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Abstract

Aims/ Objectives: To prove the existence of a pullback Absorbing set.

Study Design: Ornstein-Uhlenbeck process.

Place and Duration of Study: College of Management, Shanghai University of Engineering
Science.

Methodology: A transformation of addition involved with an Ornstein-Uhlenbeck process is
used.

Results: In this paper, pullback absorbing property for the stochastic reversible Selkov system
in an infinite lattice with additive noises is proved.
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1 Introduction

In this paper, we consider the stochastic lattice Selkov system with the cubic nonlinearity and
additive white noises on an infinite lattice as follows:

du; = [dl(uH_l — 2u; + ui—l) —aiu; + b1u?’U¢ — b2uf =+ fli]dt + aidw;, i €7Z, t >0,

(1.1)
dv; = [d2(1}i+1 — 2v; + Uifl) — A2V; — blu?vi + bgu? + fzi}dt + Oz—;d’wz‘7 1t E€Z, t>0,

with initial conditions
UZ(O) = U;,0, ’UZ(O) = V;,0, 1€ Z, (1.2)

where Z denotes the integer set, u = (u;)icz € 2= (vi)iez € 2, dy, da, a1, az, by, by are positive
constants, o = (;)iez € €2, {w;|i € Z} is independent Brownian motions.

The reversible Selkov model is derived from a set of the two reversible chemical reactions:
A+2BS3B, BSQ.

The original Selkov model corresponds to the two irreversible reactions, where the product Q is an
inert product. Let u; and v¢ are respectively the concentrations of the reactants B and A, Equation
(1.1) can be regarded as a Selkov system (see [1]) on R:

ur = diAu — aru + brulv — bou + f1+ aw,
(1.3)
vy = do AV — asv — biulv + bou® + f2 + aws.

Here A is a Laplacian, w; is the white noise to the respective components. We have obtained
the random dynamical system, see [2]. Pullback absorbing property is very important to describe
the long-time behavior of the equations for the mathematics and physics, especially, to prove the
existence of random attractor. Therefore, in this paper, we prove the pullback absorbing property
for the Selkov equations (1.1).

1.1 Preliminaries

In this section, we introduce the relevant definitions of absorbing property, which are taken from
(3], [4], [5], [6].

Assume X is a separable Banach space. For random parameters, we choose the standard probability
space (Q, F, P) where Q = {w € C(,) : w(0) = 0}, F is the Borel o-algebra induced by the compact
open topology of 2, and P is the Wiener measure on (2, F).

Definition 2.1. If 6 : R x Q — Q is (B(R) x F, F) measurable, and
90:-[,05+t:6500t, VS,tGR,

0.P =P, VteR,
then (92, F, P, (0¢)tcr) is called a metric dynamical system.

Definition 2.2. If a mapping
T xQAx X = X, (twz) = Pt,w, ),

is (B(") x F x B(X), B(X))-measurable and satisfies, for every w € €2,
(i) ¥(0,w,-) is the identity on X;
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(i) Cocycle property: ¥(t + s,w, ) = ¥(t, 05w, (s,w,-)) for all t,s €;
(iii) (-, w,-) T xX — X is strongly continuous.

Then the map v is a continuous random dynamical system on X over a metric dynamical system
(Qa]:: Pa (et)t€)'

Definition 2.3. If for every w € 2 and a random bounded set D(w) C X,
Jim e’ d(D(0—-¢w)) = 0 for all ¥ > 0,
—00
where d(D) = sup,¢p ||#]|x. Then D(w) C X is called tempered with respect to (6¢):cr.

Definition 2.4. A random set J(w) is called a pullback absorbing set in D, if for all D € D and
every w € €, there exists a tp(w) > 0 such that

P(t, 01w, D(0-1w)) C J(w),Vt > tp(w).

Where D is a collection of random sets of X.

2 Ornstein-Uhlenbeck Process

Let o* = {u= (ui)iez, wi €R: >, |uil*> < +oo}, with the inner product and norm as follows:

(u,v) = Zuivi? ||u||2 = (u,u), u=(u)iez,v = (Vi)iez € 2
€L
Then 2 = (:2,(-,-), || - ||) is a Hilbert space. Set E = 1 x :* be the product Hilbert space. In view
of the cubic term +u?v, +u®, we need u € 1°,v € 1% to make (1.1) hold in 2.

