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Abstract 
 

Presented here is a numerical integrator, with sixth order of convergence, for solving oscillatory 
problems. Dispersion and dissipation errors are taken into account in the course of deriving the method. 
As a result, the method possesses dissipation of order infinity and dispersive of order six. Validity and 
effectiveness of the method are tested on a number of test problems. Results obtained show that the new 
method is better than its equals in the scientific literature.   
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1 Introduction 
 
The problem of interest in this paper is an initial value problem (IVP) of the form: 
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0 0 0 0( , ), ( ) , ( ) .y f x y y x y y x y                                                                                     (1)  
 
The importance of this problem cannot be over emphasized in science and engineering, as it arises in many 
areas including quantum mechanics, semi-discretizations of wave equation, astrophysics, electronics, 
celestial mechanics, quantum chemistry, molecular dynamics, and so on. For example, Schrödinger equation 
and many-body problem are oscillatory problems [1]. To validate models that exist in the form of (1), their 
solutions are of paramount importance. The best form of solution of (1) is exact or analytical solution. 
Research has shown that only a few differential equations (DEs) can be solved exactly or analytically. 
Hence, numerical techniques for obtaining approximate solution of the equations become the best option. A 
number of numerical methods for solving (1) have been proposed in the literature [2–5,6–24,1,25,26]. Some 
are direct while some are indirect methods. The direct methods require no transformation of (1) into system 
of first order equations, while indirect methods do.  
 
The method proposed in this paper has the following general form: 
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Where ny and 1ny  are approximations for ( )ny x and 1( )ny x  , respectively. The parameters , ,ij i ia b c are 

real numbers. Let =[ ]ijaA be an m m matrix and b and c given by 
T

1 2=[ , ,..., ]mb b bb and 

T
1 2=[c ,c ,..., ]mcc  be m-dimensional vectors, then we can summarize the coefficients of (2) in a Butcher-

like tableau as follows: 
 

c  A  
 Tb  

 
The method (1) is called hybrid method [9], because it is non linear and not self starting. Franco [9]          
derived the coefficients of an explicit class of (2) up to algebraic order six with less computation cost by 
using the algebraic order conditions of the method developed in [27]. To improve its properties for better 
performance, Ahmad et al. [28] proposed semi-implicit hybrid methods up to algebraic order five. In the 
work of Jikantoro et al. [1] it is pointed out that there is a huge advantage of improved accuracy and 
efficiency as the order of this method increases. Hence, we propose a semi-implicit hybrid method with 
higher algebraic order.  
 
The remaining part of the paper is organized as follows: dispersion and dissipation analysis is presented in 
Section 2. The proposed method is fully derived in Section 3. Stability property of the method is analyzed in 
Section 4. Results of numerical experiment are presented in Section 5. Section 6 is conclusion. 
 

2 Dispersion and Dissipation Analysis 
 
To analyze errors due to dispersion and dissipation or phase lag and amplification factor, a simple 
homogeneous test equation below is considered. 
 

2 , 0 .y y R                                                                                                                     (3)  
 
Apply eqn. (2) eqn. (3), we get the following in vector form: 



 
 
 

Jikantoro et al.; ARJOM, 14(1): 1-10, 2019; Article no.ARJOM.49542 
 
 
 

3 
 
 

2
1

2 T
1 1

=( ) ,

y 2

n n

n n n

y y v

y y v



 

 

  

Y c + e c AY

b Y.
                                                                                                   (4)  

 

Where ,v h T=[1,1,...,1]e , vectors b, c and matrix A are given in Section 1. From (4) we get 

 

   
1 12 2
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Y A + I c e A + I c                                                                        (5)  
 
which when substituted in second part of eqn. (4) we get 
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iV  and iU  are functions of the coefficients of the method. 

