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ABSTRACT 
 
This study aimed to modify a webcam by replacing its near-infrared (NIR) blocking filter to a low-cost 
red, green and blue (RGB) filter for obtaining NIR images and to evaluate its performance in two 
agricultural applications. First, the sensitivity of the webcam to differentiate normalized difference 
vegetation index (NDVI) levels through five nitrogen (N) doses applied to the Batatais grass 
(Paspalum notatum Flugge) was verified. Second, images from maize crops were processed using 
different vegetation indices, and thresholding methods with the aim of determining the best method 
for segmenting crop canopy from the soil. Results showed that the webcam sensor was capable of 
detecting the effect of N doses through different NDVI values at 7 and 21 days after N application. In 
the second application, the use of thresholding methods, such as Otsu, Manual, and Bayes when 
previously processed by vegetation indices showed satisfactory accuracy (up to 73.3%) in 
separating the crop canopy from the soil. 
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1. INTRODUCTION 
 

Recent developments in sensor technologies 
have made digital cameras more and more 
efficient and affordable. These systems have 
been widely used as a versatile remote sensing 
tool for many applications due to its advantages 
over film-based aerial photography and satellite 
imagery [1]. The main advantage of digital 
photography lies in simplified image processing 
[2]. Among the advantages of digital photography 
from these cameras are its relatively low cost, 
high spatial resolution and near-real-time 
availability of imagery for visual assessment and 
image processing.  
 
Digital cameras are fitted with either a charge-
coupled device (CCD) sensor or a 
complementary metal oxide semiconductor 
(CMOS) sensor that are photoconductive 
devices. These sensors are sensitive to near-
infrared (NIR) wavelengths, however, most of 
these cameras are fitted with a blocking filter to 
this wavelength. Thus, typically these images 
present only the red, green, and blue (RGB) 
bands, which are sufficient to represent colors in 
the visible portion of the spectrum (400 – 700 
nm), as recognized by the human vision [3]. In 
most cases, the digital photographs are recorded 
in joint photographic experts’ group (JPEG) or 
tagged image file format (TIFF), and the RGB 
channels are obtained through image 
processing. 
 
The use of images with RGB and NIR bands is 
very common in agricultural applications, 
especially for vegetation monitoring. Many 
vegetation indices, such as the normalized 
difference vegetation index (NDVI) [4] require 
spectral information in the NIR and red bands, 
even though the RGB bands could be sufficient 
for some applications [5]. Since most consumer-
grade cameras only provide RGB bands, NIR 
filtering techniques can be used to convert an 
RGB camera into a NIR camera. Moreover, it is 
possible to replace the blocking filter by a long-
pass infrared filter on standard CCD or CMOS 
sensors for obtaining NIR images [6]. 
 
Over the years, numerous systems for collecting 
images based on cameras or webcams have 
been developed and modified to obtain NIR 
information across multiple domains. Most 
systems included analysis of the nutritional 
status of agricultural crops [7], disease detection 

[8], yield estimation [9], and weed identification 
[10]. In addition, other authors highlight the 
possibilities of using vegetation indices combined 
with segmentation techniques and texture 
analysis for obtaining data of interest, such as 
crop canopy and soil [11,12]. Furthermore, these 
cameras can be mounted in a stationary 
installation [13] or onboard a light aircraft or 
unmanned aerial vehicle, a deployment which 
was made possible due to its low weight [14,15]. 
 
Given the many possibilities of using images 
from RGB or modified cameras to access the 
NIR band, the use of artificial vision systems 
through image processing has enabled the 
extraction of information of interest, which proves 
to be a great tool for application in the 
agricultural environment. However, there are still 
factors, such as different ambient lighting 
conditions, plant shading and complex 
background that are challenges to the success of 
using low-cost images for agricultural 
applications as described in other studies 
[16,17]. Therefore, in view of the challenge to 
obtain these images with good quality for solving 
problems, the present study aimed to modify a 
webcam to obtaining data from the NIR band and 
to evaluate its performance over different 
agricultural applications.  
 

