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Rationale and objectives: Considering the great insufficiency in the survival

prediction and therapy of amyotrophic lateral sclerosis (ALS), it is fundamental

to determine an accurate survival prediction for both the clinical practices and

the design of treatment trials. Therefore, there is a need for more accurate

biomarkers that can be used to identify the subtype of ALS which carries a

high risk of progression to guide further treatment.

Methods: The transcriptome profiles and clinical parameters of a total of 561

ALS patients in this study were analyzed retrospectively by analysis of four

public microarray datasets. Based on the results from a series of analyses

using bioinformatics and machine learning, immune signatures are able to

be used to predict overall survival (OS) and immunotherapeutic response

in ALS patients. Apart from other comprehensive analyses, the decision

tree and the nomogram, based on the immune signatures, were applied to

guide individual risk stratification. In addition, molecular docking methodology

was employed to screen potential small molecular to which the immune

signatures might response.

Results: Immune was determined as a major risk factor contributing to OS

among various biomarkers of ALS patients. As compared with traditional

clinical features, the immune-related gene prognostic index (IRGPI) had a

significantly higher capacity for survival prediction. The determination of risk

stratification and assessment was optimized by integrating the decision tree

and the nomogram. Moreover, the IRGPI may be used to guide preventative

immunotherapy for patients at high risks for mortality. The administration

of 2MIU IL2 injection in the short-term was likely to be beneficial for the

prolongment of survival time, whose dosage should be reduced to 1MIU if the

long-term therapy was required. Besides, a useful clinical application for the
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IRGPI was to screen potential compounds by the structure-based molecular

docking methodology.

Conclusion: Ultimately, the immune-derived signatures in ALS patients

were favorable biomarkers for the prediction of survival probabilities

and immunotherapeutic responses, and the promotion of drug

development.

KEYWORDS

amyotrophic lateral sclerosis, prognosis, peripheral immune cells, immune
signatures, immunomodulatory response

Introduction

As a devastating neurodegenerative disease, amyotrophic
lateral sclerosis (ALS) results in rapid degeneration of motor
neurons and tends to kill victims mainly through ventilatory
failure (Munsat et al., 1988; DiPALS Writing Committee,
and DiPALS Study Group Collaborators, 2015), for which
no effective therapy exists to improve the quality of life,
or avoid or reverse the disease progression (Ravits and La
Spada, 2009; Gouel et al., 2022). A substantial amount of
phenotypic variability has been documented in ALS (Hoyer,
2001; Groeneveld et al., 2003; Gijselinck et al., 2016), including
the onset sites, ages of symptom onset and rates of disease
progression, which poses a major challenge for clinical practice
and clinical trials (Magen et al., 2021). Therefore, there is
a strong demand for finding accurate predictors of disease
progression to identify different subtypes, and to conduct
personalized therapy by distinguishing the subtypes. Ideal
biomarkers should exhibit high specificity and sensitivity
to discriminate survival benefit during the progress and
prognosis of disease course. To date, numerous studies
have identified a few biomarkers to distinguish ALS from
healthy individuals, frontal temporal dementia, and other
neurodegenerative diseases (Thompson et al., 2018; Calvo
et al., 2019; Yamada et al., 2021); furthermore, biomarkers
developed by some of these studies, are of complexity and
difficulty in access of tissue, and measurement (Agosta et al.,
2018; Thompson et al., 2018; Agnello et al., 2021; Song et al.,
2021). As a result of these studies, and given the fact that

Abbreviations: ALS, amyotrophic lateral sclerosis; IRGPI, immune-
related gene prognostic index; OS, overall survival; GEO, gene
expression omnibus; IRGs, immune-related genes; IL-2, interleukin-2;
K-M, Kaplan–Meier; IRPGs, immune-related prognostic genes; LASSO,
least absolute shrinkage and selection operator; log2FC, log foldchange;
C-index, concordance index; DCA, decision curve analysis; tAUC, time-
dependent area under the curve; DEGs, differentially expressed genes;
CNS, central nervous system; PPI, protein-protein interaction; BBB,
blood-brain barrier; PCA, principal components analysis; ALS-FRS, ALS
functional rating scale; FVC, forced vital capacity.

ALS is increasingly being viewed as a multisystem disease, the
development of a panel of biomarkers that can reflect accurately
the characteristics of pathology is seen as a critical goal, not only
for diagnostic purposes but also for prognostic and predictive
purposes. Currently, few previous researches have explored
survival biomarkers of response to therapy. Therefore, further
markers are needed to improve survival related prediction and
therapy for the realization of more effective clinical practices
and trials.

Recently, immunological and inflammatory responses have
attracted a great deal of attention, even though the evidence
relating to the role that these processes both in ALS pathogenesis
and its treatment is highly conflicting. More and more
immune targets are being discovered, and immune-modulating
therapy has been a potential therapeutic strategy for ALS and
neurodegenerative diseases (Angelini et al., 2020; Murdock
et al., 2021). In order to individualize immune inflammatory
modulation, it would be advantageous to identify potential
prognostic biomarkers that are associated with treatment
benefits.

