
_____________________________________________________________________________________________________ 
 
*Corresponding author: E-mail: cmunene2001@gmail.com; 
 
 
 

Current Journal of Applied Science and Technology  
 
29(3): 1-11, 2018; Article no.CJAST.44081 
ISSN: 2457-1024 
(Past name: British Journal of Applied Science & Technology, Past ISSN: 2231-0843,  
NLM ID: 101664541) 

 

 

Numerical Reconstruction and Remediation of Soil 
Acidity on a One Dimensional Flow Domain with 

Constant and Linear Temporally Dependent Flow 
Parameters 

 
Catherine Mutheu Munene1*, Thomas Tonny Mboya Onyango2  

and Cleophas Muhavini3 
 

1Department of Mathematics and Computer Science, Catholic University of Eastern Africa, Kenya. 
2
School of Industrial and Engineering Mathematics, Technical University of Kenya, Kenya. 

3Department of Natural Sciences, Catholic University of Eastern Africa, Kenya. 
 

Authors’ contributions 
 

This work was carried out in collaboration between all authors. Author CMM designed the study, 
performed the numerical analysis, wrote the protocol, and wrote the first draft of the manuscript. 

Authors TTMO and CM provided the necessary guidance for publication. All authors read and 
approved the final manuscript. 

 
Article Information 

 
DOI: 10.9734/CJAST/2018/44081 

Editor(s): 
(1) Dr. João Miguel Dias, Assistant Professor, Habilitation in Department of Physics, CESAM, University of Aveiro,  

Portugal. 
Reviewers: 

(1) Figen Balo, Fırat University, Turkey. 
(2) Yasser Fathi Nassar, Sebha University, Libya. 

Complete Peer review History: http://www.sciencedomain.org/review-history/26541 

 
 
 

Received 23 August 2018  
Accepted 23 September 2018 

Published 06 October 2018 

 
 

ABSTRACT 
 
A mathematical backward problem which involves solving a mathematical model based on a one 
dimensional advection - diffusion process of solute transport in a homogeneous soil structure is 
considered. The diffusion coefficient and advection velocity in the governing unsteady non-linear 
partial differential equation (PDE) are varied from constant to linearly dependent on time. This is 
done to develop a mathematical understanding of the initial root causes and levels of acidification in 
priori because determination of analytic solution involves a lot of assumptions making the results 
unrealistic as opposed to the our numerical experiment approach which is cost effective and more 
reliable results are obtained. Flow domain is assumed semi infinitely deep and homogeneous and it 
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is subdivided into small units called control volumes of uniform dimension. A hybrid of Finite volume 
and Finite difference methods are used to discretize space and time respectively in the governing 
PDE. Discretized equations are inverted to obtain the concentrations at various nodes of the control 
volumes by using mathematical codes developed in Mat-lab and the results presented using graphs 
at different soil depths and time to determine the parameters that can help detect the contamination 
levels before disastrous levels are reached and with ease. 
From the results it is observed and concluded that the concentration levels of ions with depth and 
time can easily be detected when diffusion coefficient and advection velocities are linearly 
depended on time and mitigation strategies can easily be employed. 
 

 
Keywords: Ill-posed; finite volume method; advection; diffusion; reconstruction; remediation; numerical 

experiment. 
 

