qC f , is applied to our model

spectra. ( ˆ ( ))

qC f first applies a redshift correction to set the

frame of the model spectrum to the observed frame of
SN 2002bo at z= 0.0042 (Benetti et al. 2004). A host
extinction correction is then performed using the model
described by Cardelli et al. (1989) using RV= 3.1 (Schlafly
& Finkbeiner 2011) and E(B− V )= 0.3 (Benetti et al. 2004).
Finally, a continuum removal technique described by Tonry &
Davis (1979) and Blondin & Tonry (2007) is applied to the
model spectrum. The continuum is estimated using a zero-
mean 13-point cubic spline fit to the spectrum. We apply this
continuum removal to our model spectra first, then we multiply
by the continuum that would be removed by applying the same
technique to the observed spectrum. Finally, the resulting
continuum-removed model spectrum is linearly interpolated to
the wavelength bins of the observed spectrum. Applying the
corrections in this way allows us to compare our simulated
spectra directly to the observed spectrum.
We compare our corrected model spectrum to the observed

spectrum using a Gaussian likelihood function,

⎡

⎣
⎢

⎤

⎦
⎥( )

( ( ˆ ( )) )
( )




åq
q

p= -
-

+
l

l
C f f

s
slog

1

2
log 2 ,obs

2

2
2

where λ represents the wavelength bin of the observed
spectrum of SN 2002bo in the observed frame. The parameter
s2 estimates the variance of our posterior distribution over
model spectra, which we infer as another parameter (Hogg
et al. 2010) with a log-uniform prior.

3.3. Posterior Distribution

The topology of the posterior distribution is unknown
a priori, and could contain complicated degeneracies or
multimodalities. Nested sampling (Skilling 2004; Buchner
2021a) is a robust Monte Carlo technique for this setting. We
use the MLFriends algorithm (Buchner 2014, 2017) imple-
mented in the UltraNest package (Buchner 2021b). The
posterior distribution was explored with 400 live points. It
converged to the target distribution after 10,000 iterations and
required 1,000,000 model evaluations.

4. Results

Figure 1 shows the converged parameter distributions from
our statistical inference. Silicon and sulfur abundances
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contribute the largest fraction by mass of the ejecta, which can
be inferred from the spectral features present in SN 2002bo.
Stehle et al. (2005) used a similar code to TARDIS to manually
fit the spectral time series of SN 2002bo. However, due to
differences in methodologies, a direct comparison of elemental
abundances is difficult and must be approximated. Because
Stehle et al. (2005) does not provide uncertainties, we make the
assumption that the uncertainty in their reported elemental
abundances within various layers of the ejecta are comparable
to those found in our study. Unfortunately, the full model
inferred by Stehle et al. (2005) is not directly available for

download, so we estimate abundances in terms of mass
fractions from the figures (Stehle et al. 2005, their Figure 5).
We compare our findings to their range of abundances

reported in the velocity interval from 10,000 km s−1 to
15,000 km s−1 and generally find good agreement within our
uncertainty ranges. We find a significant lack of carbon in the
ejecta consistent with their analysis. The range of abundances
determined from their analysis of silicon (0.2–0.4), sulfur
(0.06–0.1), and 56Ni (0.09–0.11) all overlap with our 68%
confidence interval in Table 1. Their abundances of iron
(<10−4

–0.04) and calcium (0.01–0.05) were slightly outside

Figure 1. Posterior distribution of the parameter space sampled using nested sampling (black). Overlaid are distributions of elemental abundances above 10,000 km
s−1 taken from various HESMA models. Pure deflagration models are shown in purple while pure-detonation models are shown in orange. Deflagration to detonation
transition (DDT) models are not included as they would not be noticeably distinguishable from pure-detonation models at this early epoch. Estimates of the range of
abundances of elements in ejecta layers between 10,000 km s−1 and 15,000 km s−1 from Stehle et al. (2005) are represented by the gray shaded regions. Due to
differences in methodology, we do not have reliable estimates for the abundances of titanium and chromium from Stehle et al. (2005).
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this region but are consistent if the level of uncertainty in their
analysis is similar to ours. Individual values for both titanium
and chromium are not available, so performing a direct
comparison is not particularly reasonable or reliable.