It was the aim of this study to develop a prognostic
model for ALS that would contemplate the prognosis of
immunotherapy. By analyzing the transcriptome data of ALS
patients derived from gene expression omnibus (GEO) public
database in training cohorts, we identified all immune-related
genes (IRGs) in the transcriptome and screened immune-
related hub genes associated with patient prognosis for
the construction of an immune-related gene prognostic
index (IRGPI) in training cohort patients. Significant
prognostic values of this index were further confirmed in
the testing cohort patients. The IRGPI was also characterized
for its intrinsic molecular subtypes, and its immunologic
profiles, as well as its ability to prognosticate prognosis in
immunotherapy. The schematic flow chart of the meta-
analysis is illustrated in Figure 1. Results from the present
study showed that the IRGPI was a promising biomarker
for immunotherapy which would help to determine their
prognostic outcomes.
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FIGURE 1

Graphical abstract for the comprehensive study design, and the drawing was assisted by Figdraw (www.figdraw.com). (A) As a retrospective
analysis of 397 patients with amyotrophic lateral sclerosis (ALS), this study evaluated the transcriptomic profiles and the clinical parameters.
(B) Least absolute shrinkage and selection operator (LASSO) Cox algorithm was employed to construct immune gene signatures for prognosis.
(C) Different cohorts and methods were used to validate the prognostic and predictive capabilities. (D) Comprehensive analyses of enriched
pathways, immune landscape, therapeutic responses, and drug prediction.

Materials and methods

Data processing and normalization

A series of systematic computerized searches of GEO
database1 as well as ArrayExpress database2 was conducted
in order to identify gene expression profiles and clinical
information regarding ALS. Two ALS cohort (GSE112676
and GSE112680) (van Rheenen et al., 2018; Swindell et al.,
2019) consisting of 397 ALS patients with accessible outcomes
and overall survival (OS) times, and one public ALS cohorts
(GSE163560) (Giovannelli et al., 2021) of immunotherapy
in 107 ALS patients were transcriptomic microarray datasets

1 https://www.ncbi.nlm.nih.gov/geo/

2 https://www.ebi.ac.uk/arrayexpress/

which was downloaded from the GEO database. To avoid
platform-specific effects and confounding batch, the processing
and normalization methods of GSE112676 and GSE112680
were described by previous study (van Rheenen et al., 2018;
Swindell et al., 2019). Briefly, background correction and
the followed quantile normalization, were both performed
by conducting the normal–exponential convolution model
using neqc function in the R package limma (version 3.48.3).
The probes were annotated with gene symbols using the R
package illuminaHumanv3.db (version 1.26.0). The apparent
batch effect was removed with the ComBat algorithm in the
R package sva (version 3.40.0), and then were verified in the
visualizations of principal components analysis (PCA) plots.
In the GEO cohort (GSE163560), the normalization using
the signal space transformation robust multi-chip analysis
method, quality control, and log2 transformation was processed
according to previous study (Giovannelli et al., 2021), and

Frontiers in Cellular Neuroscience 03 frontiersin.org

https://doi.org/10.3389/fncel.2022.993424
http://www.figdraw.com
https://www.ncbi.nlm.nih.gov/geo/
https://www.ebi.ac.uk/arrayexpress/
https://www.frontiersin.org/journals/cellular-neuroscience
https://www.frontiersin.org/


fncel-16-993424 December 14, 2022 Time: 10:10 # 4

Wei et al. 10.3389/fncel.2022.993424

one sample failing RNA quality control was therefore excluded
from the further analysis. To explore more clinical features
of ALS, the present study also employed an ALS cohort of
transcriptomic microarray dataset comprising 57 ALS patients
in the ArrayExpress database (E-TABM-940) (Lincecum et al.,
2010), and then subjected to log2 normalization. The dataset
probe was annotated by R package hgu133plus2.db (version
3.13.0).

Development and verification of the
IRGPI

A total of 397 ALS patients with survival times and
survival outcomes were randomized into training (n = 278)
and testing cohorts (n = 119). IRGs has been collected from
the ImmPort database3 (Bhattacharya et al., 2018) and the
InnateDB database4 (Breuer et al., 2013). In the training cohort,
all IRGs were applied to Kaplan–Meier (K-M) survival analysis
(R package survival, version 3.2-13) to obtain immune-related
prognostic genes (IRPGs), and then IRPGs were subjected to
develop an IRGPI by applying the least absolute shrinkage and
selection operator (LASSO) Cox model via the R package glmnet
(version 4.1-4). For tuning parameter selection and preventing
overfitting in the LASSO model, 10-fold cross-validation,
λ = 0.1817, α = 0.2, and γ = 0.999 was chosen in the training
cohort. The IRGPI of each sample was calculated by multiplying
the expression values of certain genes by their coefficient in
the LASSO model and then adding them together: [IRGPI =∑n

