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Abstract

The paper presents a multi-infections system model to study the transmission dynamics of Malaria, Zika-
Virus and Elephantiasis in an endemic region such as Kedougou in the Southeastern part of Senegal and
other parts of the world where it is possible to have multi-infections of the three diseases simultaneously.
We performed the disease-free equilibrium and it is shown to be globally asymptotically stable when the
associated threshold known as the basic reproduction number for the model is less than unity.
Investigation on the existence and stability of equilibria is also performed, the model is found to exhibit
backward bifurcation so that for Ry less than unity is not sufficient to eradicate the disease from the
population and there is the need to lower R, below a certain threshold for effective disease control.
Sensitivity analysis is performed to determine parameters that have high influence on the basic
reproduction number.

Keywords: Multi-infections, stability analysis; bifurcation analysis etc.
1 Introduction

Zika virus disease is caused by a virus which is transmitted mostly by female Aedes aegypti mosquito [1]
which is also responsible for the transmission of chikungunya and dengue fever. The incidence of Zika virus
disease is spreading and this is partly due to the fact that there is neither cure nor vaccine. Malaria which is
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also a vector borne disease is caused by a female Anopheles mosquito. There are four species of parasites
namely: Plasmodium falciparum, Plasmodium vivax, Plasmodium ovale and Plasmodium malariae that
infect human. The disease continues to be a major problem in sub-Sahara Africa, Asia, Central and South
America and the Middle East. Almost 40% of the world’s population settles in endemic areas [2].
Elephantiasis which is also known as Lymphatic filariasis and also a vector borne disease is a neglected
tropical disease which is caused by parasitic worms that are spread by the bite of mosquitoes [3]. There are
three types of worms namely; Wuchereria Bancroft, Brugia Malayi and Brugia Timori with Wuchereria
accounting for 90% of the cases and is found almost in all the tropical and subtropical areas around the globe
[4]. The major differences in the manner we combat malaria and zika virus diseases generate from the fact
that they are spread by two different types of mosquitoes namely female anopheles for malaria and female
Aedes aegypti for zika virus. Female anopheles mosquito bite at night and at dawn and can transmit the
malaria; whiles, the dedes aegypti mosquito bite during the day time [S] which makes prevention more
complex to deal with. Elephantiasis can however be transmitted through the bite of infected female
Anopheles mosquitoes, Aedes mosquitoes and Culux depending on the geographical location of the vector.
Although, elephantiasis andzika virus do not kill like malaria does but the stigmatization attached to the
disability or deformity in the case of elephantiasis and the microcephaly which is linked to zika-
virusmakethem more embarrassing.

In this research, the idea is to propose a mathematical model for the transmission dynamics of multi-
infections (Malaria-Elephantiasis-Zika) without control. A considerable amount of research, has been done
on co-infections of various diseases, however, there is none on this multi-infections (Malaria-Elephantiasis-
Zika).

Section 2 discusses the model formulation, Section 3 handles the sufficient conditions for local and global
stability of the disease-free equilibrium and endemic equilibria. Section 4 discuss the backward bifurcation
phenomenon and in section 5 we present the:

1.1 Model formulation and description

The new proposed model subdivides human population into eleven compartments namely: susceptible
individual (Sy,), infectious Malaria (I,,,), infectious Elephantiasis(l¢), infectious Zika (I,), both infectious
Malaria and Zika (I,,), both infectious Malaria and Elephantiasis (I,,¢), both infectious Zika and
Elephantiasis (I,¢), infectious Malaria, Zika and Elephantiasis(I,,,¢) called multi-infections, recovered from
Malaria only, (Ry,), recovered from Zika only (R,), a recovered from Elephantiasis only(R¢). The female
mosquito population is also partitioned into four compartments, that is, susceptible mosquitoes (S, ), female
Anopheles mosquitoes infected with parasite(lp), female Aedes aegypti mosquito infected with Zika virus
(I,) and female Culux mosquito infected with a roundworm(l,,).

Susceptible humans (S;,) get infected with malaria infection through a bite from infectious female
Anopheles mosquitoes with malaria parasite at the rated,,. Zika infection is also acquired through a bite of
infectious female Aedes aegypti mosquito with Zika virus at the rated,, and finally, Elephantiasis infection
occurs through a bite of infectious female mosquito with worm infection at the rated;. Human beings are

recruited into their population at the rate I, and the mosquitoes are also recruited at the rate IT

Individuals can exit both populations through natural death rates p, and p_ respectively for humans and
mosquitoes. Humans can also exit through malaria induced death rate . For co-infections, individual with
malaria infection can either get Zika infection when bitten by infectious female aedes mosquitoes at the rate
&, 0r elephantiasis infection through a bite of infectious female Culux mosquitoes with worm infection at the
rated¢. Also, someone with Zika infection can either get malaria infection when bitten by infectious
anopheles mosquitoes at the rate d,, or elephantiasis infection through a bite of infectious mosquitoes with
worm infection at the rate ;. And finally, a person with elephantiasis infection can either get malaria
infection when bitten by infectious anopheles mosquitoes at the rate §,or Zika infection through a bite of
infectious aedes mosquitoes with Zika virus at the rate 8,. Our attention is now turned to the multi-infections
an individual with both malaria and Zika infections can get; the third infection which is elephantiasis at the
rateds. It is also possible to have a situation where a co-infected person with malaria and elephantiasis
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infections can get the Zika infection at the rate 5, to complete his or her multi-infections. To complete the
multi-infections, a co-infected individual with Zika and elephantiasis infections can get the malaria infection
at the rate dy,.

For the mosquito population, we have infectious anopheles mosquito when the susceptible anopheles
mosquito bites someone with malaria parasite at the rate §,,,. Infectious aedes mosquitoes also come into
existence when a susceptible aedes mosquito bites a person with Zika virus at the rate §,. In addition, an
infectious mosquito with worm infection occurs when a susceptible mosquito bites someone with
elephantiasis worm at the rate ;.

Tables one and two below describe the state variables and the parameters respectively.

Table 1. State variables and description

State variables Description of the state variable

Ny, (t) Total human population.

N (D) Total mosquito population.

Sh(®) Susceptible human.

I, () Individual infected with malaria.

I,(®) Individual infected with Zika.

I¢(t) Individual infected with Elephantiasis.

Iz (t) Individual infected with Malaria and Elephantiasis.
Ime(t) Individual infected with Malaria and Elephantiasis
Le(t) Individual infected with Zika and Elephantiasis.
Imze(0)- Individual infected with multi-infections; Malaria-Zika- Elephantiasis.
R (® Individual recovered from malaria.

R (® Individual recovered from Zika.

R () Individual recovered from Elephantiasis.

Sm(®) Susceptible mosquito.

I,(©® Mosquito infected with parasite.

ING) Mosquito infected with the zika virus.

I () Mosquito infected with worms.