1. INTRODUCTION 
 
Movement of pollutants from a ground surface of 
soil through plant root zone to the groundwater is 
a major pollution to the hydrological environment 
in the subsurface. This phenomenon has 
negative impact on human life, livestock who 
depend heavily on groundwater in addition to 
degradation of flora and fauna on the terrestrial 
and aquatic environment. The uncontrolled and 
excess use of chemical fertilizers are known to 
be major cause of this pollution. This is because 
chemicals under investigation in this study which 
include high nitrogen synthetic fertilizers, 
pesticides, salts and minerals that percolate in 
soil over time are becoming responsible for                 
soil acidification. Some of the studies conducted 
on soil acidification include [1] who started off              
by defining soil acidification as the decrease in 
acid neutralization capacity of the soil. It is one  
of the factors limiting crop production in many 
parts of the world. Crop production in the                   
high rainfall areas like in Kenya is constrained      
by soil acidity and soil fertility depletion as 
suggested by Kanyanjua et al. [2]. Although soil 
acidification is a natural process, it has recently 
been accelerated by human practices on the 
farm lands which causes gradual accumulation of 
hydrogen ions in the soil. These practices include 
addition of agricultural synthetic fertilizers                  
and pesticides, inorganic matter and minerals 
that break down in the soil over time. Some of 
the industrial effluent causes great concern 
because they hardly break down, are 
carcinogenic and their extraction is extremely 
expensive. In addition and to large extent, it has 
been documented that chemical fertilizer on 
excess percolation into the soil contribute 
immensely to acidification when they stay and 
break down over time. These practices have 
caused great concern to environmentalists, 
hydrologists, civil engineers as well as 
mathematicians. 

In this paper, we intend to develop a 
mathematical understanding of the initial root 
causes and levels of acidification in priori, by 
solving mathematical backward problem which 
translates to inverse problem as opposed to 
solving a forward problem, whose solution is ill- 
posed in such a way that the infinitesimal error 
always magnifies un- proportionally in final 
solution hence requiring regularization schemes. 
This is what is being referred to as reconstruction 
of acidity. Remediation in this context is the 
reversibility of intensively acidified arable land to 
traditional health and fertile land. This should be 
a priority for land conservation. 
 
To model this processes mathematically, we 
invoke a mathematical thinking by developing 
mathematical models from Navier-Stokes 
Equations to simulate advection and diffusion 
process of solute transport in homogeneous soil 
structures. Homogeneous soils are an 
exceptionally rare case of soil structure as much 
as the plant root zone can be considered to be 
almost homogeneous. This is expected in a 
farmland where the soil columns are often 
disturbed during land preparation and planting 
which lead to mixing of different soil layers 
leaving the transport behaviour to be uniform all 
through. Homogeneous soils are not only ideal 
for pure studies but also for developing models 
that can predict the transport of both organic and 
inorganic materials when the soil is weakly 
heterogeneous. 
 
In this work we have solved an inverse problem 
modelled from the advection diffusion equation, 
numerically by adopting a hybrid of Finite volume 
method and Finite difference schemes for spatial 
and temporal discretization respectively with 
some fundamental assumptions utilized. 
 
The process of acidification is complex indeed 
expressible in terms of non linear PDEs. Thus 
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determination of analytic solution involves a lot of 
assumptions thus making the results unrealistic. 
Hence numerical experiment is a cost effective 
avenue for obtaining better and reliable results 
for the PDEs and more so methods based on 
control volumes. 
 
Flow of contaminated fluids from the soil surface 
in to the ground water has been studied by many 
researchers in the past all taking different view 
point. Myron [3] quoted that water flow in the 
unsaturated zone is complicated due to the fact 
that the soil permeability to water depends on its 
water saturation. Ueoka et al. [4] in their paper 
cited that fertilizers, pesticides and industrial 
waste may be small in quantity but highly toxic 
and can be transported to ground water to 
remain there for hundreds of years. A chemical 
becomes a pollutant if its concentration exceed 
some prescribed water quality standard or soil 
attains an un-allowable PH after chemicals have 
been applied. This impairment of beneficial water 
and soil use has been known to be induced by 
natural processes and human activities. 
Specifically, when fertilizers are applied on a wet 
ground they dissolve easily to form a solute 
because of their characteristic nature of been 
highly miscible with water, volatile and 
hygroscopic. Thereafter the solute will be 
transported through advection also referred to as 
convection, deep into the soil due to the bulk fluid 
motion after an irrigation or even a heavy 
downfall. However when advection slows down 
due to soil saturation, the level of wetness 
attained will vary from the surface soil 
downwards. As this infiltration process occurs, 
the solute simply disperses away from the source 
in a diffusive manner and thus the flow of the 
chemicals can be described using the Advection- 
diffusive equation (ADE). 
 