i=1 Coef (mRNAi × Exp(mRNAi))]. Then, the patients were
divided into an IRGPI-high subtype (above the median) and
IRGPI-low subtype (below the median) by the median risk score.
In the training and testing cohorts, time-dependent receiver
operating characteristic curve (ROC) curves were drawn to
evaluate the IRGPI in the prediction of prognostic accuracy
with R package time ROC (version 0.4). For the purpose
of validating the independent prognosis value of the IRGPI
and clinical features, multivariate Cox proportional hazards
regression analysis was performed with R package survival. K-M
survival curves were generated between the subtypes of site-
onset, age-onset and the IRGPI in the training cohort, and
compared with a log-rank test.

Construction and validation of ALS
prognostic nomogram and decision
tree

We developed a prognostic nomogram predicting OS
based on the Cox proportional hazard regression model by

3 https://www.immport.org/

4 https://www.innatedb.com/

using the R package rms (version 6.2-0) and survival. The
nomogram was constructed to estimate 1-, 3-, 5-, 7-, and
10-year survival probabilities. In the training and testing
cohorts, the accurateness of the nomogram was estimated by
the concordance index (C-index) via a 1,000-repeat bootstrap
validation method, and was evaluated graphically by calibration
chart between predicted and actual survival outcome, the
decision curve analysis (DCA) comparing clinical utility among
the nomogram at median survival time, and time-dependent
area under the curve (tAUC) in the training and testing cohorts
at time points of 2, 3, 5, 7, and 8 years. Apart from the R package
survival, the C-index, calibration chart, DCA, and tAUC was
respectively conducted by using the R package of pec (version
20220306), rms, ggDCA (version 1.2), and riskRegression
(version 2021.10.10). Risk stratification was developed using a
decision tree via recursive partitioning analysis (RPA) based
on the cumulative point score of the ALS nomogram with R
package rpart (version 4.1.16).

Comprehensive analyses of the
immunological and molecular
characteristics in the IRGPI subtypes

To analyze whether there were differences in the immune
cell abundance of blood samples between IRGPI-high and
IRGPI-low patients, the evaluation of the relative infiltrating
abundance of 22 immune cells from gene expression profiles
of ALS patients in the training cohort was conducted
using CIBERSORT algorithm with 1,000 permutations
(Newman et al., 2019).

Evaluation of the IRGPI to the
therapeutic response

The responses of the IRGPI to treatments in ALS
patients who received immunotherapy was examined
in the GEO cohort (GSE163560). The cohort included
the messenger RNA (mRNA) expression levels of blood
samples from patients accepting placebo-controlled trial
of IL2 immunotherapy injection at different days and
with two dose levels: 1MIU and 2MIU. The results
were confirmed by the visualization of barplots and
waterfall plot.

Molecular docking

To explore more immune therapeutic drugs, docking
analysis was applied to identify the potent de novo drug for
ALS. Firstly, protein-protein interaction (PPI) networks were
constructed based on the identified differentially expressed
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genes (DEGs) by using the STRING database5 with a combined
score > 0.7 (Szklarczyk et al., 2017). Secondly, Cytoscape
software (version 3.9.1) (Shannon et al., 2003) was used to
identify and visualize the hub genes in the PPI networks within
immune genes; the hub gene was selected as the core target
with MCODE plugin in Cytoscape. Thirdly, the ligand-binding
pocket of the core target was predicted with the ProteinsPlus6,
which was a web-based molecular modeling tool. Finally,
molecular structures of 11,797 small molecules and the core
target, were respectively collected from DrugBank7 (Wishart
et al., 2018) and PDB database8 (Berman et al., 2000). The
binding mode and affinity between small molecular ligands
and the core target were obtained using the Autodock Vina
(Trott and Olson, 2010). The capabilities of small molecules
to penetrate blood-brain barrier (BBB) were validated by
DrugBank.

Statistical analyses

Duration of OS was defined as the period from disease onset
to death, tracheostomy or non-invasive ventilation more than
23 h a day. Survival analyses were censored by the date of the last
check. All statistical analyses and visualizations were performed
by using the R software (version 4.1.0). All data variables
were described as means ± SD (continuous variables), or as
frequencies and percentages (categorical variables). Continuous
variables were compared using non-parametric Wilcoxon tests
with an irregular distribution or Student’s t-tests with a normal
distribution. The K-M plot was performed to present survival
curves for clinical features, and the log rank test were used
to evaluate statistically differences. The correlation analyses
were based on Pearson correlation. A Pearson correlation
R > 0.7 indicates a strong linear correlation, a correlation
0.5 < R ≤ 0.7 indicates a substantial linear correlation, a
correlation 0.3 < R≤ 0.5 indicates a weak linear correlation, and
a correlation R ≤ 0.3 indicates no linear correlation. P < 0.05
was considered to be statistically significant.