Table 2. Description of parameters used in the model

Parameters Description of parameters

Oy Rate at which one acquires malaria infection.

of Rate at which one acquires elephantiasis infection.

o Rate at which one acquires Zika virus infection.

Tm Rate at which one recovers from malaria only.

T, Rate at which one recovers from Zika only.

5 Rate at which one recovers from elephantiasis only.

\ Rate at which individual returns to susceptible after recovery from malaria.

[0) Rate at which individual returns to susceptible after recovery from elephantiasis.

S Probability of transmission of infection from a mosquito with parasite infection to a
susceptible human given that there is contact between the two.

m The number of bites of humans per Anopheles mosquito per unit time.

95 Probability of transmission of infection from a mosquito with worm infection to
A susceptible human given that a contact rate between the two occurs.

OS¢ The number of bites of humans per Culex mosquito per unit time.

9, Probability of transmission of infection from a mosquito with zika virus to susceptible
human given that a contact between the two occur

6, The number of bites of humans per Adedes aegypti mosquito per unit time.
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2 Multi-infections Model (Malaria Elephantiasis Zika)

dSh
= Hh + 'll}Rm + (pr - amSh - MhSh - (ZZSh - (ZfSh

dt

dly,
E = AmSp — Tidm — (:uh + n)lm + Tflmf — aflm + 1,0, — Ay,

dt
dl,
E = azsh _Tzlz - amlz +Tm1mz +Tflzf — aflz — #hlz

diy
afSh - .uhlf - (lmlf + Tmlmf - Tf[f + TZIZf - azlf

dlmz _
dt - azlm - Tzlmz - (#h + n)lmz + TfImzf —_ aflmz + amlz -7 Imz

T = af[m - Tflmf - ('uh + n)lmf + Tzlmzf - azlmf + amlf - Tmlmf

dt - aZIf a Tflzf _'uhlzf + Tmlmzf - amlzf + aflz - Tzlzf
dIme
dt = amlzf - Tmlmzf - (:uh + n)lmzf — Tflmzf + aflmz + azlmf — Tzlmzf (€D
dR
d_;n = Tyl — (up + PRy,
dR,
ar =l Wt )Ry
dR
d_tz =Tl — R,
ds,,
7 =Iln — hnSm — Apsm = AwSm _ AeSm
dl
14
E = ApSm - .umlp
di
d_:/ = AwSm — Umlw
dl
d_; = aSm — tmla
_ ImSmlp _ ﬂf5f1w _ U7087Iq
m =N, U TN, %2 T T,
19m6m(1m+lmz+lmf+1m f) ﬂf‘sf(lf“mf“ f'”m f)
/’lp = Nh = Sm: )-w = Nh 2 2 Sm' (2)

Ay = 192‘Sz(Iz‘Hmz'Hzf'Hmzf) S,
Np
In this regard, the researcher tries to come out with the basic results concerning the model (1).The following
theorem shows the region within which the model will be examined in the subsequent sections.

Theorem 1: If the initial state variables are non-negative i.e.
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{(shm). 10 (0), 11(0), 1,0, Lz (0), g (0), I (0), I (0), Ry (0), Ry (0), Ry (0), 5,1 (0), Ip(O),IW(O),za(O))}
>0

Then the solution set

Sp(t) 2 0,8,(t) = 0,1,(t) = 0,1(t) = 0,1,(t) = 0,1,,,(t) = 0,1,,,0(t) = 0, . I

I15(6) 2 0, Lypy () = 0,1,(£) = 0,1, () = 0,1,(£) = 0, Rpy(£) = 0,R(£) = 0,R,(t) = 0 @ o ©
system (1) is positive forallt > 0. Moreoverlim, ., sup N, (t) < % and lim sup N,,, (t) < Z—m
h m

Again, if N, (0) < Ir and N,,,(0) < Im then N, (t) < Ihand N, (t) < Tm,
Uh Um HUh

m
Hm

More importantly, the region

11 Iy
2 =3(Sn I I Ly Iz I Lz gy Ry Rpy R) € REV:NR (8) < ™

m
Q= (S Iy I 1a) € RE, N (B) < u_m

m

Is positively invariant. The theorem 1 above indicates that the model (1) is biologically and
epidemiologically well posed in the region and thus, the dynamics of the model can be sufficiently studied
inf2 [6,7].

The multi-infections model can be divided into various sub-models namely Malaria — Zika co-infections
model, Malaria —Elephantiasis co-infections model, Zika- Elephantiasis co-infection model, Malaria only
model, Zika-virus only model and Elephantiasis only model. The sub-models are given as follows

2.1 Co-infection Malaria- Zika Sub-model

ds,
ar My = pnSp = AmSp — A;5n YR,

dl,,
W = amsh - Tmlm - (#h + r])lm - azlm + Tzlmz

dl,
q a,Sp — 1.0, —anl, + Tplpn, _ tnl,

dly,
dt = azlm - Tzlmz - (#h + n)lmz + amlz — Tmlmz

dR

d—tm = Tmlm - (Nh + w)Rm (3)
dR,
dt

= Tzlz - #th

ds,,

F = Hm - I'lmSm - Apsm_ Aasm

dl,

d_: = j'pSm - Aumlp
dl,
E = j'aSm — Umla

=19m5mlp a =192621a A =19m6m(1m+1mz) A =1925Z(IZ+ImZ)
Ne TN T N N,

O

€)
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2.2 Co-infection model malaria- elephantiasis

ds,
E = nh + lpRm + (pr - amsh - thh - afsh
dl
d_;n = amSp — Tl — (Up + My, — afIm + Tflmf
dl
f
E = afSh - ﬂhlf - amlf - Tflf + TmImf
Al
T =asly, — (,uh +n+t,+ rf)lmf + aply
dR
d_m = Tyl — (Up + YIRy 5)
t
dR
f
— =Tl — +@)R
dt Trly — (up+@)Ry
das
d_;n =1y = UmSm — 4 Sm — AwSm
dl
p_
E - /1p5m - ,lelp
dl
d_;;v = AwSm — tmly
o om0y OOk OB (L + Iy ) 4= 98¢ (I + Ly) ©
S T T Ny T Ny
2.3 Co-infection Zika- Elephantiasis
% = I'[h - uhSh - a’ZSh - afSh + (pr
% = azSh - TZIZ - (lfIZ + Tf[zf _ ,uhlz
dal
d_tf = afSh - [lhlf - Tf[f + Tzlzf - azlf
dly
ac = Celr =Tl bnlar g g, 10,
(7)
% = Tzlz - :uth
dRr
d_tf = Tf’f - (Hh + <P)Rf
dSm _ _ _
at Ty = UnSm — AwSm — AaSm
% = 2aSm — thmla
% = Awsm — Umly
o = 9,0,1, o = 19f5f1w 1 = 19262(12 + sz) 1. = 19f6f(1f + IZf) )
TN TN Ny T Ny
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2.4 Malaria only model 2.5 Zika-Virus only model
dsy
— =11 Ry — @ Sp — UnS ds,
dt nt YR = @S = HuSh d—th=17h—ﬂh5h—az5h
dl
d_:;; AnSh = Tmdm — (W + My di, S I I
2w S —1.1 —
d_;n = Tlm — (Un + PIRy dt = 2le ™ Kk
) dR, D
dt = Tyl, — R,
B _ My, — Sy — 1S, dSy,
dt m — Hmom prm —=Hm_”msm_/15
dl dt a’m
P
—2 = 1S — il
dt pom — Hmlp dla
dt = aSm — Umla
_ Ombmlp 5 ImOmim _ 98sla 4 _ 97851,
Am - Np, :/1p - Np Sm (10) a; = Np, 7/111 - Np, Sm (12)
2.6 Elephantiasis model only
ar Iy = unSp — agSp,
dly
E = O(fSh - ﬂhlf - Tflf
dR (13)
f
W = TfIf - l’lhRf
Sy,
F =1y — UmSm — AwSm
dl
d_zv = AwSm — tmlw
98l 9,851
ap =L 0, =L s, (14)