The classical Advection and Dispersion equation 
has commonly been used to characterize the 
transport of solutes through homogeneous 
porous media. It has also been modified to 
incorporate the effects of adsorption, desorption 
and hysteresis.Various approaches have 
previously been employed to solve the Advection 
Dispersion Equations applied to the transport of 
chemicals through saturated and unsaturated 
porous media. They include analytical solutions, 
numerical studies included [5-10] among others. 
 
We need to solve the unsteady advection 
diffusion equation in which the coefficients are 
unknown. Researches that have been conducted 
to identify the unknown coefficients include 

studies like identification of the unknown diffusion 
coefficient in a linear parabolic equation via semi 
group approach was performed by Demir et al. 
[11], Identification of coefficients for a parabolic 
equation where the unknown coefficient depends 
on an over-specified datum is presented by 
Trong and Ang [12], Identification of a Robin 
Coefficient on a non-accessible part of the 
boundary from available data on the other part is 
reported by Boulakia et al. [13]. Others include 
[14,15,16,17]. Coefficients problems are used to 
estimate values of parameters in a governing 
equation. 

 
Techniques for remediation of polluted soil and 
groundwater previously applied include pump- 
and -treat, using a combination of the 
optimization methods and simulation models as 
proposed by Gorelick et al. [18], Hot water 
flushing [19,20], air sparging [21] Cosolvent 
flushing [19], the use of surfactants [22], In situ 
bio-remediation [23]. The effectiveness of the 
remediation may be substantially improved if the 
location and extent of the contaminants source 
are known. 

 
2. ONE DIMENSIONAL ADVECTION 

DIFFUSION MODEL 
 

Let the domain of flow  z,0  represent the 

semi- infinite flow domain given that  z0  
and t varies from 0 to final time T. The general 
non-linear form of one dimensional advection 
diffusion equation describing solute flow in 
Cartesian system given by equation (1) 
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where ),( tzC  is the function representing 

concentration the substance to be transported at 
depth z of the domain at time t taking z axis as 

the direction of flow, ),( tzDz  is the diffusion 

coefficient which can represent molecular 

diffusion while ),( tzW is the average pore water 

velocity. 
 
The last term on the right hand side is taken to 
be the source or sink term for production or loss 
of solutes within the system. Since we are 
concerned with solutes flow in agricultural land 

oS is the source term taken to represent fertilizer 

application and other human related activities 
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that can lead to in-equilibrium in soil pH. It is 
assumed that in this paper, soil is of semi -infinite 
depth and the soil properties like the permeability 
and porosity are uniform along the z axis. We 
need to analyse the situation where the source 
term is zero and when the source term is present 
is left out for further research. In the present 
case, we need to reconstruct the initial condition 

)(),( zftzC  , 0tt   and the flow parameters 

),( tzDz and ),( tzW . We shall determine a 

suitable function )(tf  for boundary condition 

 tC ,0  on one side of the domain taking

  0, tzC ,  zz on the other side of the 

domain. 

 
3. WELL-POSEDNESS OF THE PROBLEM 
 
Problems expressible in terms of PDE given                 
by equation (1) subject to relevant boundary                  
or initial condition(s) is well posed if a                 
solution exists, the solution is unique and it 
continuously depends on the data given. We 
consider the continuous problem above for 

10  z , 0zD . The problem is strongly 

well-posed if the solution is bounded in terms                 
of all the data i.e. the terms are known                 
explicitly. However we can demonstrate the               
well-posedness by considering the source                
term and the boundaries on either sides                     
of the domain to be zero using the Energy 
method. 
 
Take a one dimensional A-D model in equation 

(1), initial condition )(),( 0 zftzC   and 

boundary conditions   )(,0 tftC   and 

  0,1 tC . 