By far our largest deviation from Stehle et al. (2005) is our
magnesium abundance. Magnesium has the largest range of
uncertainty in our analysis, spanning nearly four orders of
magnitude. Operating under the assumption that the uncertain-
ties in Stehle et al. (2005) are comparable to ours, not much
information can be gathered from a comparison of values
between the two studies as the magnesium abundance is mostly
uninformative.

We constrain =t 6.64exp 6.32
7.21 days,13 which is slightly below

that of Benetti et al. (2004, texp= 7.9± 0.5 days) and Stehle
et al. (2005, texp= 8.04 days). Our estimates for both Tinner and
vinner are consistent with the range of values found by Stehle
et al. (2005) for spectra between nearby epochs. The overall
agreement of our results with similar previous attempts at
manual fitting as well as theoretical models for SNe Ia
explosion physics demonstrates that our model is consistent
with the current literature.

There are a few notable mismatches between our posterior
spectra and the observed spectrum (Figure 2). In the S II
doublet our model over-fits the left peak and under-fits the right
peak. This discrepancy is a common occurrence in radiative
transfer model fits (see, e.g., Stehle et al. 2005) to SN Ia spectra
and is due to a poor understanding of the lines lists and
occupation numbers in this region. Since our abundance
distribution through the ejecta is approximated to be uniform,
the iron abundance in the outer layers is generally over-
estimated. This causes line blanketing as the bluer packets are
reflected back inward, resulting in a higher radiative temper-
ature as well as less flux at the blue end of the spectrum. The
higher temperatures affect the overall ionization state of the

plasma causing the Si II to Si III ratio to decrease, weakening
the Si II (5972 Å) feature. The poor fit to the Si II doublet is
also seen in previous studies (see, e.g., Benetti et al. 2004).
We are able to perform a direct comparison of inferred

model parameters of a real SN Ia spectrum to statistical samples
of theoretical explosion models. In addition to the posterior
distributions of the model parameters inferred for SN 2002bo,
Figure 1 shows the distribution of abundances from two classes
of models taken from the HESMA data sets above 10000 km/s
corresponding to pure-deflagrations and pure-detonations.
Deflagration to detonation transition (DDT) models are not
included as they would be indistinguishable from pure-
detonation models above the photosphere at these early times.
The posterior distribution best matches with the distribution of
abundances sampled from the HESMA detonation models, while
mostly excluding the pure-deflagration models. The unfavor-
ability of pure-deflagration models is strongly apparent for the
distribution of carbon, sulfur, and silicon abundances in
Figure 1. Calcium and chromium abundances slightly favor
pure-deflagration hydrodynamic models, though their distribu-
tion widths are large and stretch over a few orders of
magnitude, indicating that these abundances are not affecting
the final shape of the spectrum significantly. We find that our
initial modeling of the −10 day spectrum of SN 2002bo
generally favors detonation or DDT models.
Figure 3 demonstrates the complexity of the posterior

distribution of elemental abundances. A small multimodality
in the sulfur abundance raises the possibility of manual fits
becoming trapped in local minima. The joint probability
distribution of stable iron with both silicon and 56Ni is
degenerate and multimodal. Such complexities indicate that
any single set of model parameters may only describe one of a
distribution of parameters that all appear to model the observed
spectrum to similar accuracy. Despite some of the large
variations and complexity in the posterior distribution of

Figure 2. Fit to observed SN 2002bo −10 day spectrum (purple) using nested
sampling to sample the posterior distribution. The best-fit spectrum (orange),
represented by the maximum likelihood sample, shows a decent fit to the
spectrum but misses features around 5972 Å and 3900 Å as well as much of the
UV. The mean of the posterior distribution is shown in black with the 68% and
95% regions in gray and light gray, respectively. Posterior spectra are presented
after application of the correction function described in Section 3.2. The
residual distribution is shown as the fractional error between our posterior and
our observed spectrum.