3 Stability of the Disease Free-Equilibrium (DFE)

This is the steady state solution where there is no infection in the population. The disease-free equilibrium of
the model are stated in the subsection below.

3.1 Stability of the Disease Free-equilibrium (DFE) of Multi-infections model

The (DFE) of the multi-infections (Malaria, Zika virus and Elephantiasis) model is obtained when the right
hand side of equation (1) is set to zero. That is

{1m=1f=12=1m2= mp =1y = mfz=Ip=Iw=1a=Rm=Rf=Rz=0}

Hence the disease free equilibrium point at the multi-infections is given as
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gmfz = (Shr I, Ifr Iy Lz, Imfr Ifzr Imfzr Ry, Rf' R, S Ip: Iy, Ia)

11 11 15
= (—h 0,0,0,0,0,0,0,0,0,0,—m0,0,0) (15)
Hr 1=

m

3.1.1 Basic reproduction number f

Using the next generation matrix, the basic reproduction number can be defined by the average number of
secondary infectious cases produced by a single infective individual in a population where everyone is
susceptible. Applying the next generation matrix method of [8] and the basic reproduction number of multi-
infections is the spectral radius of the matrix FV~1. Where F and V are the transmission and transition
matrices respectively given by

—a,, 0 0 0 0 0 0 A Ay A,
0 - 2 0 0 0 0 0 Ao By Ay,
0 0 —a4, 0 0 0 0 Ay —Ayy A,
a,, 0 a; -2, 0 0 0 a, -a,a,
F=|%44 %13 00 —a, 0 0 agy a, -ag
0 a, a, 0 0 -a, 0 -ag a,y a,
00 0 a, a, a; 0 ag a, ag
ag, 0 0 g, Ags 0 ag, 0 0 0
0 2y, 0 0 Ays g Agy 0 0 0
00 ap a,, 0 aya, 0 0 0
_ 19févflw 9,621 _ ImbémSh _ _ﬂfoIm _ _M
ay; = ( Nn + Ny, )7a18 =T ,A19 = Nn ,Qz0 = Nn
Ombéml 9,6,1, OmEml Db S 96,1
azzz_(mN;np+ zN’zla)’azgz mNth'G'Z‘): fN);h’G'SO:_ ZN’ZLf7
OmSml 96 fl Oy, Sy I 9fbfl 9,6,S OmOml
A3z = — (—mN;n £ +—fN£ W). 38 = mN:ln £, 439 = — fN;:z:aAm = ZN; L, ay3= mN:l E,
9,68,1 OmOml Db £l 9fbfl 9,6,1
a4 = zNza,a43 = mthp,aM:_fN—iw,aw:_%,aso 2_%,
Imbmlys OmSm(Inz + Iy + Imzs) OO (I + Img + Iinzy)
a7g = N—a31 = N Sy Agg = N S
h h h
Om6. Imé Vfb
g = Wﬂmam - %}ng’ oy = ff(’m+"lﬁ+’mf)5m,
98 e(Ip+l p+lmar) 98I+ ime+imzr) 98 e(Iptimetiyg)
g5 = 211 fN;f mef) g oo = L% wa;:f maf) g g = 2% homf 2)§ a1 =
19zfsz(l7v1z;lzf‘”mzf) Spalion = 19252(12‘*'1;zf'”mzf) S,
h h
~9,8,(1, + Ly, + Inyy) C9,8,(1, + L, + 1)
A106 = N Sy Qyo7 = N Sm
h h
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¢, 0 0 -, ¢ O ¢, O O O
0 c, O 0 ¢y C €y O 0 O
0 0 c¢3; ¢, 0 ¢ ¢, 0 0 O
o o0 0 ¢, O 0 ¢, O 0 O
V- = 0 0 0 0 ¢c5 0 ¢, O O O
0 0 o0 0 0 c4 ¢, 0 0 O
0 0 0 0 0 0 ¢, O O O
0 0 0 0 0 0 0 ¢ O O
0 0 0 0 0 0 0 c O
0 0 0 0 0 0 0 0 cg
c =i o = by4 o = bis c =b14b15b44+b14b15b55 zi
U by Y T bygbay” T bygbss” by1b44bssb7; "B by
e = bys o = by c =b14b25b55+b14b25b66 =i c bys
2 bybss” T bybeg” ba2b44becb77 3 by Pt bashy
o = bys c =b15b25b4—4+b15b25b66 zi o = bis c zi byy
" bazbgs’ ' bs3bs4besbs7 T T by bagbyy” T bss’ ST bsshy,
_ 1 _ bys _ 1 _ 1
0 " bes” 7 " bogbyy 7 " by by

The basic reproduction number R, of the multi-infections is given as the spectral radius of the matrix FV/ =1

so that

19‘rzn6‘rznnmﬂh 192262217,”[1,1

Ry =p(FV™1) =

ﬂ}s}ﬂm'uh

(up + 1 + T My,

(Auh + Tz)nhl'l%n ’ (Hh + Tf)l'lh‘ufn

(16)

3.1.2 Local stability at the disease free equilibrium for multi-infections model (Malaria-Zika-

Elephantiasis)

Theorem 2: The disease-free equilibrium point is locally asymptotically stable ifR, < 1

(Rma < LRy < 1andR,, < 1)and unstable if R, > 1.

