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Abstract

Clustering is an unsupervised method where the number of clusters is not known by users. Therefore, the
outcomes of a clustering algorithm depend on the input number of clusters specified by users.
Consequently it is very important to evaluate the result of the clustering algorithms according to the
number of clusters and choose the one that optimize a certain criterion. We present in this paper several
clustering validity indices used in the literature. Using several synthetic and real datasets, these indices
are then compared based on clustering results provided by the well known k-means clustering algorithm
and its non-linear version the kernel K-means algorithm. The results showed that none of the validity
indices is superior to the others; in the other hand, the kernel k-means failed to improve clustering
accuracy of the dataset from the number of clusters perspective.

Keywords: Data mining, clustering algorithms, internal indices; validity indices; k-means; kernel k-means.
1 Introduction

Unsupervised clustering is the process of categorizing objects that share some characteristics into different
clusters. So that objects in the same cluster are close to each other and those in different clusters are faraway.
Clustering is the subject of active research in several fields such as statistics, pattern recognition, machine
learning and market segmentation and others.
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Most of the unsupervised clustering algorithms require that the number of classes K be defined a priori. It is
obvious that the quality of the result of the clustering depends largely on the number of classes K value. For
this purpose, several algorithms have been proposed. A classic approach is to consider the hypothesis that
the data come from a mixture of densities [1,2,3]. Roberts et al. [4] show that the minimizing the entropy of
partitions generated by the kernel functions can be used to estimate the number of classes. The algorithm
Expectation - maximization (EM) is used to model the probability density by Kernel functions. This
approach then looks for the number of partitions whose linear combination gives the densities.

The methods of projecting data can be advantageously used to discover the number of classes [5]. In [6] a
self-organized network of Kohonen (self-organizing feature map) is used. The final structure of the network
after learning allows the visualization of data of high dimensions. This visualization results in a
straightforward analysis of the inherent structure of classes in data. Another approach is to observe the
projections obtained by the Kernel Principal Components Analysis (KPCA) method [7]. The visualization of
data by KPCA provides the user with a means to examine the presence of clusters in data, and by then
initialize an automatic classification algorithm like the K-means algorithm.

Noting that the visualization is effective only if the inter-points distances of the projected data is a fairly
accurate picture of the inter-point distances of data in multidimensional input space and the number of
classes is small with slight overlapping between classes.

In the literature, there are three clustering structures; Hierarchical clustering, partitional clustering structures
as well as evaluating the clusters themselves. There is distinction between different criteria for evaluating
clustering analysis; the criteria are divided into external, internal and relative indices. The distinction
between external and internal indices of cluster validity has often been confused in the literature; an external
index evaluates a clustering structure in terms of priori information, such as category labels which have been
assigned without reference to the pattern or proximity matrix. An internal index, on the other hand, uses only
the proximity matrix itself and information from the cluster analysis. A relative index compares two
statistics or clustering methods.

The difficulty with internal indices is their dependence on problem parameters, such as the number of
patterns, features and clusters. Square error, for example, naturally decreases as the number of clusters
increases, and increase as the number of patterns and the number of features increase [8].

In this paper, we are trying to find out if any of the internal validity indices is suitable to evaluate the
clustering capacity of an algorithm and if they can be used as a metric to determine the underlying number of
clusters in the datasets. For this purpose, we present six different internal validity indices and two clustering
algorithms, namely the K-means algorithm and the non-linear version of it the kernel K-means.

The motivation of the paper comes from the fact that many research papers that exist in the literature
compare some chosen validity indices, but none compare the indices with different clustering algorithms.

In the next we will present the clustering validity indices in section 2, and then in section 3 we will present
the K-means clustering algorithm and the Kernel K-means algorithm, in section 4 we show the experimental
results and conclude in the last section.

2 Clustering Validity Indices

We consider a partition of points in K classes C1, C2 ... CK obtained by an unsupervised clustering
algorithm. This section describes the measures called "Internal measures" of validity of unsupervised
classification methods. These indices are of two types: parametric and non-parametric. From non-parametric
indices, we cite the compactness and isolation indices. Compactness and isolation indices are two internal
indices that evaluate the individual clusters; they are defined as the number of edges internal to the cluster
and the number of edges linking the cluster to the other clusters at each level of proximity. A valid cluster
should have large compactness and small isolation index [8].
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Another index is the connectivity proposed by Pauwels and Frederix [8] is based on the assumption that for
all pairs of points assigned to the same class for a given partition, the same density must exist along the path
connecting these pairs.

In the other hand, parametric evaluation measures assume that the data has a known distribution, for instance
Gaussian distribution, with a good interclass separation. The Sum of squares errors is an example of theses

parametric indices.