Results

Construction and validation of the
IRGPI in the ALS cohort

A total of 2,720 IRGs has been collected from ImmPort
database9 (Bhattacharya et al., 2018) and the InnateDB

5 http://string-db.org

6 https://proteins.plus/

7 https://go.drugbank.com/

8 https://www.rcsb.org/

9 https://www.immport.org/shared/genelists

database10 (Breuer et al., 2013). mRNA-seq analyses were
conducted with sample of whole blood of ALS patients.
PCA showed the procession of removing batch effect
(Supplementary Figures 1A, B). In the ALS training
dataset, sixty-eight genes, as the IRGPI signatures, were
screened by the LASSO COX algorithm with their individual
non-zero coefficients which were shown in the heatmap
(Figure 2). Moreover, the heatmap also showed the landscape of
different expression levels of the IRGPI signatures between the
IRGPI-high and -low subtypes. LASSO plot (Supplementary
Figure 2A) and Lambda plot (Supplementary Figure 2B)
were carried out to prevent overfitting. The time-dependent
ROC curves exhibited that the IRGPI signatures were with
convincible performances in the training cohort as well as the
testing cohort (Figures 3A, B), achieved AUC of 0.768, 0.865,
0.888, 0.958, and 0.952 at 2, 3, 5, 7, and 8 years in the training
cohort, and achieved AUC of 0.523, 0.544, 0.825, 0.819, and
0.795 at 2, 3, 5, 7, and 8 years in the testing cohort. Independent
prognostic value of the IRGPI and clinical features was evaluated
by univariate Cox and multivariate Cox proportional hazard
regression, and was intuitively displayed in the forest plots
(Figure 3C). The forest plot of the multivariate Cox analysis
showed that the IRGPI was the most striking risk factor among
clinical features (hazard ratio = 6.02, 95% CI = 4.45–8.13,
P < 0.0001). The risk plot (Figure 3D) demonstrated a clear
distinguishment of survival status between IRGPI-high and
-low subtypes with red dots representing dead patients and
black ones alive, and showed the observed OS becoming worse
as the risk value increased. The purpose of risk plot is to help
make smarter decisions by comparing different risks against
each other. IRGPI was a continuous variable that was divided
into IRGPI-high (above the IRGPI median) and IRGPI-low
(below the IRGPI median) groups by the median. Similarly,
age-onset was a continuous variable that was divided into early
age-onset (below the age-onset median) and late age-onset
(above the age-onset median) groups by the median. K-M
survival curves demonstrated that patients in the group of
bulbar site-onset (Figure 3E), late age-onset (Figure 3F), and
IRGPI-high (Figure 3G) had significantly worse survival than
their counterpart (P < 0.0001).

The performance of the nomogram
and the decision tree in risk
stratification

The multivariate Cox analysis indicated that IRGPI, site
onset and age onset were independent prognosticator of
mortality in ALS patients (Figure 3C). Thus, the nomogram
(Figure 4B) incorporating these factors, was developed to

10 http://innatedb.com/download/innatedb_curated_genes.xls
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FIGURE 2

Heatmap showed the landscape of expression levels of the immune-related gene prognostic index (IRGPI) signature and the LASSO COX
coefficients.

investigate predicted probabilities of patient survival with
acceptable accuracy at time points of 1, 3, 5, 7, and 10 years. The
evaluated accuracy of nomogram performance in discriminating
risk stratification, based on calibration curves, tAUC, and
C-index. In the training and testing cohort, nomogram to
predict OS probabilities at time points 1, 3, 5, 7, and 10 years
was evaluated by calibration curves which showed effective
consistency between the observed OS probabilities and predict
OS probabilities (Figures 4C, D). Respectively, the C-index for
the training and testing cohort was 0.747 (P < 0.001) and
0.642 (P < 0.001). Both the tAUC of nomogram or the IRGPI
were higher than the clinical features of age onset and site
onset, which suggested that the nomogram and the IRGPI led a
greater prediction performance (Figure 4E). DCA (Figure 4F)
demonstrated that the nomogram had improved net benefits
at a range of clinically reasonable risk thresholds, which had
effective clinical application prospects for making valuable and
informed judgments of the prognosis. The nomogram model’s
clinical applicability or simplicity of use in a wide range of
healthcare systems is its most appealing feature. As an example
(Figure 4B), an individual, no matter male or female, onset

at age 73 years old whose lesions was in the spinal and the
IRGPI score was −4.5, would have a total risk score of 159
points, corresponding to a 1-, 3-, 5-, 7-, and 10-year survival
probability of 6.9, 66, 97, 99.7, and 99.9% (Figure 4B). Apart
from high IRGPI value, later onset ages or bulbar onset site had
resulted in shorter-term survival. Finally, classification criteria
of the IRGPI, age onset and site onset were to build the decision
tree, and three different risk subgroups were well discriminated
with quantitative risk assessment for individual ALS patients
(Figure 4A). In the decision tree, a green square represented
a node. In green squares, the top is the entropy, the middle
is the died patients/observed patients, and the bottom is the
percentage of observed patients in the node.