Proof
b, 0 0 0 0 0 0 0 v » 0 0
0 -b, 0 0 o, T, 0 0 0 0 0 0
0 0 -b 0 0oz, . 0 0 0 0 0
0 0 0 -b, 7, 0 0 0 0 0
0 0 0 0 b, 0 0 7, 0 0 0 0
0 0 0 0 0 -b, O z. 0 0 0 0
0 0 0 0 0 0 -b, T, 0 0 0 0

J=|o0 0 0 0 0 0 0 -b, 0 0 0 0
[ 0 0 0 0 0 0 -b, 0 0 0
0 0z, 0 0 0 0 0 0 b, 0 0
0 0 0 T 0 0 0 0 0 0 -u, O
0 7bzs 7bza 7bz7 7b21< —by, 7bxu 7b:»| 0 0 0 7b32
0 by 0 0 by 0 b, by 0 0 0 by,
0 0 by 0 0 by, by by 0 0 0 b,
0 0 0 by, by by, 0 b, 0 0 0 by,

-b, —b,
b, 0
0 b,
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0

My 0
0 -u,
0 0

|
o o o
S

o oc o oc o oo oo oS

|
RS

(17)
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b = p,.b, =9,6,.b,=9,6,.b, = 9.6. bs:0,b6=(,uh+77+rm),b7:0,b8=0,b9:(,uh+rf)

m=m?

by =0,6, =0,b, =0,b, :(/”h +T:)’b14 =0,b; :(ﬂh +tn+z7, +T:)’b16 =0,b,; =0,b; :(ﬂh tn+z, +T/')’
by = 0,by, :(/‘h +7; +Tz)’b21 =0,by, :(/‘h tn+r, 1, +Tz)’b23 = (1, +w )by = (1, + ),

‘9 5,11, 1, _ gf'df'nmﬂlr b = 8.6.11, p, b = IT, 4, (

b m-m
25 2%26 I 227 T
WM

8,8, +8.5.) by =22 (g 5 +9,5,),
Hh/um

m~m m~m

Mu, ~ % Mu, I,u

m

_nmﬂ’ nmﬂ1
- l_lh/u'; (925: +19f5f)’b31 = nh/u; (9"15*11 +'9 5 +‘9 5 ) b :—ﬂm,b33 = 0,1]34 = O,b35 =0

The stability of the multi-infections model around&,;, ¢, in equation (17) is established if all the eigenvalues
of the Jacobian have a negative real part. Since the first, ninth, tenth, eleventh and twelfth columns have only

diagonal entries, it is obvious that five of the eigenvalues thus —uy, —(uy, + ), —(uy + @), —up and —p;,
have negative real parts. Hence the stability of the disease free equilibrium is dependant on the eigenvalues

of the sub-matrix of the Jacobian matrix.

—-a, 0 0 a, a 0 0 a, 0 0
0 —as 0 0 a,s a,, 0 0 a, 0
0 0 —a, s a6 0 0 0 0 a,
0 0 0 -a, 0 0 a 0 0 0
0 0 0 0 —a, 0 a, 0 0 0

J-11= =0, (18)
0 0 0 0 0 —-a, as 0 0 0
0 0 0 0 0 0 -a,, 0 0 0

ap, 0 0 ap, ap, 0 ap, —day, 0 0
0 a3 0 0 a3 a3 a3 0 —dy, 0
0 0 ayy a4 ayy 0 ayy 0 0 —dy,

alz(yh+rm+l7+/1),a2—l9§ a,=9,0,,a, =80 (,uh+z'/+/1),a6:(,uh+rz+/l),

m-_m? fYf2"4 z z’
a, =(p, +7,+7, +n1+21),4a4 :(,uh +7, +7, +77—|-/1),a9 :(,uh +T, 47T, +l),
19 5 m l9fé‘f1_[mluh lgzéznm /uh

_ _ YmYm _ — —
ao_(ﬂ11+7m+7f+7z+77+/1)5a11 T sy = (, +A)a = I sy = I
h /um h /um h :um

as =T

m?

Qg =Tr5017 =7,

From equation (18) we obtain the following sub-matrices.

—ag ~(un+z+2) 95 i
a3 _alz] - ﬂfflfw _('um + /1) ( )
hHm
—-a, [—(up + T + 1+ ) U 6o 20
a1 _a12] 1%?:# (W + 1) (20)
—a, _(.uh t1,+ A) 19262 21
Q14 _‘112] % (U + ) @
L m
From equations (19), (20) and (21), we obtain the following characteristic polynomial,
9282,,u
I h
x?+ (2/1 + up + oy + Tf)x - Hh—,um+ A2+ (yh + Um +rf)/1 + Tellm + il =0 (22)
m

10
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2 £2
X2 4 (2 i+ fon 17+ Ty)x = IR 2 (o g+ T ) A A F T+ =0 (23)
m

8%,

2
X%+ (22 + pp + g + T,)x = ﬂznhu Fhy 2% + (n + tim + TIA + lpfim + Tt = 0 (24)
m

By applying Routh-Hurwitz criteria for dimension n = 2 requires that given a polynomial of the form,
x*+ax+a,=0

The coefficient of a; and a, be greater than zero. Hence applying the same principle, equation (22) can be
rewritten in the form

x2+f1x+f2 =0 ........ (25)
Where
fi =22+ pp + pi + 75 (26)
1926217 Un
5 = —fnfh—'um+/12 + Aty + Ay + AT + Ul + Trpi 27)
m

Since f; > 0, the criteria requires that f, > 0. Hence to achieve that we perform some algebraic
manipulation to obtain.

up + 76 )y 2R
fz=—%H(Muﬁuﬂq)+um(uh+rf)
m

= —Rfym(yh + Tf) + ym(uh + Tf) + /1(/1 +up +pum + Tf)

It is observed that for f; to be greater than zero requiresRy < 1.
Similarly, equation (23) is written in the form

x% +myx + my=0

Which implies
my =24+ pp+ Uy 1+ Ty,
2 £2
m2=—W+AZ+(uh+um+rm+n)A+(rm+ J77% 1/ (28)

Since m, > 0, the criteria requires that m, > 0. Hence to achieve that we perform some algebraic
manipulation to obtain.

+ 1 + Ty L Ui R
o "HZ) REI AU 4+ fo + T i G T+ 1)
hMm

=AA +pup + 1+l + T) + ey (U + Ty 1)1 — Ry ]

m, =

In a similar manner, equation (24) can be rewritten in the form

x%+ z;x + z,=0

Implies
Zy =2+t up+py +tn+1, 29)
252
7, = = LI B2 Ay + Mt + AT, F ol + b (30)
m

11
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In order to makez, greater than zero,

Zy = _(ﬂh + Tz)nh.umRm + /1(/1 + 1458 + Hm + Tz) + .um(,uh + Tz)
= A+ pp + i + T2 + p (i + 7)1 — R,]

It is observed that for, f,, m,andz, to be positive in order to satisfy Routh-Huriwitz criteria requires that
Rf, RpyandR be less than 1 the condition that the various reproduction numbers be less than one indicates
that the disease free equilibrium is locally asymptotically stable.