To convert the stochastic equation to a deterministic one with random parameters, we introduce an
Ornstein-Uhlenbeck process (O-U process) (see [7]) in ¢? on (Q, F, P, (6:)ter) given by the Wiener
process:

0
y(Oiw) = —(a1 + ag)/ el192)s(9,,)(s)ds, teR, weqQ,

—o0

and y solve the following It6 equations respectively:

dy + (a1 + a2)ydt = dw(t), t>0.
There exists a 0¢-invariant set Q' C Q of full P measure such that
(1) the mappings s — y(0sw), is continuous for each w € §;
(2) the random variables ||y(f:w)]| is tempered.

To transform (1.3) into pathwise equations, Denote

a(t) = u(t) —y(Ow),  (t) = v(t) — y(Osw).

From (1.3), we have

Uy = —di A + y(0uw)) — a1 + a2y (Buw) + bi (@ + y(0:w))* (0 + y(Ouw))
—b2(@ + y(Ouw))® + fu
(2.1)
O = —d2 A0 + y(0rw)) — a20 + ary(Bew) — b1 (@ + y(0:w))* (0 + y(f:w))
+b2 (@ + y(0uw))® + fo
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with the initial value condition

(0, w, o) = o (w) = uo — y(w), (0, w, Do) = Vo(w) = vo — y(w).

3 Pullback Absorbing Property

Lemma 4.1. There exists a 0;-invariant set Q' C Q of full P measure and an absorbing random
set J(w),w € ', VD € D and Vw € ', there exists Tp(w) > 0 such that

P(t,0_iw, D(0_4w)) C J(w) Vt>Tp(w).

Moreover, J € D.
Proof. Taking the inner product to (2.1) with (@, %) in E, we obtain

2dtll al* = —di(AG, @) — di(Ay(6iw), @) — ar]|al|* + b1 (@ + y(0:w))* (B + y(Biw)), @)
—b2((@+y(Biw))*, @) + (f1, @) + az(y(0ew), )

%%H@HQ = —d2(A7,7) — da(Ay(9uw), T) — azl|B)]* — ba{(@+y(6:w))* (T + y(0ew)), D)
+b2((@ + y(0:))*, 0) + (f2,0) + ar(y(Biw), D). (3.1)

Summing the two equations up, we have

d - - _ . . -
*[||u||2 + [1911°] + 2d1 (A%, @) + 2d2{AD, B) + 2a1 |[al|* + 2a215)*

= —2di(Ay(Ow), @) — 2d2(Ay(rw), T) + 2(f1, @) + 2(f2, D) + 2a2(y(Orw), @) + 2a1(y(Oew), D)
+2b1 (@ + y(0:w))* (T + y(0:)), @) — 2b1((@ + y(0:w))* (7 + y(0ew)), D)
—2bo (@ + y(0:w))?, @) + 202 (@ 4 y(B:w))>, D). (3.2)

Then we have

261 (@ + y(0:w))* (7 + y(0uw)), @) — 2b1((@ + y(0:0))* (B + y(6uw)), D)
—2b2((@ + y(0:))*, @) + 2b2((@ + y(0:))*, 3)

= 2b1{(T + y(Ouw))* (D + y(Buw)), @ — T) — 2b2{(@ + y(Oew))®, & — ¥)

< 2max{by, ba}{(@ + y(0:w))* (7 + y(0:w) — @ — y(Ohw)), @ — )

= —2max{b1, ba } (& + y(0:w))* (& — ©), @& — D)

= =2 (@i + yi(0uw))? (s — 5:)* < 0. (3.3)