 
Multiply the differential equation by C2  for 

constant ),( tzDz , ),( tzW and 00 S  to get 
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Integrating equation (2) over the spatial domain

10  z , 
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Where 
1

0

22 dzCC

 
 

Given 0D , the differential equation is 
hyperbolic and we need only one boundary 

condition. If 0W ,   )(,0 tftC   has to be 

given; if 0W ,   0,1 zC  has to be given 

instead. If 0W and 0)( tf  then 

 22
,1 tWCC

dt

d


 
 

Assuming a parabolic case where 0D  and 
that we have to give data at both boundaries, 
inserting the zero boundary data yields, 

22
2 zCDC

dt

d


 
 

Time integration of the above two results gives 
that the original differential equation is well posed 
in the classical sense assuming that the correct 
number of boundary condition is used. 
 

4. TIME VARIATION OF ADVECTION 

VELOCITY  tzW ,  AND DIFFUSION 

COEFFICIENT  tzD ,  IN THE 

ABSENCE OF SOURCE TERM 
 

When the diffusivity    tDtzDz ,  and the flow 

velocity    tWtzW ,  we obtain a particular 

case to the problem in the equation (1) given by 
equation (4) 
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for ],0( Tt   
 

In the current problem we shall consider varying 

the parameter values of  tzW ,  as: 

 

(i) Constant advection velocity   0, WtzW   

(ii) Advection velocity is a linear function of 

time    batWtzW  0,  
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where a  is the rate at which the flow velocity is 

varying with time and b is the initial velocity at 

time 0t  
 
Similarly we shall also consider varying the 

diffusion coefficient ),( tzD as 

 

(iii) Constant Diffusion coefficient   0, DtzD   

(iv) Diffusion coefficient is a linear function of 

time    batDtzD  0,  

 
where a  is the rate at which solutes diffusion is 

varying with time and b  is the initial solutes 

diffusion at time 0t  and 0W and 0D are 

constant values. 
 

5. DISCRETIZATION OF THE GIVEN 
SPACE AND TEMPORAL DOMAIN 

 
Finite volume method developed by Pantanker 
and Spalding in 1972 involves subdivision of the 
flow domain into infinitesimal volumes called 
control volumes and representation of the 
differential equations in integral form. The 
integral form of each conservation law is written 
separately for each control volume. Discretization 
process of time is then carried out for each 
control volume by finite difference scheme. 
Higher order terms are reduced into weak form 
which are then solved numerically by inversion 

the components of the discretized equation. 
Discrete values are estimated at the centre of the 
control volume of the domain after implementing 
the prescribed initial and boundary conditions. 
 
Taking the discretized flow domain illustrated in 
Fig. 1, in which node 2 serves as the centre node 

of the control volumes zyx   with unit 

thickness and nodes 1 and 3 and are the centres 
of the neighbouring control volumes, w  and e  
are the western and eastern boundaries of the 
control volume respectively. Since the control 
volume is taken to be one dimension, the 

thickness 1 yx  thus the control volume 

reduces to z . AC  and BC  are the conditions at 

the western and eastern boundaries of the 
control volume respectively that can be assumed 
to be known or unknown and thus need to be 

determined. When AC  and BC  are known, the 

problem becomes a forward problem and it can 
easily be solved using the standard techniques 
available. However whenever they aren’t known 
the problem is ill posed and thus calls for the 
techniques of solving inverse problems to be 

employed. Specifically AC  is condition prevailing 

at the surface of the soil and BC is representing 

the condition deep down in the flow domain. This 

study will test the validity of chosen functions AC  

and BC  numerically. 

 

 
 

Fig. 1. Discretised one dimensional domain into control volumes of width z  
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With no loss of generality we focus on flow of 

fertilizer represented by smooth function  tzC ,  

in porous medium assumed to have uniform 
structure in the solution domain. 