 
It has been shown in [23] that the solution of (6) can be written as 
 

2 | || | cos( ),n
ny n                                                                                                       (8)  

 

where ,  are determined by coefficients of the method and  ,   are amplification factor and phase, 

respectively. The solution of the test problem (3) is given by 
 

( ) 2 | | cos( ),ny x nv                                                                                                           (9)  
 

where   and   are real constants determined by initial conditions and n is the number of terms. The 

definition formulated in [23] adopted by [9,1] follows. 
 

Definition 1. From eqns. (8) and (9), the quantity ( )R v v    is referred to dispersion error or phase lag 

of the method. The method is said to have dispersion error of order q if  1( ) .qR v O v   Furthermore, the 

quantity ( ) 1 | |S v    is referred to dissipation error of the method. And the method is said to be 

dissipative of order r if  1( ) rS v O v   [9]. 

 
From Definition 1, it follows that 
 

 
 

 
2

11 2
2

2
2

( ) cos , ( ) 1 .
2

T v
R v v S v T v

T v



 
    
  
 

                                                           (10)  



 
 
 

Jikantoro et al.; ARJOM, 14(1): 1-10, 2019; Article no.ARJOM.49542 
 
 
 

4 
 
 

Taking the Taylor expansions of (10) when 4m  yields the order conditions of dispersion and dissipation 
errors as follows: 
 

Table 1. Dispersion and dissipation conditions 
 

Order Condition 
Dispersion 

4 
21 1

1 1 2 1 2 12 4

1
1,

12
V U U V V V       

6 
2 31 1 1 1 1

1 3 2 1 3 1 2 124 2 8 2 8

1

360
V U V V V VV V        

8 
2 2 4 2 33 51 1 1 1 1

1 3 2 1 2 1 1 1 3 1 2 12 4 32 360 48 2 8

1

10080
VV V V V V V V V VV V          

Dissipation 
5 21

1 2 140, 0V V V    

7 31 1
1 2 1 32 8 0VV V V    

9 2 4 25 31
1 3 2 1 1 22 32 4 0VV V V V V     

 

3 Stability Analysis 
 
Like dispersion and dissipation errors, to analyze stability of (2), the method is applied on the test eqn. (3). 
Refer to Section 2 for this task. The stability polynomial is obtained by re-writing eqn. (6) as follows: 
 

2 2 2
1 2( ) ( ) 0.T v T v                                                                                                          (11)  

 
The solution represented by eqn. (6) is expected to be periodic, provided that its coefficients satisfy the 
conditions below: 
 

   2 2
2 11, 2,T v T v  for all  2 20, ,pv v  

 

where  20, pv  refers to periodicity interval of the method. When this happens, the method is called a zero-

dissipative, because ( ) 0S v  , which means the method has dissipation of order infinity.  But if ( ) 0,S v   

then the method is absolutely stable, provided the following conditions are satisfied: 
 

     2 2 2
2 1 21, 1 ,T v T v T v  for all  2 20, ,sv v  

 

and  20, sv  is now referred to as absolute stability interval of the method. Detail of this analysis can be 

found in [27,9,1]. 
 

4 Derivation of the Method 
 
In this section, the proposed method is derived. To derive the method, algebraic order conditions of 
convergent is required. 
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4.1 Order condition of hybrid method 
 
The algebraic order condition of a numerical method, in general, is a relationship between coefficients of the 
method that causes the successive terms in the Taylor series expansion of the method to varnish, see 
Coleman [9]. The algebraic order conditions of the proposed method in this paper have been derived in [9]. 
They are as follows: 
 

  Order 1: 1,ib    

 

  Order 2: 0,i ibc    

 

  Order 3: 
2 1

,
6

i ib c 
1

,
12

i ijb a 
 

 

  Order 4: 
3 0,i ib c 

1
, 0,

12
i i ij i ij jb c a b a c  

 
 

  Order 5: 
4 2 21 1 1 7 1

, , , , ,
15 30 60 120 180

i i i i ij i i ij j i ij ik i ij jb c b c a b c a c b a a b a c         
 

 

                      
1

,
360

i i jk kb a ja c 
 

 

  Order 6: 
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The order conditions have the following simplifying assumption: 
 

2

1

( 1)
, 0.