In the following we will present six internal validity indices.
2.1 The sum of squared errors index

This is the simplest validation index. For a partition of K classes, this criterion is calculated as the log of the
ratio of within-class dispersion and the between-class dispersion:

Zf=1 Xx sci(X - 9:)°
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Where g; is the mean or center of the points of class C; and G is the mean of the centers of the K classes.
This index divides compactness by separation so a lower score indicates better clustering.

2.2 The trace index

This trace index introduced by Edwards and Cavalli-Sforza [9], it is used to measure the compactness of the
classes for a given partition. We define the within-class dispersion D, which measures how much the points
are scattered around the average c; of each class:

D, = trace(i Z X=X =c)")

i=1 X eC;

The best value of the index for different clusters number K is the one that correspond to the greatest
difference between two successive slopes.

2.3 The dunn index

The Dunn index introduced by J. C. Dunn in 1974 [10] is a metric for evaluating clustering algorithm. It is
an internal index that is the result is based on the clustered data itself. The aim is to identify sets of clusters
that are compact, with a small variance between members of the cluster, and well separated, where the
means of different clusters are sufficiently far apart, as compared to the within cluster variance.

The Dunn index is defined by:
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Where dj; = ||ci —c]-|| the inter-class distance between the centers of is classes i and j, and S;is the
dispersion of the class 1 given by the equation:
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| C1] is the cardinal of Cl. For a given assignment of clusters, a higher Dunn index indicates better clustering.
One of the drawbacks of using this is the computational cost as the number of clusters and dimensionality of
the data increase.

2.4 The davies and bouldin index

This index was introduced by Davies and Bouldin in 1979 [11]. It was originally proposed as a way of
deciding when to stop clustering data. The index is plotted against the number of clusters and clustering is
stopped when the index is minimized. It was claimed that the index does not depends on the number of
clusters or the clustering method.

Given a partition of n objects into K clusters, one first defines the following measure of within-to-between
clusters spread for all pairs of clusters (i, k)

Sk +Si
k=3 —
! dik

Where
1
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The Ry index for the kth cluster is:

Ric = max{RJ
The Davies and Bouldin (DB) index for K classes is calculated as follows:

DB = - XK., Ry For K >1
Sk is the within-class dispersion of the kth class and dj is the distance between the two centers ci and ck
di = (¢ — ).

The optimum number of classes is the one that minimizes the DB index. This index is equal to zero for the
trivial clustering that places each object in an individual cluster. In addition, each cluster should contain a
reasonable number of objects. It is not defined for the case when all objects are in the same cluster. One plot
DB against K for successive values of K and chooses that partition that minimizes the index.

2.5 Calinski-Harabasz index (CH)

The CH index introduced by Calinski and Harabasz in 1974 [12]. The method is based on a relationship
between a “between cluster scatter matrix” and a “within cluster scatter matrix”:

K.(c—c)? . N-K
2 Ixe X — )2 K—1
Like DB, CH uses cluster centers for calculating separation; however, separation is measured according to

the center of the data set, rather than particular clusters. The normalization factor, (N-k)/(K-1), will diminish
the score as k increases.

CH =

2.6 PBM index

The PBM index is a more recent index introduced by Bandyopadhyay et al. [13]. The PBM score is a more
recent index, it relates a figure of compactness, measured as the sum of the distances between each point and
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its cluster center, to a measure of separation, calculated as the maximum distance between any two cluster
centers, normalized over a measure of dispersion, calculated as the sum of the distances between all points:

1 E
(E*E_VTV*DB)Z

Where E,, = YX, ¥y ;X = ¢;)?) is the sum of the distances between each point and its cluster center,

Er = ¥V, (X; — €)? is the sum of the distances between each point and the center of the data set, and Dy is
the larger distance between the cluster centers. Separation is measured by the greatest distance between any
two clusters, so this measure favors clustering that have at least two well-separated clusters. The larger the
value of the index the better the result of clustering.

3 Clustering Algorithms

3.1 K-means clustering

K-means clustering [14] is the most commonly used unsupervised machine learning algorithm for
partitioning a given data set into a set of k groups (i.e. K clusters), where k represents the number of groups
pre-specified by the analyst. It classifies objects in multiple clusters such that objects within the same cluster
are as similar as possible whereas objects from different clusters are as dissimilar as possible. In k-means
clustering, each cluster is represented by its center which corresponds to the mean of points assigned to the
cluster.