The correlations between the IRGPI
and clinical features

Clinical features of ALS were investigated between IRGPI-
high and -low subtypes within forced vital capacity (FVC) and
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FIGURE 3

Validation of the immune-related gene prognostic index (IRGPI) signature based on the testing cohort. The time-dependent ROC curves
exhibited that the IRGPI signatures were with convincible performances in the training cohort (A) as well as the testing cohort (B). Independent
prognostic value of the IRGPI and clinical features was evaluated by multivariate Cox proportional hazard regression which was intuitively
displayed in the forest plots (C). The risk plot (D) demonstrated a clear distinguishment of survival status between IRGPI-high and -low subtypes
with red dots representing dead patients and black ones alive, and shown the survival status becoming worse as the risk value increased.
Kaplan–Meier (K-M) survival curves demonstrated that patients in the group of bulbar site-onset (E), late age-onset (F), and IRGPI-high (G) had
significantly worse overall survival (OS) than their counterpart. Number at risk is number of subjects exposed to endpoint risk at various time
points, and the number of subjects exposed to the risk of endpoint events began to decrease over time.

ALS functional rating scale (ALS-FRS). Compared to IRGPI-
high subtype, IRGPI-low subtype had a better performance in
ALS-FRS (Figure 5A) and FVC (Figure 5C). The correlation
analyses between IRGPI and clinical features was conducted,
including the decreasing rate of ALS-FRS (Pearson’s correlation
coefficient−0.34; P= 0.01813) (Figure 5B) and FVC (Pearson’s
correlation coefficient−0.30; P = 0.03699) (Figure 5D).

The immune characteristics in the
IRGPI subtypes

Wilcoxon test was utilized to analyze the infiltration
abundance of immune cells between IRGPI-high and -low

subtypes. We found that Macrophages M0, Monocytes and
resting NK cells were more abundant in the IRGPI-high
subtype, while memory B cells and resting Mast cells were
more abundant in the IRGPI-low subtype (Figure 6A). The
immune landscape and its related characteristics of clinical
features between IRGPI-high and -low subtypes was shown
(Figure 6B).

The IRGPI response to
immunotherapies

To investigate potential therapy to improve the IRGPI-
related prognosis for all practical purposes, the white blood cells
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FIGURE 4

Risk stratification and survival prediction are improved by combining immune signatures of the immune-related gene prognostic index (IRGPI)
with clinical features. (A) The decision tree was developed to enhance risk stratification. (B) The nomogram was created for the quantitative risk
evaluation of individual patients. Calibration curves for 1-, 3-, 5-, 7-, and 10-years showed effective consistency between the prediction and
observation in the survival probability in the training (C) and testing cohort (D). (E) Both the nomogram and the IRGPI in time-dependent area
under the curve (tAUC) plot were higher than the clinical features of age onset and site onset, which suggested that the nomogram and the
IRGPI led a greater prediction performance. (F) Decision curve analysis (DCA) demonstrated that the nomogram had improved net benefits at a
range of clinically reasonable risk thresholds, which had effective clinical application prospects for making valuable and informed judgments of
the prognosis. *P < 0.05; ***P < 0.001.
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FIGURE 5

The clinical features of ALS functional rating scale (ALS-FRS) (A) and forced vital capacity (FVC) (C) were investigated between immune-related
gene prognostic index (IRGPI)-high and -low subtypes. The correlation analyses between IRGPI and clinical features of ALS-FRS (B) and FVC (D).
*P < 0.05.

of interleukin-2 (IL-2)-treated and placebo-treated patients were
used for transcriptome analyses (Camu et al., 2020; Giovannelli
et al., 2021). The potential responses and drug sensitivities of
the IRGPI to IL2 immunotherapy was assessed (Figures 7A–C).
Interestingly, placebo-treated patients have lower IRGPI at Day
8 and Day 85 than Day 1 (Figure 7A). In the original study,
3 months of riluzole was administrated in placebo-treated
patients and IL-2 treated patients before clinical trial entry.
Previous studies had confirmed that riluzole reduced immune
respose and immune-related biomarkers (Gilgun-Sherki et al.,
2003; Liu et al., 2013; Shirani et al., 2016; Rotolo et al., 2021).
Therefore, riluzole might be still affected all patients after clinical
trial entry, including placebo-treated and IL-2 treated patients,
causing lower IRGPI at Day 8 and Day 85 than Day 1. In
contrast, the 2MIU IL2 group exhibited a significant decrease
in the IRGPI value compared to the placebo group (P < 0.01)
on the 8th day after IL2 injection (Figure 7A). However, on

