Journal of Advances in Mathematics and Computer Science

30(2): 1-10, 2019; Article no.JAMCS.45557

ISSN: 2456-9968
(Past name: British Journal of Mathematics & Computer Science, Past ISSN: 2231-0851)

Second Derivative Two-step Block Hybrid Enright’s Linear
Multistep Methods for Solving Initial Value Problems of
General Second Order Stiff Ordinary Differential Equations

Sabo John'", Yusuf, T. Kyagya2 and Adamu, A. Bumbur®

'Department of Mathematic, Adamawa State University, Mubi, Nigeria.
Department of Mathematics and Statistics, Federal University, Wukari, Nigeria.
3 Department of Mathematics and Statistics, Taraba State Polytechnic, Suntai, Jalingo Campus, Nigeria.

Authors’ contributions

This work was carried out in collaboration between all authors. Author SJ designed the method. Author YTK
analyzed the basic properties of the method and author AAB implemented the method on some stiff
differential equations. All authors read and approved the final manuscript.

Article Information

DOI: 10.9734/JAMCS/2019/45557

Editor(s):

(1) Dr. Metin Basarir, Professor, Department of Mathematics, Sakarya University, Turkey.
(2) Dr. Kai-Long Hsiao, Associate Professor, Taiwan Shoufu University, Taiwan.
Reviewers:

(1) E. O. Omole, Joseph Ayo Babalola University, Nigeria.

(2) Adeyeye Oluwaseun, Universiti Utara Malaysia, Malaysia.

(3) Yahaya Shagaiya Daniel, Kaduna State University, Nigeria.

Complete Peer review History: http://www.sdiarticle3.com/review-history/45557

Received: 20 September 2018
T . Accepted: 04 December 2018
| Original Research Article Published: 19 January 2019

Abstract

In this research, the formation of second derivative two-step block hybrid Enright’s linear multistep
methods for solving initial value problems is studied. In forming the method, we follow Enright’s 1974
approach, by introducing the off-mesh points at both interpolation and collocations; we developed the
continuous schemes for new Enright’s method. The analysis of new Enright method was studied and it
was found to be consistent, convergent and zero-stable. We further computed the order, error constants
and plotted the region of absolute stability within which the method is A-stable. The methods exhibited
better accuracy level when provided with numerical examples than the existing method with which we
compared our results.
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1 Introduction

Recently, the integration of Ordinary Differential Equations (ODEs) is investigated using different types of
block methods. This present work discusses the formation of implicit Linear Multistep Method (LMM) for
numerical integration of general second order ODEs which arise frequently in the area of science and
engineering especially mechanical system, control theory and celestial mechanics [1].

v'= vk va)=y, y(a)=mn,. xela,b] (n

Many researchers have developed numerical methods for solving equation of the form (1.1) using Enright
Approach, [2], [3], [4] and [5].

These techniques have been introduced in many literature such as [6], [2], [7], and others. Most practical
problems that arise in various fields, like engineering or science are considered as mathematical models
before being solved. These models often lead to differential equations, which can be defined as an equation
containing a derivative. Numerous problems such as orbital dynamics, chemical kinetics, circuit and control
theory and Newton’s second law applications involve second-order ODEs as [6]. In many diverse fields such
as operation research, engineering, behavioural sciences, industrial mathematics, artificial intelligence,
management and sociology Ordinary differential equations (ODEs) are commonly used for mathematical
modelling [1]. Mathematical modelling is the art of translating problem from an application area into
tractable mathematical formulations whose numerical and theoretical analysis provides answers, insight and
guidance useful for the originating application [8]. This type of problem can be formulated as first-order or
higher order ODEs.

This research is organised as follows: in section 2, the derivation of the method was discussed, where we
considered two off-step points through the approach of interpolation and collocation. In Section three, the
analysis of the methods was discussed. In section four, a few numerical problems were solved and the
performance of the developed method was compared with the existing methods [9] and [10]. Finally, in the
fifth section, the conclusion was drawn.