The K-means algorithm

1. Clusters the data into K groups where K is predefined.
Select K points at random as cluster centers.

3. Assign objects to their closest cluster center according to the Euclidean distance function or any
other distance.

4. Calculate the center or mean of all objects in each cluster.

5. Repeat steps 2, 3 and 4 until the same points are assigned to each cluster in consecutive rounds

K-Means is relatively an efficient method. However, we need to specify the number of clusters, in advance
and the final results are sensitive to initialization and often terminates at a local optimum. Unfortunately
there is no global theoretical method to find the optimal number of clusters. A practical approach is to
compare the outcomes of multiple runs with different K and choose the best one based on a predefined
criterion. In general, a large K probably decreases the error but increases the risk of overfitting.

3.2 Kernel K-means

Kernel K-means [15] utilizes kernel trick to perform operation in a new feature space F where data samples
are more separable. By using a nonlinear kernel function instead of the standard dot product, we implicitly
perform K-means in a high-dimensional space F which is non-linearly related to the input space.

The objective function MSE (mean squared error) in the feature space is given by:

MSE* =i >

k=1 x;eCy
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Where c,‘f is the centre of the k-th class in the feature space:
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Note that c,'f is the best representation of a class since:
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The Euclidian distance ¢(x) to the centre c,? is given by:
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4 Experimentations

In order to compare the six validity measures, we used some synthetic and real datasets. Table 1 summarizes
the characteristics of the datasets.

Table 1. Datasets

Dataset Number of Number of Number of
attributes observation clusters
Four-gauss dataset 2 100 4
Saturn dataset 2 200 2
Half-ring dataset 2 520 2
Spiral dataset 2 200 2
xclara (artificial) 2 3000 3
Iris (real) 4 150 3
Wine(real) 13 178 3
Energy efficiency(real) 8 768 5

The following graphs show the plot of the data set into 2 dimensions. The four gauss dataset (a) is an easy
example for clustering. The datasets Saturn (b), Halfring (c), and Spirals (d) are non-linearly separable and
considered as difficult examples for clustering. The iris (e) and xclara (f) datasets are in 3 dimensions dataset
but the graphs were plotted using only the first 2 dimensions.

We used in our experimentations, R, the open source programming language for data analysis. First, we
calculated the internal validity indices on clustering results using k-means algorithm for several values of K
ranging from 2 to 6. Then we used the results of the Kernel K-means with Gaussian kernel function. The
value of sigma is estimated automatically from the datasets themselves.

For each dataset, k-means, and kernel k-means were run successively and then the validity indices were
obtained and the best value of the index is calculated using the “best” function is R. note that for some
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indices the larger the value, the better the index and for some others, the smaller the value, the better the
index whereas for others using the first max or first min is considered as the optimal value.
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Fig. 1. Data plot of synthetic and real datasets

5 Results for K-means Algorithm

Tables 2 to 9 below summarize the values of the six validity indices compile on K-means results with the
gray one represent the best value of the index (Using the “best function in R as noted before).

Table 2. Results of the four Gauss dataset (Expected K = 4 clusters)

Four gauss

K 2 3 4 5 6

Index SS 0.0299 0.9835 2.3565 2.5345 2.7209
Index trace 961.6692 531.4653 168.9932 143.4567 120.5744
Index CH 100.9723 129.6800 337.7199 299.4973 285.6351
Index Dunn 0.2013 0.1902 0.2920 0.1372 0.1372
Index DB 0.6192 0.7025 0.3862 0.5985 0.7597
Index PBM 28.1773 27.0204 100.1433 92.6491 74.4333

Source: R programming, assembled by author
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Table 3. Results of the Saturn dataset (Expected K = 2 clusters)

Saturn
K 2 3 4 5 6
Index SS -0.537 0.728 1.377 1.761 2.163
Index trace 1275.216 657.678 407.074 296.257 208.369
Index CH 115.685 204.077 258913 283.694 337.394
Index Dunn 0.023 0.034 0.053 0.031 0.029
Index DB 1.123 0.719 0.666 0.647 0.625
Index PBM 7.590 8.877 14.606 13.939 16.978

Source: R programming, assembled by author

Table 4. Results of the Half-ring dataset (Expected K =2 clusters)

Half -ring
K 2 3 4 5 6
Index SS -0.121 0.916 2.545 2.638 2.816
Index trace 131.654 70.971 18.062 16.577 14.022
Index CH 459.059 645.994 2192.744 1799.920 1717.811
Index Dunn 0.029 0.044 0.053 0.041 0.020
Index DB 1.023 0.611 0.340 0.656 0.686
Index PBM 0.443 0.586 2.085 1.796 1.270

Source: R programming, assembled by author

Table 5. Results of the Spirals dataset (Expected K =2 clusters)