2. MATERIALS AND METHODS 
 

The experiment was conducted at the Federal 
University of Viçosa, Viçosa Campus in Minas 
Gerais, which is located among the coordinates: 
20° 45' 14 "(S) and 42° 52' 54" (W), 649 meters 
above sea level. The image acquisition system 
comprised two C3 Tech model HB 2105 
webcams that produced images in JPEG format 
(640x480 pixels). 
 
In order to obtain NIR images, a modification was 
carried out in one of the webcams by removing 
the NIR blocking filter and adding an RGB 
blocking filter, which was made from the 
magnetic material of a floppy disk (common 
diskette) as proposed by Micha et al. [18]. Thus, 
the unmodified webcam, named in this study as 
RGB webcam and the modified NIR webcam 
were tested on two different applications. First, 
the performance of the webcam's images to 
differentiate NDVI values according to different N 
rates was verified. Second, these images were 
processed for separating the crop canopy from 
the soil using different thresholding algorithms. 
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In the first application, a field experiment was 
carried out using the Batatais grass (Paspalum 
notatum Flugge), where a randomized block 
design with five treatments and five replications 
was adopted. Treatments consisted of five 
nitrogen (N) doses in the form of ammonium 
sulfate ((NH4)2SO4), which corresponded to 0, 
40, 80, 120 and 160 kg ha-1. Plot dimensions 
were 1 m × 1 m.  
 

Furthermore, the digital images were captured 
with both webcams at a height of 3 m from the 
ground using a ladder, with the webcam being 
held by one of the authors, and always ensuring 
that the image was taken to cover the entire area 
of the experimental plot. Data acquisition was 
performed twice with images being captured at 7 
and 21 days after the N application. All images 
were geometrically corrected through the 
projective transformation technique using the 
Matlab

®
 software, where reference points were 

defined at the boundaries of each plot. Lastly, the 
NDVI [4] was calculated by Equation 1 for each 
experimental plot.  
 






nir r
NDVI

nir r
                                               (1)                                                                   

 

Where: 
 

nir: near-infrared band; and r: red band. 
 

In addition, the portable chlorophyll meter 
(SPAD-502, Konica Minolta Sensing, Tokyo, 
Japan) was used to measure the SPAD index 
(SI) [19]. Thus, at the 7 and 21 days after N 
application, 30 readings per plot were taken, 
where the average of all readings was 
considered as a result. In this study, the SPAD-
502 readings were assumed to be the reference 
of chlorophyll content for the purpose of 
validating the sensitivity of the webcams in 
detecting the effect of N doses over the Batatais 
grass. 
 
In order to verify the significance of the proposed 
treatments, the results were submitted to 
analysis of variance (ANOVA) through the F-test. 
Lastly, regression models were adjusted to 
assess treatment effects on the results of the 
SPAD index readings and NDVI values. All 
analyses were carried out using the ASSISTAT, 
version 7.7 free software [20]. 
 
In the second application, the RGB images were 
used for the ability to differentiate crop canopy 
from soil under different growing conditions. 
There were 30 images captured for this study 

and all of it belonged to maize crops at 
the V4 vegetative stage (four expanded leaves), 
which were grown under different soil cover 
conditions, such as conventional planting 
system, and no-tillage system with coffee husk 
and straw residue. 
 
The digital images were captured at a height of 
1.5 m from the ground and then stored as 24-bit 
colour images with resolutions of 640 × 480 
pixels saved in RGB colour space in the JPEG 
format. Then, to discriminate between the object 
of interest (plant) and background (soil), 
algorithms were developed using different 
thresholding methods, such as Otsu [21], Manual 
threshold selection, and Bayes [22]. 
 

Initially, two methods were used to accentuate 
the green color of plants in RGB images. First, in 
the absolute green method, the pixel color 
distance (PCD) value was obtained through the 
Euclidean distance (ED) calculation using 
normalized values from the red and green bands 
of each pixel, as shown in Equation 2 [23]. 
 

( ²) [ ( ) 1]²  PCD pixel r pixel g                  (2)  

 

Where, 
 

r: pixel value from the red band; and g: pixel 
value from the green band. 

 
Second, the excess green normalized index 
(ExG) was obtained as it is shown in Equation 3 
[24].  
 

bgr

brg
ExG





2                                            (3)  

 
Where,  
 

g: pixel value from the green band; r: pixel 
value from the red band; and b: pixel value 
from the blue band. 