3.1.3 Global stability at the disease free equilibrium for multi-infection model (Malaria-Zika-
Elephantiasis):

In this section, the global stability of the disease free equilibrium is proved as stated in the theorem below.
Theorem 3

The DFE(Sme) of system of equation (1) is globally asymptotically stable if R,;,; < 1 and unstable if
Rmzr > 1

Proof: We rewrite the model as

F 6
— = x(F,
dt
¢ 31)
—=y(F,G
it y(F,G)
F =1, I, 1, Ly Iy Ly Iz Ips Ly I TEPTEsents infectious class and un-infectious class as
G = Sy, R, Rr, R;, Syy. We define the two valued functions as y(F, G) with F € R and y(F, G) with
h o By Bz, Om
G € R5and are given by
OO |
%Sh_fmlm—(/‘h+'7)1m+ff1mf_l9f6_flw1 .1 _1926_21‘11
h N m zlmz Ny m
Yr0c1 9Ol 9,6,1
Msh - (,uh + Tf)lf —nm plf + Tmlmf + TZIZf P alf
Ny Ny Ny
9,6,1 9Ol
Z—”Sh_ (Tz‘l'llh)lz_ Ll pIz+TmImz _ﬁf(sflw
Ny Np + Trlyy N,z
n
9,6,1
e Im = (pn + 1+ T + 7)1 AR OmBmlp
Nh + Tflmzf - N Imz + N Iz
h h
A Im—(,uh+n+‘rm+‘rf)1mf+ Tylmay — 29z almf+ mOm plf
Ny Ny,
929210 OBl 9,61
L (un+ 7 + 1)y oy — mNm LY fo s
h h
mOmlp 9:8,1 9,8,
N sz—(,uh+17+rm+1'f+rz)lmzf+ ffwl 4 Y202
h Nh mz Nh mf
ImSm (L + Lnzy) 0687 (Ir + Izy) 9,0,(1; + Imzy)
N—Sm - Mmlp'N—Sm — Mmiw 'N—Sm = Umlq
h h n
and

12
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Tmlm - (Auh + lp)Rm
TfIf - (up + (P)Rf
Tzlz - .uth
N 9,8,1, 9,81,
I, + YR,, + oR; — Sy — UnSh — S, — S
V(F,G) = h m f N, h hoh N, h N, h 33)
OO (L + Iz + g + Inzy)
p— Sm
Ny
0585 (I + Iy + Ly + Lnay) ¢ 0,68,(L; + Iz + Lp + Imzf)s
N, m Ny, m

Hm - Aumsm

Now the reduced form of the system:

aG

asy, 9,..6,.1 9,6,1 96641
T My, + YRy + Ry — 2L — 1Sy — ZNZ 28, — fNiWSh
dR,,
dt
dR;
- Tele — (up + @)Rf
dR, (34)
dt = TZIZ - AuhRZ

dSp _ o o O (I + Lz + Ins + lmzf)s
dt m /'lm m Nh m
085 (I + Iy + Ly + Inay) ¢ 9,8,(I, + Ly + Ls + Lnzs) s
N m N m
h h

=Tl — (/’lh + 1»l’)Rm

F* = (S,’{, Ry, R R7, S,’;l) = (Z—: 0,0,0, Z—Z) is globally asymptotically stable equilibrium point for the
reduced form of the systemz—f =y(0, G). Therefore R,,(t) = R,,(0)e~#a*¥)t turns to zero as t — oo and
R¢(t) = Ry (0)e~(untolt also turns to Zero as t — o . In
Sp(®) = M + Y{Rp (0)e™#nt ¥} + o(Re(0)e~Hr+ @} —py {Z—: + [Sh(O) - Z—:]} e Hnt — Z—: as t —
oo, This asymptotic dynamics is independent of intital conditions in 2. Hence the convergence of the solution

(34) is global in Q. Truly y(F, G) satisfies the following two conditions given as 1’4 in [9] namely

1.x(0,G) = 0 and

2x(F,G) =TG- y(F,G), x(F,G) = Oonf2 (35)
-z 0 0 T, T, 0 z, 0 0
0 -2z, 0 0 T, T, z, 0
0 0 -z T, 0 T, 0 zq
0 0 0 -z 0 T, 0 0
r-p,y06)=[0 0 0 0 a0 R (36)
0 0 0 0 -z, T, -0 0 0
0 0 0 Z, z, 0 -z, 0 0 0
z, 0 0 0 0 z, -u, O 0
0 z, 0 0 0oz, 0 -u, O
0 0 Zs 0 Zs 0 0 —-u,

13
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858, 9,68,8, 9558,
z, =1 +Tm+77 ,Z :%,Z =\y, +7,),z, =——"—,z. = (U +Tz ,Z :;’
1 (h )2 N, 3 (h f)4 N, 5 (h )o N,
— — _ _ lgfé‘flw _ 8252111
Z7—(ﬂh+77+7m+7z)28—(ﬂh+77+7m+7f)’z9—(ﬂh+7z+7_f)’zlo_ 2 = >
Nh Nh
lgmé‘mnm#1 lgf‘é‘f‘nmﬂh lgzé‘znmﬂ
ZIZZ(ﬂh+77+Tm+Tf+Tz)Zl3: tzy = »Zs = ’
thum thum thum
S
a, 1——”j+ a,+a. ),
(13 va)
S
a,|l-—L|+(a, +a.)I
S [ Nh] ( m z) f
S
a.|1- —”] +a, +a, )l
z m f z
13 s ()
_ azaz[alm afé‘fIWIMZ _ amdmlplz
Nh Nh Nh
o a,6,0,1, esll, a,5,1,1,
N N N
7.(F.G)= ! ! " where i =1,2,3...... 10.
a6l d, a6, 11, a,61.]1.
— + —
Nh Nh Nh
amamlplzf afdflwlmz azé‘zlalmf
Nh Nh Nh
a,s, (1, +1,,) 1= Sh

S
a0, ([f + 1,y )( _N_th

a8 (1.+1,, )[1 - ;—ZJ

.(37)

It is shown thaty,(F,G) < 0, ¥s(F,G) < 0, ¥c(F,G) < 0 andy,(F,G) < 0 and so the conditions in (35) are
not met. Hence the DFE &,,,smay not be globally asymptotically stable ifR,,; < 1.