Spiral
K 2 3 4 5 6
Index SS -0.558 0.232 0.548 0.969 1.276
Index trace 2114.117 1470.643 1218.217 914.690 725.376
Index CH 113.370 124.174 112.966 128.441 139.032
Index Dunn 0.013 0.018 0.019 0.019 0.030
Index DB 1.198 1.003 1.034 0.930 0.794
Index PBM 9.312 7.949 11.180 10.257 10.334

Source: R programming, assembled by author

Table 6. Results of Xclara dataset (Expected K =3 clusters)

K 2 3 4 5 6
Index SS 0.16 1.98 2.09 2.21 2.37
Index trace 2309985.00 611605.90 555336.50 498587.60 428338.60
Index CH 3530.72 10826.60 8047.61 6805.66 6433.54
Index Dunn 0.02 0.047 0.01 0.01 0.00
Index DB 0.68 0.421 0.85 0.73 0.95
Index PBM 2616.52 6196.97 3906.09 3399.77 2.67
Index K-DB

Source: R programming, assembled by author

Table 7. Results of Iris data set (Expected K =3 clusters)

K 2 3 4 5 6
Index SS 1.245 2.034 2.144 2.615 2.195
Index trace 152.348 78.851 71.445 46.446 68.266
Index CH 513.925 561.628 415.465 495.541 258.655
Index Dunn 0.077 0.099 0.053 0.082 0.053
Index DB 0.404 0.662 0.859 0.806 0.956
Index PBM 19.923 25.175 17.296 19.118 9.174

Source: R programming, assembled by author
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Table 8. Results of Wine dataset (Expected K =3 clusters)

K 2 3 4 5 6
Index SS 0.28 1.00 1.46 1.58 1.78
Index trace 17105.15 10664.58 7490.12 6801.78 5732.03
Index CH 233.38 238.94 250.10 209.74 204.38
Index Dunn 0.04 0.04 0.08 0.05 0.06
Index DB 0.72 0.76 0.75 0.87 1.00
Index PBM 317.97 548.07 854.72 666.85 545.04
Source: R programming, assembled by author

Table 9. Results of energy efficiency dataset (Expected K =5 clusters)
K 2 3 4 5 6
Index SS 0.7 1.2 1.4 2.5 1.5
Index trace 3000870.0 2100334.0 1848389.0 660693.0 1694725.0
Index CH 1526.5 1253.1 982.7 2402.1 655.2
Index Dunn 0.7 0.5 0.2 0.4 0.2
Index DB 0.6 0.5 0.5 0.6 0.4
Index PBM 27227.0 20539.6 19795.4 44325.2 13473.1

Source: R programming, assembled by author

It can be seen that trace index is the best predictor, which is followed by CH and PBM indices. It is normal
result as the k-means clustering algorithm is based on the concept of minimizing the sum of distances to the
centers of the clusters which is the similar to the trace index.

6 Results for Kernel k-means

The Tables 10 to 17 below summarize the values of the indices obtained from the kernel K-means.

Table 10. Results of four Gauss dataset (Expected K =4 clusters)

Four Gauss
K 2 3 4 5 6
Index SS 2.542 1.246 1.722 0.931 -0.984
Index trace 142.487 436.320 296.018 552.191 1421.159
Index CH 238.818 65.329 105.203 47.675 7.029
Index Dunn 0.1102 0.0131 0.0226 0.0256 0.0140
Index DB 0.798 1.421 2.224 2.092 6.557
Index PBM 74.731 33.931 34.366 21.136 2.623
Source: R programming, assembled by author

Table 11. Results of Saturn dataset (Expected K =2 clusters)
Saturn
K 2 3 4 5 6
Index SS 0.649 2.011 1.788 0.471 1.925
Index trace 693.233 238.421 289.650 776.755 257.098
Index CH 74.275 289.975 231.826 62.116 266.091
Index Dunn 0.007 0.018 0.022 0.008 0.008
Index DB 2.000 0.670 0.655 1.797 0.662
Index PBM 5.416 16.736 14.084 3.586 14.273

Source: R programming, assembled by author
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Table 12. Results of Half-ring dataset (Expected K =2 clusters)

Half ring
K 2 3 4 5 6
Index SS 1.755 2.077 1.611 1.915 2.130
Index trace 36.604 27.662 41.321 31.898 26.377
Index CH 594.615 820.067 515.007 697.499 865.012
Index Dunn 0.0008 0.0057 0.0012 0.0060 0.0024
Index DB 1.125 1.176 1.285 1.107 1.618
Index PBM 0.758 0.876 0.627 0.868 0.868