By Young’s inequality in [8], we have the following estimate

. ail ~. 2 3d% 2
~2ds (A (), 8) < Dl + 2 Ay o) P, (3.4)
- az .2 3d2
~2da (Ay(01), D) < 201 + 22 L4y 0|7, (35)
2as{y(000), 1) < 2l + 22y 07, (36)
. - 3
201 (y(6rws). ) < S5 + = iy ()| (37)
- ai | - 3
2fi ) < Sl + NI (39)
1
- - 3
2(f2,0) < oI + 1. (3.9)
2
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By (3.2)-(4.9), we obtain that

d . . - - L ~ -
E[I\’ull2 + [111] + 2d1 (A, @) + 2d2(AD, ) + 2as |G| + 2CL2HU||2

ai - 3d? 3d3 -
< §1||u||2+ 1IIAy(GM)II +2 H I* + 2||z4y(9tcv)|| + ||f1H + 1Hull2
3
+;2|\le|2+ I15)1* +*Hy(9tw)|\ +*H 2+ 20 Hy(e W)+ 22 H I
3d1 3d2

= aal’+ =+ IIAy(9tw)H +az)|o)* + =2 HAy(etw)ll +— ||f1|\

*Hlel 12 IIy(9t )||2+f1|\y(9tW)H2,
az

hence we have,

d . . - - -
fHIuIV + 19011 + alIIuH2 + az||3]?
3d2 3a3 3a?
< fHAy(@t I + HAy(Htw)II +*Hf1|\ + Hlel + 2IIy(Gt )IIQJrCT;Hy(HwJ)H2
< Gl Ay(Bw)|? +Cz||y(9tw)|| + Cs(|l A1l +||f2\|)
< Ca(lly@w)l” + | Ay () |* + 1 F1 1P + 1 f2l” + 11 £511%), (3.10)
where
2 2
L FUERNNE 3
al al az

C3 :max{—,—}, Cy :max{C1,Cz,C’3}.
a; a2
By Gronwall’s inequality in [8], it follows that
1a(t, w, o (@))II* + [[5(t, w, To(w))]|”
< e mmtene g, W) | + |70 (w)1%] +

Cy

min{ai, a2}

t
+C / ¢ minten a2 09 (y(9,0) |2 + || Ay(6:) |*)ds. (3.11)
0

(£ + 11207

Let ¢4 = min{al, az}. Now that the random variable y(6:w) is tempered and continuous in ¢. It
follows from Proposition 4.3.3 in [9], there is a tempered function j(w) > 0 that satisfies

ly(0:)[1* + [|Ay(0:)|* < 50w < slw)e . (3.12)
Replacing w by _;w in (3.11), by (3.12), we get
(¢, 0w, o (O—w))||* + |5(t, -1, To(0—ew)) ||

< e o0l + @)+ CUAI + 1I)
+Cl / () + Ay Ba) )
< e an@-w)? +150(0-)IP) + SLAIR +11517)
+C4 /: e (|ly(0-w) |1 + | Ay (0-w)||*)dr
< e o (B—rw)|I? + [[T0(6-w)|1*] + %(IIMIQ +1£201%) + %ll(w) (3.13)



Hongyan; ARJOM, 14(1): 1-7, 2019; Article no.ARJOM.48970

Define R*(w) = 2[Ca(||f1]|* + || f2]|?) + 2Cal(w)]/c1; 3(w) is a tempered function, so R(w) is also
tempered.

Define

J(w) ={(@,v) € x 2, Jall* + [5]* < R*(w)}.

From Theorem 4.2 in [2], J(w) is an absorbing set for the random dynamical system (@(t,w, o), ¥

(t,w,

Let
wher

since

00)), i.e., VD € D and Vw € ', there exists T (w) such that

®(t,0_sw, D(0_w)) C J(w) for t>Tp(w).

J(w) = {(u,v) € & x %, Jul® + [vl* < Ri(w)},

Ri(w) = 2R*(w) + 4]ly(6w)|*.

P (t, w, (uo, vo, 20))
= q)(t7 W, (UU - y(w)7 Vo — y(w))) + (y(etw)v y(etw))
(a(t, w,uo — y(w)) +y(Oiw), 0(t, w, vo — y(w)) + y(biw)),

so J(w) is an absorbing random set for ¢ (¢,w) and J € D. The proof of Lemma 4.1 is completed.
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