the 64th and 85th day, 2MIU IL2 group had significantly
higher levels of the IRGPI value compared to the placebo group
(P < 0.05, Figures 7A, B). Interestingly, compared to 2MIU
IL2 group, 1MIU IL2 group had a significantly lower level of
the IRGPI value on the 64th day (P < 0.001) (Figure 7B).
The responses of the IRGPI values to different dose of IL2
immunotherapy at different days was also confirmed by the
visualization of waterfall plot (Figure 7C). In the present
study, the waterfall plot reflected how IL2 treatment affect the
IRGPI scores. The bar under the x-axis is IRGPI-low scores
which were more beneficial for ALS patients than IRGPI-
high scores with therapeutic effect. The bar above the x-axis
is IRGPI-high scores which were harmful for ALS patients.
Although the treatment was not effective for all patients, it
was effective in some patients. Thus, we suggested short-
term therapy (about 8 days) of 2MIU IL2 injection would
provide potent clinical benefit for ALS patients, and long-term
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FIGURE 6

The landscape of the immune microenvironment in ALS and the characteristics of different immune-related gene prognostic index (IRGPI)
subtypes. (A) The proportions of immune cells between different IRGPI subtypes Wilcoxon test (*p < 0.05, **p < 0.01). (B) The IRGPI subtypes
and proportions of immune cells for 397 amyotrophic lateral sclerosis (ALS) patients. Age onset, site onset, gender, OStime, and survival status
are shown as patient annotations.

treatment (about 64 days) of 1MIU IL2 injection may as well
be beneficial.

Core target identification and
candidate molecules prediction

The IRGPI consists of IRGs which were used to
develop a PPI network by utilizing the STRING database

(Szklarczyk et al., 2017) (confidence score > 0.7). By utilizing
MCODE plugin in Cytoscape software, the core target of the
IRGPI was determined in the PPI network, and displayed by
the Cytoscape (Supplementary Figure 3). The first cluster in
MCODE was selected, and CDC42 was located at the core
and had the highest degree among them all, making it the
core target. Molecular docking is a computer approach for
compound screening that is structure-based. In the present
study, the structures of 11,797 small molecules were collected
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FIGURE 7

The immune-related gene prognostic index (IRGPI) to therapeutic response in amyotrophic lateral sclerosis (ALS) patients and mice models. The
responses and drug sensitivities of the IRGPI to immunotherapy of IL2 injection was shown in the barplots (A,B) and the waterfall plot (C). The
Wilcoxon test was used to compare the statistical differences all above. *P < 0.05; **P < 0.01; ***P < 0.001.

from the drugbank database, and subjected to molecular
docking. The results showed the top six molecules (Ciclesonide,
Antrafenine, Darifenacin, Naltrexone, Lurasidone, and
Astemizole) which had the highest affinity with the predicted
binding pocket of CDC42. The detailed binding energy was
shown in three dimensional (3D) graphics for the six docking
models (Figure 8). Darifenacin (DB00496), for example,
formed hydrogen bonds with amino acid residues LYS-150 and
alanine (ALA)-146. Furthermore, the possible formation of
π-π interaction between PHE-110 or TRP-97 residue and the
cyclic molecules of the ligand assisted the drug compound in
connecting to the active site of CDC42.

Discussion

Peripheral immunity, is one of the most common
pathophysiology of neurodegenerative diseases, which has
a communication with neuroimmune system, modulate
neuroinflammation, and affect central nervous system (CNS)
neurodegeneration (Chitnis and Weiner, 2017; Holzer et al.,
2017; Liu Y. et al., 2017; Li et al., 2018). Moreover, peripheral
immunity is a pivotal element being increasingly recognized
in ALS, and an association has been identified between
peripheral immune cell levels and the progression even the

rapid progression of ALS (Murdock et al., 2017; Sidaway, 2017;
Li et al., 2020). There are both neuroprotective and adverse
effects that can be induced by the interactions between
microglia and astrocytes in crosstalk with peripheral immune
cells (Vahsen et al., 2021). ALS patients have abnormalities in
peripheral immune system, which may be due to changes in
monocytes, T lymphocytes, cytokines, and complement in their
peripheral blood (McCombe et al., 2020). Though therapeutic
immunomodulation strategies have proven to be a potential
therapy to improve disease outcomes and prolong survival
(Yan et al., 2006; Zhao et al., 2020; Zhou et al., 2020; Sun
et al., 2021), the overall response rates to immunomodulation
therapies are still very low for ALS patients (Beers et al., 2011;
Devigili et al., 2011; Komine et al., 2018). Thus, it is crucial to
identify ALS patients who may benefit from these therapies
with quantifiable indicators of hazard stratification for the
improvement of disease outcomes and OS. Currently, little
previous research has explored survival biomarkers of response
to therapy. Therefore, further markers are needed to improve
survival related prediction and therapy for the realization of
more effective clinical practices and trials.