Source: R programming, assembled by author

Table 13. Results of Spirals dataset (Expected K =2 clusters)

Spirals
K 2 3 4 5 6
Index SS 0.849 0.863 0.192 1.044 0.036
Index trace 996.194 986.145 1503.234 865.342 1632.078
Index CH 90.688 92.007 47.012 110.268 40.237
Index Dunn 0.013 0.011 0.011 0.010 0.013
Index DB 1.102 0.989 2.641 0.964 2.548
Index PBM 6.487 8.059 3.070 8.744 5.425

Source: R programming, assembled by author

Table 14. Results of Iris dataset (Expected K =3 clusters)

Iris
K 2 3 4 5 6
Index SS 2.614 2.675 1.841 2.400 2.583
Index trace 46.481 43.941 93.314 56.694 47.865
Index CH 393.384 417.791 181.495 317.329 381.177
Index Dunn 0.068 0.049 0.029 0.064 0.062
Index DB 1.031 1.072 1.619 1.685 1.088
Index PBM 12.060 13.064 7.437 11.191 11.362

Source: R programming, assembled by author

Table 15. Results of Wine dataset (Expected K =3 clusters)

Wine
K 2 3 4 5 6
Index SS 0.567 0.507 0.285 0.425 0.216
Index trace 14398.340 14953.830 17074.730 15731.360 17755.310
Index CH 60.659 57.128 45.759 52.604 42.686
Index Dunn 0.020 0.023 0.017 0.020 0.012
Index DB 2.675 2.091 5.201 2.054 4.052
Index PBM 159.081 135.848 98.772 99.815 121.532

Source: R programming, assembled by author

Table 16. Results of energy efficiency dataset (Expected K =5 clusters)

EE
K 2 3 4 5 6
Index SS -0.558 1.917 -0.140 -0.558 1.917
Index trace 5711166 1151328 4804138 5711166 1151328
Index CH 87.252 1036.394 132.499 87.252 1036.394
Index Dunn 0.000 0.001 0.128 0.000 0.001
Index DB 3.214 0.723 2.683 3214 0.723
Index PBM 2309.552 29342.090 3015.490 2309.552 29342.090

Source: R programming, assembled by author

10
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Table 17. Results of Xclara dataset (Expected K =3 clusters)

Xclara

K 2 3 4 5 6

Index SS 1.108 1.809 1.288 2.269 1.108
Index trace 1249217.0 708296.6 1087407.0 471643.6 1249217.0
Index CH 1812.490 3653.971 2171.297 5787.851 1812.490
Index Dunn 0.0005 0.0007 0.0003 0.0004 0.0005
Index DB 1.902 1.579 1.706 0.951 1.902
Index PBM 1098.398 2079.610 1356.160 2900.165 1098.398

Source: R programming, assembled by author

It is obvious from the results above that the kernel K-means does not outperform the K-means in terms of
providing the six validity indices better clustering distributions. One would expect the Kernel k-means
provide better clustering results for the non-linear dataset like the spirals, Saturn and the half-ring. Looking
at Table 18, it is clear the first K-means is better than the kernel K-means and second comparing the indices
together, the trace index is the best criterion but it detect more correctly the number of clusters using K-
means than when using kernel K-means.

Table 18. Correctly clusters per validity index

Validity index Number of time correctly identified K Percentage of correctly identified K
K-means Kernel k-means K-means Kernel k-means

Index SS 3 3 50% 50%

Index trace 5 2 83.3% 33.3%

Index CH 4 1 66.6% 16.6%

Index Dunn 3 1 50% 16.6%

Index DB 2 0 33.3% 0%

Index PBM 4 1 66.6% 16.6%

Source: Assembled by author

7 Conclusion

When compared to the results of other comparative studies, we conclude that none of the validity indices is
able to determine the correct number of clusters within the datasets. Although the Trace or CH indices are
able to predict the number of clusters but this finding cannot be generalized to different datasets. In the other
hand the kernel K-means algorithm failed to provide better results as it was expected especially for non-
linear dataset. Which lead us to conclude that the problem of determining the number of clusters remain a
fundamental problem when dealing with clustering algorithms that need to specify K.

8 Limitation of the Study

Although the K-means clustering algorithm is most popular and efficient algorithm because it is very simpler
but some limitations in this algorithm makes it somewhat difficult. One of the limitations is the initiation of
the centers of classes. To overcome this limitation we run the algorithm many times with different initial
centers and kept the one that optimize the results.

Another limitation of our research is the use of the width of the Kernel function. Many alternatives exist in
the literature to choose the optimal value of the width. But as we can conclude from this research there is no
perfect solution of perfect parameters for all kinds of data.
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