 
Subsequently, the Otsu, Manual, and Bayes 
methods were applied to each image. As a 
result, all images showed some noise, which was 
removed by using a median filter with a 3 m × 
3 m window size. Moreover, the ground truth 
segmentation model for comparison of the three 
algorithms was developed from the K-means 
method.  
 
Generally, this method can be employed in 
different areas including image processing, 
where it can be used as a thresholding method 
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based on data clustering. This method partitions 
n pixels into k clusters, where k is an integer 
value that holds k < n.  The k-means algorithm 
classifies pixels in an image into k number of 
clusters according to some similarity feature, 
such as the grey level intensity of pixels, and 
distance of pixel intensities from centroid pixel 
intensity [25]. 
 
The algorithm is based on six steps:  
 
1. Selection of k clusters (k is a user-defined 

parameter); 
2. Calculation of the number of image pixels N; 
3. Selection of k initial pixel intensity centroids 

μj;  
4. Calculation of distances Dij between pixel xi 

and each centroid μj as given in Equation 4. 
 

( )²ij i jD x                                                 (4)      

 

Where:  
 
i = 1 ÷ N; and j = 1 ÷ k. 

 
Particular pixel xi is then classified to cluster cj to 
which centroid it has the smallest distance.  
 
5. Recalculation of centroid positions μj as a 

mean value of all pixel intensities, which 
belong to cluster cj as shown in Equation 5. 

t

1

1
μ *

jl

i

ij

x
l 

 
                                                 (5)                              

Where,  
 

lj is the number of pixels that belong to 
cluster cj.  

 

6.  Steps (4) and (5) are repeated until the 
classification of the image pixels does not 
change.  

In this study, the value of k (number of clusters) 
was defined as two, where the first represented 

the crop canopy and second the soil. Then, in 
order to validate the performance of each 
thresholding method, the accuracy index, 
proposed by Coy et al. [26] was computed using 
Equation 6.  
 

�������� = 100 ×
�∩�

�∪�
                                (6) 

 

Where:  
 

A: represents the set of pixels in the ground 
truth image that is marked as crop canopy; 
and; B: represents the set of pixels in the 
segmentation that is marked as crop canopy. 

 

This measure of accuracy determines how 
closely the segmentation matches the ground 
truth, with 100% indicating an exact match and 
perfect segmentation. Thus, to verify the 
significance of the proposed methods, the 
accuracy means were compared by the Students 
t-test at a 5% significance level (α <0.05). 
 

3. RESULTS AND DISCUSSION 
 
3.1 Application 1 

 
Average values of the SI and NDVI as a function 
of the nitrogen doses, as well as its respective 
coefficient of variation (CV), are shown in Table 
1. It can be observed that CV values for NDVI 
index tended to be higher than to SI values at 7 
and 21 days, which may be justified by the low 
uniformity of the Batatais grass on the study 
area. Furthermore, the fact that SPAD readings 
are done by direct contact with the leaf surface 
might have decreased its CV. In addition, its 
higher number of readings per plot also 
contributes to decrease CV values, which is not 
done in the NDVI calculation, since only one 
RGB, and NIR images are used per plot to obtain 
the index. 

 
Table 1. Descriptive statistics of the SI (SPAD index) and NDVI (normalized difference 

vegetation index) at 7 and 21 days after N application 
 

Time Days N rates (kg ha
-1

) CV 
0 40 80 120 160 (%) 

 SI (SPAD-502)  
7  40.22 43.17 43.20 44.95 47.00 3.67 
21 37.95 44.92 48.12 45.82 46.95 6.55 
 NDVI (webcam)  
7  0.19 0.23 0.27 0.31 0.33 26.4 
21 0.23 0.25 0.26 0.22 0.39 17.9 

CV: Coefficient of variation 
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Even showing sensitivity to the applied N rates, 
NDVI results from both dates (7 and 21 days) 
were relatively low, which might be associated 
with low uniformity of the vegetation, and 
absence of radiometric calibration. Petach et al. 
[27] highlights that using a reference panel for 
standardization or the inclusion of a gray 
Spectralon (or other diffuse reflectors) panel 
within the field of view of the webcam would 
potentially be of value for calibration under 
changing illumination conditions (e.g. cloudy vs. 
sunny days). Thus, a radiometric calibration 
could increase the sensitivity of the webcam, 
which would result in higher NDVI values and 
lower weather interference. However, the results 
obtained here suggest that even without this 
calibration, the webcam was still capable of 
detecting differences among treatments. 
 