2 Derivation of the Method

Very often, reactions in physical systems transform into system of ODE. Some classes of these systems are
called Stiff system. The modification of second derivative linear multistep ordinary differential equation for
solving stiffly differential equation was studied by Sabo et al, 2018. The numerical methods to obtain
solutions to class of problems are one-step method and Multistep method (MM), (Adeniran, Odejide &
Ogundare, 2015). Using interpolation and collocation technique, the second derivative multistep methods are
derived [3], (Enright &Hull, 1975) and [4]. Consider the initial value problem of the form

y”:f(x»y'»J’)» J’(a):J’Oa y'(a)=770, xe[a,b] 2.1)

The general second derivative formula for solving equation (2.1) using kK — step second derivative linear
multistep method is of the form

k k k
f(x:y:y')zzajyn+j+hzﬂjfn+j+h225jgn+j 2.2)
Jj=0 j=0 j=0
Where

Yurj = y(xn+jh)
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fn+j = f(xn+jh’ y(xn+jh ))
&y =df(x,, ¥x))

df (x,., y(x))>*‘y"”‘

gn+j = dx

V=Vt j

X, is a discrete point at X and «;, p

n J?

Y ; are coefficients to be determined. To obtained the

method of the form (2.2), y(x ) is approximated by a basis polynomial of the form

y(x)=ia,(x_hx” j 23)

J=0

equation (2.3) will be used for the derivation of the main and complementary methods for the class of

continuous second derivatives multistep method of [3] which is a special case of (2.3). Interpolating y(x)

at point X, , collocating y' (x) at point X, X, 5% 4, X sandx,, X, and collocating y" (x) at points
"3

X Xs X 45 X s andx,, -

n+— n+—

3
y'(x):»f;l j .
. 7 j=0,1,2,....k
y (x):fmj

The system of equations generated are solved to obtained the coefficients of @, j=0,1,2,...,k+2

which are used to generate the continuous multistep method of Enright of the form

k
y(x)zywrkfl + hz ﬂ/f;i+f + hzgkgwrk (24)

J=0

evaluating (2.4) X = X, yields the second derivative multistep method of Enright, evaluating at
X=X, j=0,1,2,..., k — 2 gives (k—l) methods, which will be called complementary
methods to complete the k block for the system. The Enright's method so obtained is of the form

k
yn+k:yn+k—l +hZﬂj](n+j +h2§kgn+k (25)

Jj=0

To derive the continuous second derivative multistep method of Enright, Let the basis function y(x ) be

g

j=0
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We interpolate (2.6) at point X = X, collocate y(x) at points X,,X,

n+l? X 4>
n+— n+—
3 3

X sandx

n+2

points x,,X, ,, xn 4 xn 5 andx, , , we obtain a system of equation represented in matrix form

3 3
1 0 0 0 0 0 0
0 % 0 0 0 0 0
ol 23 4 5 6
h h h h h h
o L 816 25 128 2048
h  3h 3h 27h 81h 81h
o L 1025 500 3125 6250
h  3h 3h 27h 81h 81h
oL 412 2 s 19
h h h h h h
0 0 % 0 0 0 0
2 6 12 20 30
00w w ®r
2 8 64 1280 2560
00 5 =5 = 2 2
h h 3h 27h 27h
2 10 100 2500 6250
00 =5 = —5 -7 .0
h h 3h 27h 27h
2 12 48 160 480
%% w E E R
j=L1-,m.

0 0 0 0
0 0 0 0
7 8 9 10
h h h h
286872 13072 65536 2621440
729 2187h 729k 19683h
109375 62500 390625 19531250
729 2187h 729k 19683h
448 1024 2304 5120
h h h h
0 0 0 0
42 56 72 90
14336 229376 131072 655360
814* 729h* 243h% 729h*
43750 875000 625000 3906250
814° 729h* 243h* 729h%
1344 3584 9216 23040
h? W h h

4
a,
as
a4
as

ds

dg

dy

and (y) at

(2.7)

Applying the Gaussian elimination method on Equation (2.7) gives the coefficient ¢,'s, for i=0 (1)10 .

These values are then substituted into Equation (2.5) to give the implicit continuous hybrid method of the

form:

differentiating Equation (2.8) once yields:

2
BROR W THOTNETED>
iz dx T

z

o2 3,
3

where the continuous schemes are

a,=0
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B, =th+

1 , (41255200 +101733660¢ —127750056¢> + 98067270¢° — 47936880¢* +14625765¢°
6720000 —2547720¢° +193914¢’
5

I, (448000 +1579200 ¢ - 2519328 12+ 2303840 1° — 1288440 * + 437535 ¢
yoo L
1 ~ 83160 ¢° + 6804 ¢’