3.1.4 Bifurcation

To determine the endemic equilibrium of the system (1) involves tedious computation. And as result of this,
the Center manifold theorem as used [10] is applied in this situation. The system of equation (1) can be
rewritten in a dimensionless state variables of the Multi-infection model as follows:

X1 = Spy Xy = I, X3 = Ifrx4- =1;,X5 = Iy Xg = Imfrx7 = Ifz'xB = Imfzrx‘) =Ry,

X10 = Rp, %11 = Ry %15 = Spy Xq3 = Ip, X194 = Ly, X15 = I

The system (1) can be written in a vector form as

dXi_FX
= F )

14
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Here,X; = (%1, X2, %3,,,,,X15)" F = (fi, f2 30000, fis)"

The system (1) is now as follows

dx, I OmX13 9,0,%15 Vpbrxqy
Eznh‘l'd’%"‘(l’xw_%%_#h’ﬁ_ ZI\;h X1 — N, X =f
dx;  Ombmxq3
—_— =X — + 0+ Tp)xy + Trxg  UrOr¥ia U,6,%15
dt N, 1~ (40 + ), fﬁ——fl\’;h Xy + TyXs — —— ¢ = f,
dx;  9pbpxis ImOmX13 9,0,%5 9,6,%15
EZN—hxl_‘uth—%X3+me6_‘[fx3+ 21\7}[ X7 — Zl\ih x3=f3
dx, 9,6,%5 UpnOmX13
— =X — T Xy —————— X4 + Ty X V854
dt Nh 1 TzX4 Nh 4 TmXs +fo7 _ f[\]/ch X4 — UnXa :ﬁ}
de 19z(sles
7S _ - 9ebrx 9,0 X
It N, Xs — Tyx5 — (U, + 1n)xs + 10— fAJ; 14x5 + mNm 13 Yo — Tyxs = f
h h
de l9f6fx14
76 _ s, _ 9,6,x 9,0,
dt N, X2 T 1% (n + M + T,Xg — 21\7 b Xe + mNm = X3 = Tm¥e = fo
h h

dx; _ U,0,%15

_ — 9,0 X Y90, x
dt Ny, Y3 T TERYT 4 g — mth =+ fl\‘lfh Xy — Ty = f7
dxg  Upbmxg3
8 _TmmAs . _ - + Ir0rx 9,0,x
at N, X7 — TmXg — (U +1M)xg — Tpxg + f]\)]‘h 14 s+ zl\ih 15 g — Ty%e = f
dxq ....(38)
T TmXe — (Un + P)xg _ f
dxqg
—— =Tx3— (Up + P)Xq0
dt = fio
dxiq
dt =T, — PpX11 = f1a
dxi, e — IO (X6 + x5 + x¢ + xg) o Ve6r(x3 + X6 + X7 + Xg) .
dt m .um 12 Nh 12 Nh 12
9,0, (x, + x5 + X7 + xg)
- N X12 = f12
h
dxiz3 _ ImOm(xz + x5 + X6 + Xxg) ey
dt N, 12 — HmX13 = fis
dx;,  O0p(x3 + X6 + X7 + Xg)
= X12 = UmX14 = f1a
dt Ny,
dx;s  9,6,(xs + x5 + x7 + xg)
dt = N, X12 — UmX1s = fis

Np=x;+x,+x3+x, + x5+ X6+ X7+ xg + X9+ x19 + x1a0d N,,, = X495 + X153 + X4 + X5

15
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With bifurcation parameter £* = 92. Here, consider a situation when R,,,, r =1 and assuming that R, is
greater than both R, and Ry, then solving for f* at R, = R;pq = 1 gives

* (Up+n+Tm) T s,
= T+ Tm)Mpbtm 39
ﬁ 51211nm#h ( )

Here, the method involves evaluation of Jacobian matrix at the system (1) at the disease free equilibrium
denoted by&,,¢,. This becomes

-, 0 0 0 0 0 0 0 wv @ 0 0 —b, =-b, -b,
0 -b, 0 0o . 7z, 0 0 0 0 0 0 b 0 0
0 0 -b, 0 0o 7, . 0 0 0 0 0 0 b 0
0 0 0 b, 7, 0 7z, 0 0 0 0 0 0 0 b,
0 0 0 0 -b, O 0 7, 0 0 0 0 0 0 0
0 0 0 0 0 by 0 z 0 0 0 0 0 0 0
0 0 0 0 0 0 by, 1z, 0 0 0 0 0 0 0

J=l 0 0 0 0 0 0 0 -b, O 0 0 0 0 0 0 |..(40)
0 7z, 0 0 0 0 0 0 ~by, O 0 0 0 0 0
0o 0 7z, 0 0 0 0 0 0 b, 0 0 0 0 0
0 0 0 . 0 0 0 0 0 0 -u, O 0 0 0
0 —by, by, ~—by, —by, ~—by, by, b, 0 0 0 =-b, 0 0 0
0 by 0 0 by 0 by by 0 0 0 by -u, O 0
0 0 by, 0 0 by by by 0 0 0 b, 0 -u, 0
0 0 0 by by by 0 by 0 0 0 by 0 0 -u,

b = p.b, =9,6,.b,=8,8,.b, = 8.5.,b; =0,b, = (u, +n+71,,).b; =0,b, = 0,b, = (s, +7,)

,by =0,b, =0,b, =0,b;, :(:Uh +Tz)’bl4 =0,b; =(/l;, N+, +7:)°bl6 =0,b; =0,by :(ﬂh T+, +rf)’

by =0,b,, :(ﬂh +7,; +Tz)>b21 =0,b,, :(,Uh tn+T, tT, +Tz)’b23 :(:uh +'/’)>b24 :(:Uh +¢’)>

98T 9,5,11, 96811 I I
= 2non I by = rOrt by b, =252 m by by = m by (19,,,5”1 +19262),b29 :L'uh(lgmgm +19/_5/_)’
L, 1, L, 1, I, p,, L, 1, I, p,,

H/’ﬂ# H”!ﬂ
by, = m(%@ +8,8,).by = ﬁ(&mﬁm +8.5. 48,8, )by =4, :byy = 0,by, =0, =0

The right eigenvector associated with the eigenvalues are given below

-5, 0 0 0 0 0 0 0 w @ 0 0 -b -b —b\(w
0 b 0 0 =z ¢, O 0 0 0 0 0 b 0 0 ||w
o 0 - 0 0 7, . 0O 0 0 0 0 0 b 0 ||wm
o 0 0 -, 7, 0O 7, 0 0 0 0 0 0 0 b ||w
0 0 0 0 —h, O O 7, O 0O 0 0 0 0 0 ||w
0o 0 0 0 0 -b, 0 T 0 0 0 0 0 0 0 ||w
o 0 0 0 0 0 b, 7, O 0 0 0 0 0 0 ||w

J=lo o o 0 0 0 0 -b, O 0O 0 0 0 0 0 ||w
0 7, 0 0O 0 0O 0 0 -b, O 0 0 0 0 0 ||w
0 ¢ 0 0 0 0 0 0 -b, 0O 0 0 0 0 ||lw,
0o 0 o0 . 0 0 0 0 0 0 -m O 0 0 0 ||w,
0 —by ~—by —by =by —by by, —b, 0 0 0 —b, 0 0 0 ||w,
0 by 0 0 by O by by 0 0 0 by -u 0 0 ||wg
0 0 by, 0 0 e b by O 0 0 b, 0 —g O ||w,
0 0 0 by, by, b, 0 b, 0 0 0 b, 0 0 —u, )\ (41)
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_ Ywg + Wy — U6, W13 — 6wy — 9,6,Ws
HUn
e = TWs + TpWe + U 61 W3
2 (un + 1+ Tp)
e = TmWe + T,W7 + 6wy
. =
(kn +77)
W = TmWs + Tew; + 9,6,wys
4 (:uh + Tz)
Wg = 0
wg =0
W7 = 0
wg =0
TmW2
(un +9)
_ TfW3
(tn + @)
T Wy
HUn
I iy, (O 6w + U 6pws + U,6,w,)
M, uz,
_ 19rn‘SmHm#hWZ
Y =T,
_ Upbpllyupws
Wie = My,
_ 19zé‘znmﬂhWA}
Wis = My,