 
6. DISCRETISATION OF GOVERNING 

EQUATION WHEN FLOWPARA-

METERS   0, WtzW   AND   0, DtzD   

ARE CONSTANT 
 
The conservation law applies to each                     

domain and equation (4) integrated over the 
thi

control volume over the time interval from 1jt  to 

jt  and assuming the dimensions of the control 

volume x  and y  are unity, the following 

procedure is observed 
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(5) 

 

The velocity field must satisfy the mass 
conservation law and the continuity equation 
becomes 
 

0
dz
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                                                           (6) 

 

Equation (5) becomes 
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(7) 
 

From this result we have the first order and 
zeroth order derivatives for the diffusion and 
advection terms respectively in the conservation 
law. This reduction of the order of the derivative 
is important in dealing with situations which 
change so rapidly in space that the spatial 
derivative does not exist. The diffusion coefficient 
and advection velocity are taken to be uniform on 
either sides of the control volume thus equation 5 
reduces to 
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we

zjpjp CCw
dz

dC

dz

dC
DtzCtzC

t

z














1,, (8) 

The discretized equation for the central control volumes is 
 

1,,1,,1
2

2
2













































jiji

z
ji

z
ji

z C
t

z
C

W

z

D
C

t

z

z

D
C

W

z

D
                                          (9) 

 

Using the notations
2

w

z

D
B z 


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2
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
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z
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t

z
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
  in equation (9),we obtain 

 

  1,,1,,1 2   jijijiji HHCBCCHHGEC                                                                         (10) 

 
In order to guarantee that the numerical scheme is stable, we have to make sure that the matrix is 
symmetric, diagonally dominant and real, with non- negative diagonal entries then the matrix is 
positive definite. 
 

7. LINEAR VARIATION IN )(),( 0 batwtzw  AND )(),( 0 batDtzD   WITH TIME 

 
Here we consider a case where the diffusivity and advection velocity are linear functions of time as

)(),( 0 batwtzw  and )(),( 0 batDtzD  , a and b are constants. The a in the linear function 

above is used to denote the rate at which the advection velocity and solutes diffusion are varying with 

time whereas b defines the initial velocity and diffusion coefficient at time 0t . 
 

Integrating over the control volume and over the time interval from 1jt to jt  we see that equation (4) 

will give 
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This reduces to 
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(11) 
 
which represents the general discretised equation in this case. The central nodes give 
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8. RESULTS AND DISCUSSION 
 

Both linear and non- linear mass transport 
equation are used to determine flow 
characteristics of pollutants in soils. 
 

A one dimensional ADE is considered in which 
the coefficients were first taken constant. A 
variation was also made whereby both 
parameters are time dependent. The argument 

here is that as time increases then the  tzDz ,  

and ),( tzw are also changing at varied depths in 

the soil until a point of saturation is reached. 
Advection and diffusion processes are playing a 
key role in determination of the concentration at 
different levels in soils at different times. Here we 
have considered advection effect higher than 
diffusion. This is because fluids percolate deep 
into soil due to their bulk motion after irrigation or 
a downfall and slows down due to soil saturation. 
The level of wetness varies from surface soil 
downwards. Now when solutes are applied in 
form of fertilizers, upon dissolving, they move 
away from the point of application to points of low 
concentration in a diffusive manner. To the 

contrary when  tzDz ,  dominates the flow, it 

means that the solutes are being applied to 
already water logged soils and advection velocity 
is negligible. We are referring to nitrogenous 
fertilizers highly responsible for soil acidification 
and are applied to growing plants thus diffusion 
here is taking place where advection is present. 
 

The results are presented in form of graphs and 
discussions are made here under. 

In the Fig. 2 below flow parameters  tzDz ,  and 

),( tzw are taken constant from time to time.  

This means even as time or depth changes,                
the two parameters remain unchanged,                    
with advection playing a significant role in                   
the transport of solutes as opposed to                
diffusion which takes a less value. The curve              
for z = 0.25 in Figs. 2 and 3 represents the                 
first level in the flow domain. It is steep at                   
the beginning then starts levelling near                        
the concentration levels of 0.35. It means                 
that this level is closer to the surface                    
where application of fertilizers and other               
human activities are taking place. This                    
level receives solutions containing pollutants               
first and attains saturation first and faster as 
opposed to other levels in the domain. It takes 
longer to attain saturation level for Fig. 3 

compared to Fig. 2. Here )(),( 0 batwtzw 

and )(),( 0 batDtzD  are increasing at a 

constant rate though less than when 

  0, WtzW  and   0, DtzD   are constants. 