81 32 (— 56000 + 207900 ¢ — 348096 ¢> + 332850 ¢ — 193920 ¢* + 68355 ¢

B, = 1 5. [ —35840000 +129696000 ¢ — 211491840 t2 +197013600 ¢ — 111931200 ¢* + 3852650 ¢
' 33600 — 7408800 ¢° + 11160261 ¢’
5. - 243, (—28000 + 119700 ¢ — 226968 > + 242130 ¢’ — 155280 ¢* + 59535 ¢°
17920 - 12600 ¢° + 1134 ¢’
5. = 243 5, (- 716800 + 2701440 ¢ — 4591104 ¢ + 4453680 ¢° — 2629920 ¢* + 938385 ¢°
2140000 — 186480 ¢° + 15876 ¢’
5, - 1 3 — 350000 + 1359750 ¢ — 2389485 % + 2404290 ¢° — 1477170 ¢* + 549990 ¢°
71680 — 114345 t° +10206 ¢’
Lo 336000 — 1276800 ¢ + 2364180 £2 — 2641968 > + 1903510 ¢* — 894240 ¢°
Vo= o
* 672000 + 265545 t° — 45360 7 + 3402 ¢*
SJ
5
Va4 = 6 7

E 8960 — 13440 ¢t° + 1134 ¢

81 5,0 12800 + 48960 ¢ — 84576 t? + 83520 +° — 50280 ¢* + 18315 ¢°

Vs = T——

24000 - 3720 t° + 324 ¢’
1 e 112000 + 436800 ¢ — 770952 ¢* + 779590 ¢° — 481680 ¢* + 180495 ¢°
Vo=
> 6720 — 37800 ¢° + 3402 ¢’

3 Convergence Analysis of new Enright’s Method

3.1 Order and error constants of the methods

Using the Taylor series, the order of the new method in Equation (6) is obtained [11], it is found that the
developed method has uniformly order ten, with an error constants vector of:

C, =[2.8616 x10*,2.8625 x10*, 2.8631 x10 %, 2.8655 x 10" ||

3.2 Consistency

Definition 3.1: The hybrid block method (6) is said to be consistent if it has an order more than or equal to
oneie. P>1 [11].
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3.3 Zero stability

Definition 3.2: The hybrid block method (6) said to be zero stable if the first characteristic polynomial

7Z(r) having roots such that |I’Z| <1 and if |l’z| =1, then the multiplicity of 7, must not greater than

two [11]. In order to find the zero-stability of hybrid block method (6), we only consider the first
characteristic polynomial of the method according to definition (3.2) as follows

0 0
- i (z-1)
0 1

o o = <
S O O O
S O O O
S O O O
—_

Which implies 7 = 0, 0, 0, 1 . Hence the method is zero-stable since "”z ‘ <l1.

3.4 Convergence

Theorem (3.1): Consistency and zero stability are sufficient condition for linear multistep method to be
convergent. As the method (6) is consistent and zero stable, it indicates that the method is convergent for all
point [11].

3.5 Regions of Absolute Stability (RAS)

The absolute stability region of the new method is A-stable and was found according to Sabo et al. 2018 and

[11].

25 T T T T T T T T T

1.5F 1

0.5} R

Re(z)
o

-0.51 1

At i

1.5} -

2k i

25 1 1 1 1

Fig. 1. Absolute stability of region new Enright methods

4 Numerical Implementation of new Enright’s Method

The performance and the efficiency the new two-step Enright’s linear multistep methods were tested on
three test problems. The paper presents some numerical experiments widely solved by Althemai et al. [9]
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and [2]. The performance of the new Enright method is examined on three systems of second-order stiffly
initial value problems of ordinary differential equations. Tables 4.1, 4.2 and 4.3 show the comparison of our
method with the other existing method [9] and [12], for absolute errors.

Definition 4.1: In mathematics, a stiff equation is a differential equation for which certain numerical method
for solving the equation are numerical unstable, unless the step size is taking to be extremely small,
(Dahlquist, 1963).