The regression analyses carried out to access 
the effect of nitrogen doses on SI and NDVI 
values at 7 and 21 days after N application 
showed a linear (7 days) and quadratic (21 days) 
response for both indices. Moreover, both indices 
were significant at 1% probability with a 
coefficient of determination (R²) of 0.93 (SI, p-
value: 0.0001), and 0.98 (NDVI, p-value: 0.008), 
respectively. In Fig. 1 it is possible to observe the 
linear increase of the SI and NDVI values as the 
N doses increases at 7 days after the fertilization. 
 

When observing the SI values at 21 days (Fig. 
1), a linear increase in its values is also observed 
up to the dose of 80 kg ha

-1
 of N. However, from 

the 120 kg ha-1 of N, SI values showed a 
decrease, which demonstrates a quadratic 
response to different N doses with a R² of 0.8931 
(p-value: 0.0068). Similarly, NDVI values showed 
a linear increase up to 80 kg ha-1 of N. Although, 
when looking at 120 and 160 kg. ha

-1
 N doses, 

NDVI response showed a high variation for both 
treatments, which resulted in low correlation (R² 
= 0.67) (p-value: 0.0169). This high variation in 
the NDVI response is possibly associated with 
the low uniformity of the grass, as well as to 
changes in weather and illumination conditions, 
which might have influenced the visual quality of 
the images. Even though there was a high 
variation in response to these treatments, SI and 
NDVI values at 21 days were also significant at 
1%, and 5% probability, respectively. 
 
In general, this quadratic response for both 
indices at 21 days indicates that, in this range, 
increasing the nutrient concentration (nitrogen) 
would not reflect on grass growth, and it 
represents the plant luxury consumption. 
According to Baesso et al. [28], luxury 
consumption is defined as the N storage in the 
vacuole instead of its participation in the 
chlorophyll molecule. The same authors also 
point out that, excessive consumption is not 
always undesirable since it allows plants to 
accumulate nutrients when its availability is high. 
In this case, a gradual release is performed by 
the plant, when the absorption is insufficient to 
support its growth. 

 

  
 

 

 
 

Fig. 1. SPAD index (SI) and NDVI index as a function of topdressing nitrogen doses 
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Results obtained in this study showed that the 
webcam sensor evaluated was capable of 
detecting the effect of N doses over the Batatais 
grass for both dates, at 7 and 21 days after N 
application. The SPAD-502 used here as a 
reference method presented better results, which 
was expected due to its higher sensitivity and 
correlation with the leaf chlorophyll content.  
 
Compared to other low-cost, sensor-based 
methods for monitoring crops phenology, such as 
radiometric instruments based on LED sensors 
[29], or light-emitting diodes [30], a clear 
advantage of using webcams is that it can yield 
images with good spatial resolution. This enables 
tracking the phenology of different crops by 
breaking the image into different regions of 
interest (e.g., crops and weeds) [27]. On the 
other hand, there is no doubt that higher-quality 
spectral imaging could, potentially, be obtained 
from existing, commercially available 
multispectral cameras. However, for budget-
limited observational and experimental studies, 
the system proposed here may represent an 
acceptable compromise, given its low cost and 
promising performance.  
 

3.2 Application 2 
 

Initially, performance analyses of segmentation 
algorithms were based on visual analysis by 
comparing the proposed methods to the 
reference binary image. Then, the accuracy 
index (equation 6) was used for comparing each 
result with that obtained through the K-means. In 

general, segmentation methods when combined 
with the ExG index showed higher accuracy 
results than those methods preceded by the 
Euclidean distance (ED). Moreover, the highest 
overall mean accuracy (80.3%) was obtained 
using the Otsu method preceded by ExG index. 
On the other hand, the lowest accuracy mean 
was observed using the Manual method with the 
ED index (73.3%).  
 