Our cohorts seem to be reflective of the larger population of
ALS patients with a wide range of survival time and age onset
to most of previous studies. Based on the training cohort, the
IRGs were applied to K-M survival analysis to obtain IRPGs,
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FIGURE 8

A molecular docking analysis was used to construct docking models for six potential drugs and their intended targets. Three dimensional (3D)
structures showing the binding modes between the predicted binding pocket of CDC42 and ciclesonide (A), antrafenine (B), darifenacin (C),
naltrexone (D), lurasidone (E), and astemizole (F).

and then the IRPGs were subjected to LASSO Cox regression
model to construct the IRGPI comprising 64 genetic signatures
which are independent prognostic indicators of OS with the
validation in the training and testing cohorts. Notably, it was
unreasonable that most of the previous studies using LASSO
algorithm did not seem to avoid the risk of over-fitting which is a
frequent question in machine learning. From the LASSO model,
the IRGPI proved to have the effective capacity in discriminating
risk stratification with IRGPI-high subtype representing worse
survival and IRGPI-low one better, suggesting it is a trustworthy
stratification tool in pooled populations and similar-risk groups.

To maximize the usage of the IRGPI, survival decision tree
and nomogram, both comprising IRGPI, was constructed. The
survival decision tree was constructed for the enhancement of
risk stratification on the basis of IRGPI, age onset, and site
onset for ALS patients. In the tree, the IRGPI played the major
dominant position. Later onset ages tended to have higher risks,
and the bulbar onset site also had higher risks of morbidity.
The nomogram, a simple-to-use tool, has frequently been used
in estimating the likelihood of survival probabilities based on
relevant clinical parameters. The nomogram incorporating the

IRGPI, age onset, and site onset was developed, and validated
in the calibration chart, tAUC, C-index, and DCA, which
performed the highest acceptable accuracy in discriminating
risk stratification of survival prediction in 1-, 3-, 5-, 7-, and 10-
year when compared to other traditional features. Apart from
low IRGPI value, later onset ages or bulbar onset site has resulted
in shorter-term survival. The nomogram of the current study,
relatively straightforward to understand, is anticipated to be a
simple and effective tool for clinical practices and may be used to
inform patients about their future risk for up to 10 years, based
on the results of their IRGPI.

Importantly, the results of immune infiltration analyses
were used to understand the immune and molecular
characteristics of the IRGPI signature genes. Combined
with additional molecular and immunological subtypes, the
IRGPI classification might help ALS patients differentiate
between molecular and immunological subgroups. The
comprehensive understandings of the landscape in the immune
microenvironment might contribute to the discovery of
novel approaches to treat ALS or to regulate the immune
microenvironment for the improvements of the effectiveness
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in immunotherapies. The infiltrating immune cell abundance
profile significantly differed between two IRGPI subtypes.
Macrophages M0, monocytes and resting NK cells were more
abundant in the IRGPI-high subtype, while memory B cells
and resting mast cells were more abundant in the IRGPI-low
subtype. Peripheral monocytes and NK cells were involved in
ALS pathophysiology (Murdock et al., 2016; Jin et al., 2020;
McCombe et al., 2020; Gaur et al., 2021; Figueroa-Romero et al.,
2022). NF-κB induces the release of associated inflammatory
mediators (Liu T. et al., 2017). In resting mast cells, NF-κB
dimers are physically associated with IkB, an inhibitor of NF-κB
(Zhou et al., 2016). Hence, the increased proportion of resting
mast cells might tend to suppress inflammation. Memory B cells
might involve in growth and guidance of neuron which provide
potent benefit for ALS (Yu et al., 2008). A cellular therapy
of ALS has demonstrated that the reduction of peripheral
macrophage activation suppressed proinflammatory microglial
responses, delayed symptoms and improved favorable prognosis
(Chiot et al., 2020). The high abundance of macrophages M0
might disturb the phenotype balance of M1/M2 macrophage
fractions because macrophages M0 might be polarized into
either M1 or M2 macrophages. Additionally, memory B cells
might extend survival time while Monocytes and resting NK
cells might short survival time.

To test the clinical capabilities of the IRGPI in stratification
of clinical symptom levels, the ArrayExpress dataset (E-TABM-
940) was used, which showed that the IRGPI clearly distinguish
different disease levels of ALS. Comparing to IRGPI-high
patients, the IRGPI-low patients had better FVC scores of
pulmonary function and ranked higher in ALS-FRS.

To date, the biomarker of immunotherapeutic responses
remained unmet in clinical practices for ALS patients. To
determine whether the IRGPI was a reliable biomarker in
prediction of immunotherapeutic responses in ALS patients, the
difference was identified in the immunotherapeutic responses
between IRGPI-high and -low subtypes.