Wy

Wq (42)

Wio

Wi =

Wiz =

The left eigenvector is the transpose of system (41) and this is also evaluated as follows

- 0 0 0 0 0 0 0 0 0 0 0 0 0 0 (v
0 -b O 0 0 0 0 0o =z, 0 0 -by by 0 0 || v,
0 0 -b O 0 0 0 0 0 7z 0 —by 0 by A
0 0 0 -b; O 0 0 0 0 0 7. -b, O 0 b, ||v
0 7. 0 =7, -bs O 0 0 0 0 0 —by by 0 by, || vs
0 7z, 7, 0 0 -b, O 0 0 0 0 by, 0 by by ||V
0 0 =z =z 0 0 -b, O 0 0 0  —by, by » 0 | v

J=| 0 0 0 0 ¢ =z 7, b, 0 0 0 -b, by by by, ||V

v 0 0 0 0 0 0 0 -b; O 0 0 0 0 0 || v
o 0 0 0 0 0 0 0 0 b, 0 0 0 0 0 || v
0o o0 o0 0 0 0 0 0 0 0 - O 0 Vi
0o o0 o0 0 0 0 0 0 0 0 0 b, by b, by ||V,

-b, b, O 0 0 0 0 0 0 0 0 0 -u, O 0 || v,

-b, 0 b O 0 0 0 0 0 0 0 0 0 —u, 0 [v,

-b, 0 0 b 0 0 0 0 0 0 0 0 0 0 —u, \vs) (43)
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Solving for the left eigenvector gives

v; =0
_ '9m5mnmﬂhv13
(N + T Tyt
vg = Oy S [l 11 V14
(llh + Tf)nhllm
_ 1925217m#h1715
* (up + T My
v = V2 + TmVs + 19m5mnm.uhvl3 + 19262Hm“hU15
(up +n+ 1 + T iy,
ve = TpVp + TmVs + O Oplyltp U1y + 9,8, 11 s V15
(un + 1+ T + T )i
py = T,V3 + Ty + O Ol iy V13 + O Op Il iy V14
(n + 75 + 7)) My,
Vg = TfUs + T,V + Ty + 19mé‘mnm.uhvw + 19f6fnm“hvl4 + 1926217mﬂhU15
(uh +n+t, +1+ TZ)thm

Uy

V4

179 = 0
1710 = 0
v, =0
v, =0
19m5mv2
Vi3 = u
m
YY)
193
Visa = u
m
19262774-
V15 =

After going through a lot of computation we arrive at

Thus the expression for a is given as

0°f, 0°f, 0°f; 0°f;
a = v;WiWy3 m T VW Wiy m + Uz3WiWyy m + V3W3Wi3 3

X30%;3
V3 W3W. ﬂ+vww ﬂ+vww ﬂ+vww ﬂ+
3W3Wis 91505 | 4W1Wi5 9x,50%, 4aWaWi3 9%,0%15 aWiWiy4 0%140%,
0°fs | 0 fe
VsWaWis |35 | T VeW2Wis

JECED 0 D 0 (N IO I
[0x,0%3] 0x30x4 63T 0x30x5 73T Ox, 045
owewe e | <2F L o [P0 ]y o [Cha ]y [Ohs ]

7WaWi14 9,014 13W2Wi2 9x,0x,, 14W3W12 0x;0%,, 15WaW12 9x,0%15

The non-zero partial derivatives of f associated with b is given as
0*f,
b=—"7-"-+—= >0
0x1500,, ™M1
It is observed that, for a > 0 andb > 0, the results satisfy theorem 1 stated above .Thus, it is locally

asymptotically stable and there exists a positive unstable equilibrium.
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3.2 Numerical bifurcation

This is a qualitative change in behaviour of a dynamical system produced by varying a parameter in the
equation. The state variables and the parameter descriptions are all in Tables 1 and 2 respectively. Backward
bifurcation is an important phenomenon in compartmental epidemiological models. The existence of such a
bifurcation suggests that the basic reproduction number itself is not sufficient enough to characterize or
decide whether Malaria, Zika virus and Elephantiasis will prevail or not and if the disease will become
endemic, it also depends on the initializes of the population involved. Thus, it is important to identify the
backward bifurcation and establish its threshold. We carried out bifurcation analysis to study the behaviour
of the model system (1) based on the results in the endemic equilibrium of the model state variables through
numerical simulation over chosen parameter values. It is important to note that the existence of the bi-
stability is not easy to simulate numerically. This is because a small interval of R, is required for the
occurrence of backward bifurcation and a range of parameters had to be chosen. The qualitative bifurcation
backward diagram describing the behaviour ofR,, is presented in Fig. 1 where 9, is taken as bifurcation
parameter.The result indicates that backward bifurcation, if R, is below unity then the disease control
depends on the initial sizes of the various sub-models system (1). However, reducing the R, below the
saddle —node bifurcation value which is less than 1 but greater than zero, may result in disease eradication.
However, this is guaranteed provided the disease free equilibrium is globally stable.

1.4

o8

o6

Force of Infection

o4

oz

04 0.6 0.8 1 1.2 1.4 1.6 1.8
Basic Reproductive Number {F—'{u}

Fig. 1. Description of the backward bifurcation of the model system (1) with J,,as the chosen
parameters

Epidemiologically, Fig. 1 implies that bringing R, below unity does not suffice for the eradication of multi-
disease. From the analysis of the existence of the endemic equilibrium, we have established that the model
system exhibits backward bifurcation when Ry, < 1.The existence of backward bifurcation indicates that in
the neighborhood of 1, forR, < 1, a stable disease free equilibrium co-exists with two endemic equilibria,
that is a smaller equilibrium (smaller number of infectious individuals) which is unstable and a larger
equilibrium (with a large number of infectious individuals) which is stable. These two endemic equilibria
disappear by saddle-node bifurcation when the basic reproduction number R, is decreased below the critical
value which is less than one but greater than zero.