(1 )(2 )

m
i i

ij j
j

c c
a c

 
 

 





 
 

 
                                                                                            (12)  

 
Deriving sixth order method requires us to solve the all the equations involved in the order conditions up to 
order six, as stated above. Obviously, there are twenty three equations involved to be solved in thirteen 

unknown parameters for 4m  . This is not possible because the number of equations exceeds the number 

of unknowns. Suppose we impose eqn. (12) with 0  , then the equations reduce to fifteen, which are still 

more in number than the unknowns. Next, we impose (12) with 1  , then the equations reduce to thirteen, 
which are equal in number with the unknowns. We solve the system of thirteen equations for the thirteen 
unknowns, where a method with unique coefficients is obtained. Below is a summary of the method in a 
Butcher-like tableau: 
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Table 2. Coefficients of the proposed method 
 

1  
 

0  
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1 2 1
20 5 30       1311 2

30 5 60         1 2 1
12 5 20   

 

1 2 1
20 5 30          711 2

30 5 60           1 2 1
12 5 12           

1

30
 

 
0                             

7

12
                          

5

24
                

5

24
 

 
Note that the equations of dissipation conditions up to order nine are contained in the equations of algebraic 
order conditions of the method. Therefore, the method, which is denoted by ZDSIHM6 (4, 6, ∞), is zero 

dissipative, dispersive of order six with dispersion constant  7 9259
v   O

12049477
v  and (0,  4.47)  as 

interval of periodicity. 
 

5 Numerical Results 
 
Numerical results of ZDSIHM6 (4, 6, ∞) alongside existing methods when applied to some test problems are 
presented in this section.  
 

5.1 Test problems 
 
Test problems here mean those oscillatory problems whose solutions are known, so that when the proposed 
method is applied on them we can compare the approximate solutions with their exact solution to know how 
good the method can approximate their solutions. 
 

Problem 1:  1
4( ) 64 ( ), (0) 1, (0) 2, ( ) sin(8 ) cos(8 ), 0,4000 .y x y x y y y x x x x           

 

Problem 2:  

 
 

2 2( ) ( ) 1 sin( ), (0) 1, (0) 1 , ( ) sin( ) cos( ) sin( ), 10,

0,4000 .

y x v y x v x y y v y x vx vx x v

x

            


 

Problem 3:   ( ) ( ) , (0) 1, (0) 2, ( ) cos(8 ) sin( ) , 0,4000 .y x y x x y y y x x x x x           

 

The following acronyms are used in the paper: 
 

 ZDSIHM6(4,6,∞): Zero-dissipative sixth order four stage semi-implicit hybrid method derived  in 
this paper. 

 EHM6(5,6,∞): Existing method obtained in Franco [9]. 
 BRKN5(6)FSAL: Existing code presented in Bettis [3]. 

 

Figs. 1-3 give a graphical explanation of the efficiency and accuracy of ZDSIHM6 (4, 6, ∞), together with 
some of existing methods, measured by plotting the logarithm of maximum error against the logarithm of 
total function call in the interval 0 to 4000 for each of the problems. It can be seen on the figures that the 
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curve of the proposed method lays below every other curve all through. The interpretation of this is that the 
method approximated the solutions of the problems with lesser error and cost. 
 

 
 

Fig. 1. Efficiency curve of ZDSIHM6 (4, 6, ∞) for problem 1 
 

 
 

Fig. 2. Efficiency curve of ZDSIHM6 (4, 6, ∞) for problem 2 
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Fig. 3. Efficiency curve of ZDSIHM6 (4, 6, ∞) for problem 3 
 

6 Conclusion 
 
A numerical integrator of hybrid method class is proposed and presented in this paper. The method has 
algebraic order six; it is dispersive and dissipative of orders six and infinity, respectively. The method is 
stable. Numerical results reveal that the method is more accurate and efficient than the existing methods 
considered in the paper. 
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