Interleukin-2 (IL-2) is an immunostimulatory cytokine
that is capable of stimulating a wide variety of leukocytes,
including T-cells and natural killer cells, so IL-2 is critical in
regulating peripheral immunity (Levin et al., 2012). In the GEO
cohort (GSE163560), patients receiving IL-2 immunotherapy
was described in detail in the previous study (Giovannelli
et al., 2021). We found a short-term (about 8 days) therapy
of 2MIU IL2 injection might provide some degree of clinical
benefit of survival time for ALS patients rather than a long-
term (about 64–84 days) treatment. Interestingly, to a certain
extent, compared to 2MIU IL2 group, 1MIU IL2 group, a
lower dose of IL2 therapy, might be beneficial for survival time
of ALS patients in the long-term (about 64 days). To date,
it had been proved that low-dose IL-2 (LD-IL-2) enhanced
the regulatory T-cell (Treg) in autoimmune conditions (Hotta-
Iwamura et al., 2018). However, previous studies did not study
the association between LD-IL-2 and survival outcomes of ALS

patients although there was a significant increase in Tregs levels
after 1 and 2 MIU IL-2 administration (Busse et al., 2010; Asano
et al., 2017; Camu et al., 2020; Giovannelli et al., 2021). Based
on the prognostic index of the IRGPI, our study gave more
details to guide the IL-2 administration on different dosage. To
extend survival time, the present study suggested it might be not
reasonable for the administration of 2MIU IL2 in the long-term,
which should be terminated within the short-term, or reduced
the dose of the drug to 1MIU if the long-term therapy was
required. The speculated reasons for the poorer performance of
the administration of 2MIU IL2 in the long-term might due to
the sustained overcorrection of Tregs levels, as is reported that a
high percentage of Tregs would lead to a poorer prognosis (Shah
et al., 2011; Mao et al., 2012; Tao et al., 2012; Feng et al., 2017).
Appropriate dose reduction of LD-IL-2 in the long-term might
have a better capability in the balance of Tregs levels.

A useful clinical application for the IRGPI was to screen
potential compounds by combining its core target and the
structure-based molecular docking methodology. In the PPI
network, CDC42 was located at the core and had the highest
degree among them all, making it the core target. CDC42
is one of typical the Ras homologous protein (RHO) family
members of GTPases whose dysregulation leads to neuronal
cell damage (Iguchi et al., 2009; Tönges et al., 2014; Koch
et al., 2018). In addition to their critical role in neuronal
development and neuronal survival, Rho-GTPases play an
important role in cytoskeleton dynamics, and they are therefore
vital to axonal regeneration, maintenance, and transport (Kirby
et al., 2011; Klemann et al., 2018). Our previous proteomics
study in ALS mouse models have revealed that CDC42 has
significant differences between pre-onset and age-matched wild
type group, and onset and pre-onset group (Zhang et al.,
2018), which indicated it might be important in the regulatory
mechanisms of ALS. In autoimmune disease, CDC42 can be
harnessed as a decisive regulator of peripheral tolerance since it
suppresses Th17 aberrant differentiation or pathogenicity, and
promotes the differentiation, stability, and function of Tregs,
so the CDC42 pathway may play a critical role in the immune
processes (Kalim et al., 2018). Thus, it suggested that the disease
of ALS is accompanied by abnormal RHO signaling regulated
by CDC42 (Jiang et al., 2022). Therefore, the development of
effective drugs targeting CDC42 has been intensive while most
of drugs targeting CDC42 do not have the ability to penetrate
the BBB. In the present study, from 11,797 small molecules, we
discovered six drugs that had high affinity for CDC42. These six
drugs have excellent performance in gastrointestinal absorption
and penetration of the blood-brain barrier. Among them,
Astemizole has been reported that immunosuppressive potential
of Astemizole against T-cell proliferation and cytokine secretion
in macrophages by modulating mitogen-activated protein
kinase (MAPK) signaling pathway (Jakhar et al., 2018). As
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a result of low-dose Naltrexone administration, BV-2 microglia
cells acquired a quiescent anti-inflammatory M2 phenotype
from highly activated pro-inflammatory phenotypes (Kučić
et al., 2021). Furthermore, low-dose naltrexone has been
shown to modulate Toll-like receptor four signaling as well
as transiently blockend endogenous opioid receptors to reduce
glial inflammation (Toljan and Vrooman, 2018). In conclusion,
ALS patients had meaningful differences between immune
subtypes, with IRGPI-high subtype having a high risk of death.
The decision tree and the nomogram, based on the IRGPI,
were helpful to guide individual risk stratification. Moreover,
The IRGPI may be used to guide preventative immunotherapy
for patients at high risks for mortality. The administration of
2MIU IL2 injection in the short-term is likely to be beneficial
for the prolongment of survival time, whose dosage should
be reduced to 1MIU if the long-term therapy was required.
Besides, a useful clinical application for the IRGPI was to screen
potential compounds by the structure-based molecular docking
methodology.
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