Figure 3. Posterior probability distribution of the elemental abundances of
silicon, sulfur, stable iron, and 56Ni. Contours show 68% and 95% confidence
intervals of the Gaussian kernel density estimation (KDE) over the joint
distribution of each parameter. Degeneracies and multimodalities in elemental
abundances are apparent.

13 See Table 1 for description of quantification.

5

The Astrophysical Journal Letters, 916:L14 (8pp), 2021 August 1 O’Brien et al.



parameters (Figure 1), the distribution of model spectra
produced by these parameters (Figure 2) is within 3% variation
of the mean of the observed spectrum.

5. Conclusion

We present a probabilistic reconstruction of a SN Ia
explosion. Our results generally agree with manual fits (see,
e.g., Stehle et al. 2005). We estimate the distribution of
elemental abundances required to reproduce the observation of
an early-time spectrum of SN 2002bo. Degeneracies and
multimodalities in certain parameters showcase the need for a
Bayesian treatment to draw secure physical conclusions, as
similar spectra may be synthesized over a wide and complex
space of parameters. The posterior distribution is compared to
the distribution of elemental abundances computed from
various explosion models in HESMA. We find that our analysis
favors detonation models over pure-deflagration models. Given
the speed and effectiveness of our modeling technique, we have
demonstrated a new avenue for investigating the inner
mechanisms driving SN Ia explosions.
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Appendix A
Emulator

Emulation is the practice of developing some analytic
function that approximates the behavior of another function.
TARDIS can be thought of as a function mapping a vector of
supernova parameters to a vector representing a spectrum. We
extend the techniques described in the Kerzendorf et al. (2021)
paper to make an emulator for the −10 day spectrum of
SN 2002bo. The method proposed by Kerzendorf et al. (2020)
uses an ensemble of feed-forward neural networks to emulate
the spectrum computation. Our neural network is trained from a
set of pre-computed data points, composed of training spectra
over a grid spanning a physically plausible parameter space for
a SN Ia. The goal for the emulator is to be used in our
parameter inference so we ensure that the training set parameter
space contains the final prior fitting space (see Section 3.1).
We changed several parts of the procedure when compared

to the emulator described by Kerzendorf et al. (2021). One key
difference is the addition of two parameters: the power-law
index αρ and the time since explosion texp. The bounds on
parameters corresponding to computed spectra were also
modified to encompass elemental abundances corresponding
to shells above 8000 km s−1 in HESMA models. Kerzendorf
et al. (2021) presented an ensemble of different neural network
architectures that could reproduce simulated TARDIS spectra
to a high degree of precision. For computational efficiency, for
this Letter we chose only a single network from the neural
networks described by Kerzendorf et al. (2021). Specifically,
we used a model which propagates the 14 inputs through three
subsequent hidden layers of 400 neurons each, reaching 500
outputs. The hidden units used the “softplus” activation
function. We trained our emulator with the “nadam” optimizer
on a 91000 sample training set and 39000 sample validation set
in a 70%/30% training/validation split. Training time was 20
minutes on an NVIDIA® GeForce® RTX 2080Ti GPU.
The measured accuracy of our emulator using the mean and

maximum fractional error (Figure A1) is similar to that of the

14 https://www.astropy.org
15 https://extinction.readthedocs.io/en/latest
16 https://matplotlib.org
17 https://numba.pydata.org
18 https://numpy.org
19 https://pandas.pydata.org
20 https://scikit-learn.org
21 https://www.scipy.org/
22 https://www.tensorflow.org/
23 https://johannesbuchner.github.io/UltraNest
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initial DALEK emulator. Figure A1 shows that our mean
fractional error is almost always below 1% over our validation
set. The final fit presented in Section 4 has a mean fractional
error of 10% between the observed spectrum and the maximum
posterior model indicating that any uncertainty from our
emulation is less than systematics for the presented work.

Appendix B
External Links to Data

The TARDIS configuration file, posterior samples with their
associated weights, and the parameter grid and corresponding
spectra used in training the emulator are provided through
Zenodo:10.5281/zenodo.5007378. The observed spectrum of
SN 2002bo used in this Letter is hosted by the Open Supernova
Catalog (Guillochon et al. 2017).
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