 
The zone z=0.5 is midway the depth of the semi -
infinite flow domain. As advection continues to 
take place, less pollutants reach this zone and 
consequently takes longer to reach saturation 
level. Less pollutants reach the level z = 0.75. 
There is minimal pollution at the level z = 1.0 
because the flow domain is assumed to be semi-
infinite, thus this is the zone of semi- infinite 
depth it may take longer than the considered 
time. 
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In Figs. 4 and 5, concentration is taken to be a 
function of space/ depth. At time t = 0, the 
concentration is taking a maximum value of 1. As 
time increases by one step, pollution downwards 
decreases. It reduced to a non-dimensional 
depth of 0.4 in Fig. 5 and 0.5 in Fig. 4. Diffusion 
and advection are higher in Fig. 4 than in Fig. 5. 
Fig. 4 can be linked to soils with bigger pore 

spaces than those demonstrated by Fig. 5. A 
similar behaviour is noted in the other time levels 
where higher levels concentration variation with 
depth are notable in Fig. 4 than in Fig. 5. This 
shows that early control of pollution can easily be 
carried out before it sinks deep in to unreachable 
levels in situations where the flow parameters 
are linearly depended on time. 

 

 
 

Fig. 2. Non- dimensional concentration C against time t at different depths when W (z,t) and 
D(z ,t) are constants 

 

 
 

Fig. 3. Non-dimensional concentartion C against time t at varied depths z when D(z,t) and 
W(z,t) are linear functions of time 
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Fig. 4. Non dimensional C against depth z when D (z, t) and W (z,t ) are constants 
 

 
 

Fig. 5. Non dimensional Concentration C against depth z for varied time when D(z,t) and W(z,t) 
are linear functions of time 

 

9. CONCLUSION AND RECOMMENDA-
TIONS 

 

In this paper we considered a mathematical 
transport model in a homogeneous soil structure 
where reaction was negligible. The model helped 
to predict the flow characteristics of pollutants in 
soils. The model was anchored on the classical 
mass transport equation with appropriate initial 

and boundary conditions which were numerically 
tested for their applicability. A one dimensional 
flow domain was considered where the flow 
parameters being investigated were analysed 
constants and linear functions of time. A 
comparison was also made for concentration 
with respect to depth and also time for varied 
diffusion coefficients and advection velocity in 
order to provide advice to all with interest on 
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remediation strategies. Diffusion coefficient and 
advection velocity were varied with respect to 
time. Analysis performed with the help of graphs 
to determine how they will influence the transport 
of acids from the soil surface to unreachable 
levels in the ground. It was noted that for soils 
that allow pollutants to diffuse linearly with time 
take more time to reach saturation at the surface 
of the soil thus mitigation strategies can be 
employed to reduce on the rate of flow of more 
chemicals deep in to the soil. It is important to 
note that neutralization or extraction of pollutants 
can easily be performed in regions near the 
surface unlike when the pollutants have 
penetrated deep down to lower levels even 
though in small quantities. As a matter of policy, 
measures should be taken when fertilizers are 
been used in order to determine these two 
important flow parameters for the specific soil 
structures. This will help identify the best position 
to place the pollutants detectors as well as 
neutralizers. This can also help determine how to 
change the flow parameters for specific soils. 
 
A lot more can be extended on the present work 
by considering the following: 
 

i) Analysis of the flow parameters which are 
exponentially depended on time 

ii) Experimental determination of the flow 
parameters for one dimensional domain. 

iii) Analysis of the flow parameters when the 
soil structure is heterogeneous. 

 
It is our intention to carry our further research in 
one or more areas cited above though other 
researchers are encouraged to carry out 
investigations on the same. 
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