Problem 4.1

Consider the stiff system

y1] =_8y1+7Y2;y1(0)=1’ ) )

1 1 . With Exact Solution
y2:42y1_43J’2;y2(0):8: h:E
yi(x)=2e" -

y,(x)=2e " —6e "

Source, [9]
Table 4.1. Comparison of new Enright method with that of [9]
X —value Error in [9] K =3 Error in New method
K =2
yl(x) yz(x) yl(x) y,(x)
0.1 1.38 x10° 3.20 x10° 3.87 x107* 8.32 x10 2
0.2 9.02 x10 ! 7.36 x10 ! 6.00 x 10 ¢ 5.81x10*
0.3 1.09 x10° 2.58x10° 6.90 x 10 °® 533x10°°
0.4 9.09 x10 ! 5.32x10° 1.22 x1077 1.36 x 10’
0.5 8.84 x 10 " 2.10x10° 4.50 x10°® 1.12 x10°¢
0.6 7.22 x107" 3.75x10° 1.48 x 1077 1.36 x10 77
0.7 7.15 x 10! 1.71x10° 8.08 x 10 ® 9.66 x 10’
0.8 6.42 x10 7! 2.57x10° 1.62 x1077 1.52 x1077
0.9 5.78 x10 ! 1.39x10° 1.03 x1077 8.25 %1077
1.0 5.68 x 10 ! 1.67 x10 ™! 1.66 x10 7 1.58 x10 7
Problem 4.2

Consider the stiff system

=998y, +1998y, 1,(0)=1
v, ==999y, =199y, 1,(0)=0, h=0.1

With Exact Solution

yl (x) — zefx _ 371000)[
Vv, (x) =—e - xe [0,1]
Source, [10]
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Table 4.2. Comparison of new Enright that of method with [10]

X —value [10], K =3 Error in New method
K=2
v (x) ¥, (x) 7 (x) ¥, (x)

0.1 5.82 x10 2 5.83 x10 2 3.04 x10 7 2.90 x 103
0.2 4.02 x10°° 3.95 %107 5.96 x10 5.93x107°
0.3 9.17 x 10 2.16 x10 * 3.04 x10 1.60 x10 *
0.4 7.13 x107* 6.26 x10~* 1.11x107* 2.34 x 1073
0.5 1.20 x10* 422 %107 2.71x107* 1.35x10*
0.6 228 x107* 1.57 x10~* 9.44 x10 ° 4.745x10°°
0.7 1.60 x10* 7.77 x10 77 2.50 x 10 ~° 1.25x10*
0.8 1.52 x107* 7.67 x10°° 1.03 x10°* 5.14x10°°
0.9 1.32x107* 6.78 x10*® 2.27 x10* 1.14 x10°*
1.0 1.52 x10™* 7.60 x 10 ~° 1.05 x 10 ~* 5.25%x10°

Problem 4.3 Consider the stiff system

» =198y, +199y, 3,(0)=1

v, =398y, =399y, »,(0)=-1,

With Exact Solution

-Xx

yl(x)ze‘

,(x)=—e
xel0,1]

-X

Source, [10]

Table 4.3. Comparison of new Enright method with that of [10],

X —value Errorin [10], K =3 Error in New method
K =2
yl(x) J’z(x) yl(x) yz(x)

0.1 2.60 x10 ¢ 2.60 x10 2.50 x10 ¢ 9.05 x 10 °
0.2 2.42 x10°° 2.42 x10°° 2.95 %1077 2.81x1077
0.3 1.18 x10° 1.18 x10 ° 4.84 x1077 433 x10°°
0.4 3.90 x 10 ~° 3.90 x10°° 4.95%x10°° 4.83x10°
0.5 5.58 x10°° 5.58 x107° 6.25x10°° 5.84 x10°
0.6 3.23x10°° 3.23 x10°° 6.12x10°° 6.02 x10°°
0.7 4.35%x10°° 435x10°° 6.99 x10~° 6.66 x 10 ~°
0.8 3.97 x10~° 3.97 x10° 6.71 x 10 ° 6.63 x 10 °°
0.9 3.59 x10°° 3.59 x10°° 7.26 x10 ¢ 6.98 x10~°
1.0 431 x10°° 430 x10"° 6.88 x10° 6.82 x10°°
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5 Conclusions

The formation of second derivative two-step block hybrid Enright’s linear multistep methods to solve initial
value problems of general second order stiff ordinary differential equations was studied. For this, we follow
Enright’s 1974 approach, by introducing the off-mesh points at both interpolation and collocations; we also
developed the continuous schemes for new Enright’s method. The analysis of the method was found to be
convergent, consistent and zero-stable with absolute stable region. We further computed the order, error
constants and plotted the region of absolute stability within which the method is A-stable. The absolute
errors arising from Problems 4.1, 4.2 and 4.3 using the new Enright method were compared with the existing
method [9] and [10]. It is evident from the results displayed in tables, 4.1, 4.2 and 4.3, that the newly derived
Enright method performs better than the existing method [9] and [10] when implemented with numerical
examples.
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