In order to achieve the epidemiological goal of disease eradication, R, must be brought below the critical
value. The interpretation of this is that reducing the transmission rate or increasing treatment can lead to
disappearance of the backward bifurcation curve and in this case lowering R, below one is sufficient to
eliminate the disease from the population; A situation that will lead to forward bifurcation which is shown in
Fig. 3 and lowering R, below unity would be sufficient to make the disease free equilibrium globally stable.
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0.08

o2
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o 0.5 1 15
Basic Reproductive Number (R}

Fig. 2. Description of the forward bifurcation of the model system (1)
3.3 Sensitivity analysis

We now perform sensitivity analysis on the parameters of the model to determine which parameter will
increase or decrease the basic reproduction number (Ro) when it is increased by a small margin. It is

computed using the normalized forward sensitivity index. In terms of differentiable expression, it is defined
as follows

S=_5Ro Xf_m

otm  Ro

Where t,, is the parameter under consideration, Positive sensitivity index means an increase in that

parameter will lead to corresponding increase in the basic reproduction number(R0 ) . However, negative

sensitivity index means an increase in parameter will lead to a decrease in(RO ) .

Table 3. Sensitivity indices for the various model only parameters

R,.. Parameter values Sensitivity index Source
I, 800 —0.4655 Assumed
I, 1000 0.4857 [11]

L 0.00004 0.4857 [12]

U 0.1429 —0.9107 [13]

I 0.034 0.9974 Assumed
Om 0.6502 0.9974 Assumed
Tm 0.05 —0.4655 Assumed
n 0.05 -0.2428 Assumed
For R,,

I, 800 —0.4350 Assumed
9, 0.40 1.0012 Assumed
[ 0.12 0.10012 Assumed
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R, Parameter values Sensitivity index Source
T, 0.02 —0.4350 Assumed
I, 1000 0.4887 Assumed
Un 0.00004 0.4887 Assumed
Um 0.1429 0.8337 Assumed
For R
I, 800 —0.4363 Assumed
I, 1000 0.4848 Assumed
Un 0.00004 0.4880 Assumed
Um 0.1429 —-0.8337 Assumed
¢ 0.034 0.9987 Assumed
oy 0.6502 0.9987 Assumed
T 0.125 —0.4363 Assumed
i Sensitivity Index Profile for R
x .
% 0.0
£
o I, i t Hn 0, 5
Fig. 3a.
10 Sensitivity Index Profile for R .
x . “
% 0.0
£

-0.5

-1.0

1L,
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Sensitivity Index Profile for R_,

1.0

0.5

Index

0.0

Fig. 3c.

Fig. 3: Tornado plots of partial rank correlation coefficients (PRCCs) of parameters that influence the basic
reproduction number R, for the input using values in Table 3. Parameters with PRCC > 0 increases R, when
they are increased and those with PRCC < 0 decreases when the R is increased.

14

Infected Human Malaria Pop.

0 20 40 60 80 100

Time (Days)
Fig. 4. Shows the changes in the number of individuals with malaria for different values of 9,, andd,,

Fig. 4 track the changes in the population of individuals infected with malaria. It was observed that the
infected human population with malaria will increase if the probability of transmission of infection from a
mosquito with parasite infection to a susceptible human given that a contact between the two occurs. It also
increases as well as if there is also an increase in the number of bites of humans per Anopheles mosquito per
unit time. With parameter values shown in Table 3 and also using the following values for the state
variables; S, =030,1, = 02,1, =02,1,=02,1,, =021, =021,=021,, =02 R, =0, R,k =0,R, =0,5, =
040, I, =0.1,1, = 0.1,1, = 0.1, we observe that when we set the values for both ¥,, and &,, to 0:1 the graph
settles at the disease free equilibrium shown by the magenta colour and this is due to the small probability of
transmission as well as the low occurrence of bites of humans by anopheles mosquito. But if the values of
9, and 6§, is increased to 0.3,0.5,0.7, and 0.9, the infected human population with malaria also increase as
respectively shown by the black, green, red and blue line in the graph. Therefore, for an increases in
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probability of transmission and the number of bites of humans by anopheles mosquito there will be a
corresponding increase in the number of individuals infected with malaria.

0.15
|

Co-Infected Zika/Malaria Human Pop.
0.10
|

0.00
|

Time (Days)

Fig. 5. Shows the changes in the number of individuals with malaria and Zika virus for different
values of 9,,,9,,6,,,, 3,.

For the given parameter values shown in Table 3 and using the values for the state variables shown in the
explanation of Fig. 4 and also varying the values for 9,,,9,, §,, and &, we determine their effect on the co-
infected malaria and Zika compartment. It was noticed that if the probability of transmission of bothd,, and
9, are high and relate positively with also a high number of bites of humans by mosquito (that is a
corresponding high values of 9,, and J,) then the probability of one being infected with both disease is very
high. Fig. 5 tracks this as no assertion, it was observed that when we set 9,,=9, = 6,, = §, = 0.1
respectively the magenta line, the level of transmission is not effective and the individuals in the co-infected
population tends to zero. However, the number of individuals in the co-infected population increases when
the values are increased to 0.3, 0.5,0.7 and 0.9 shown by their respective colours black, green, red and blue.
In the case of the multi-infected compartment, it was observed that the value of the state variable (I,,;¢) has
more effect on the compartment compared to the major transmission parameters that has to do with the
multi-infected differential equation (9,9, ¥, 6, 85 and §,) as shown in Fig. 6a and 6b respectively.

Multi Infected Human Population.

0 20 40 60 80 100

Time (Days)

Fig. 6a. Effect of state variable values on multi-infected population
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Fig. 6(b). Effect of state variable values on multi-infected population

Fig. 6 shows the effect of varying the values of the state variable (a) and parameter values (b).

From Fig. 6a, it is observed that when you set the value of the state variable of the multi-infected
compartment (I,,¢) to 70, the disease settles at the endemic state and this increases when the value is
further increased from 70 to 90,110,130 and 150 as represented by the respective magenta, black, green, red
and blue line. However, in Fig. 6b, it is observed that no matter how much you increase the corresponding
values for the transmission parameters for the various disease (that is malaria, elephantiasis and Zika)
indicated by ( 9,9y and 9,)from 0.1,0.3,0.5,0.7 and 0.9 together with an increase in their corresponding
number of bites per unit time (6,,, 6 and §,) also from 0.1,0.3,0.5,0.7 and 0.9 shown by the magenta,
black, green, red and line respectively, the graph tends to zero.

4 Conclusion

In this article, the multi-infection model was formulated to study the transmission dynamics of Malaria, Zika
virus and Elephantiasis disease in the Malaria endemic region like Kedougou in Senegal and other parts of
the world that may experience multi-infection in future. Stability analysis was performed to determine both
disease free and endemic equilibrium. Investigation of the existence and stability of equilibria was also
performed, the model was found to exhibit backward bifurcation so that for R less than unity is not
sufficient to eradicate the disease from the population and there is the need to lower R, below a certain
threshold for effective disease control. Sensitivity analysis was performed to determine parameters that have
high influence on the basic reproduction number.
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