These results corroborate with [31], which 
observed that images segmented by the Otsu 
with the ExG index showed 88% accuracy when 
compared to other indices using RGB bands. In 
another study [32], these authors when using the 
Otsu method preceded by different indices, such 
as ExG, ExR (excess of red), and another index 
based on the CIE l*a*b color space obtained 
accuracies of 74%, 77.2%, and 62%, 
respectively. This demonstrates that the contrast 
provided by vegetation indices is of great use to 
highlight the crop canopy from the soil, and could 
yield in high accuracy segmentation. 
 
When analyzing the accuracy of each image, the 
highest values were observed for the Manual and 
Otsu method when preceded by the ED index, 
which resulted in 95.9% of accuracy for both 
methods. According to Nejati et al. [23], the ED 
method is based on the search for homology 
among plants, where after obtaining the spectral 
energy of plant content; its similarity is verified 
through the Euclidean distance measurement. 
Fig. 2 shows examples of resulting images from 
the proposed segmentation algorithms. 

 

 
 

Fig. 2. Images processed by the proposed segmentation algorithms. (a) RGB image, (b) 
Euclidean distance, (c) ExG index, (d) K-means, (e) Bayes with ED, (f) Bayes with ExG, (g) 

Manual with ED, (h) Manual with ExG, (i) Otsu with ED, and (j) Otsu with ED 
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Table 2. Accuracy results from the proposed segmentation algorithms 
 

Methods Accuracy (%) 
 Max Min SD CV Mean 
Otsu + ED 95.9 32.0 25.65 33.28 77.1 
Otsu + ExG 90.9 61.6 9.09 11.33 80.3 
Manual + ED 95.9 32.0 23.43 31.99 73.3 
Manual ExG 93.5 55.9 13.05 17.12 76.2 
Bayes + ED 93.7 22.5 26.15 34.72 75.3 
Bayes + ExG 90.9 61.6 16.11 21.19 76.0 
Max: maximum; Min: minimal; SD: Standard deviation; CV: coefficient of variation. ED: Euclidean distance; 

ExG: Excess of green 
 

In order to determine the most accurate method, 
the data set was submitted to the Student t-test 
at 5% significance level. Results from the 
ANOVA showed that statistically, there was no 
difference in performance among the proposed 
methods when compared to each other. 
Although, the highest CV values were obtained 
through Bayes (34.72%), and Otsu methods 
(33.28%), when preceded by the ED index as it 
is shown in Table 2. 
 
These results can be justified by the adverse 
illumination conditions during the image 
acquisition period, which resulted in erroneous 
segmentation due to shaded areas in images. 
Thus, the Otsu, manual, and Bayes 
segmentation methods presented satisfactory 
accuracy (up to 73.3%) for separating crop 
canopy from the soil when preceded by the ExG 
and ED indices. Even though a satisfying 
performance has been achieved, there are still 
factors, such as the lighting conditions, plant 
shading and complex background that are 
challenges to the success of segmentation. 
 
Thus, the application of low-cost consumer 
cameras for process control as an element of 
precision farming could save fertilizer, pesticides, 
machine time, and labor force. Although research 
activities on this topic have increased over the 
years, high camera prices still reflect on low 
adaptation to applications in all fields of 
agriculture. Smart cameras adapted to 
agricultural applications can overcome this 
drawback. 
 

4. CONCLUSION 
 

The webcam sensor was capable of detecting 
the effect of nitrogen doses over the Batatais 
grass through different NDVI values at 7 and 21 
days after N application. Regarding the use of 
webcam images in agricultural applications 
through thresholding methods, it was possible to 

observe that the segmentation process over 
RGB images becomes challenging due to non-
uniform illumination conditions, and complex 
image background. Thus, the use of thresholding 
methods, such as Otsu, Manual, and Bayes 
when previously processed by the ExG and ED 
indices can satisfactorily separate the crop 
canopy from the soil. As a recommendation for 
future studies, both images (NIR and RGB) can 
be used to calculate vegetation indexes to 
perform studies on phenology or plant’s 
nutritional status. Also, the RGB images can be 
processed using segmentation algorithms to 
quantify plant diseases or leaves damaged by 
pests in crops. 
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