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Abstract 

 
Varma [1,2] entropy has attracted attention for a new class of non-linear integer programming problems that 

arise during the course of discussion.  Our focus in this communication is to explore the techniques of 

dynamic programming. This process requires splitting any optimization event into a finite number of 

subcomponents for any occurrence of a finite generalized problem. The capacity plan should be partitioned in 

such a way that the expression can be optimized. 

 

 
Keywords: Dynamic programming; measure of entropy; optimization policy etc. 

 

1 Introduction 
 

Figuring out the number of sub-component is only possible through powerful dynamic programming tool.  In 

the present communication, optimization of own entropy is carried out by the author by partitioning each event 

into its sub-events under the finite generalized likelihood scheme. 
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Dynamic programming works on the principle of optimality. Principle of optimality states that in an optimal 

sequence of decisions or choices, each subsequences must also be optimal. An optimal policy has the property 

that whatever the initial states and initial decision are, the remaining decisions must constitute an optimal policy 

with regard to the state resulting from the first decision. Bellman’s principle of optimality is related to the 

dynamic programming problem. 

 

The main concept of dynamic programming is straight-forward. We divide a problem into smaller nested 

subproblems, and then combine the solutions to reach an overall solution. This concept is known as the principle 

of optimality. The term dynamic programming was first used in the 1940’s by Bellman, Richard [3] to describe 

problems where one needs to find the best decisions one after another. In the 1950’s, he refined it to describe 

nesting small decision problems into larger ones. The mathematical statement of principle of optimality is 

remembered in his name as the Bellman equation.  

 

Dynamic programming is a useful mathematical technique for making a sequence of                                             

interrelated decisions. It provides a systematic procedure for determining the optimal combination of              

decisions. 

 

In contrast to linear programming, there does not exist a standard mathematical formulation of “the” dynamic 

programming problem. Rather, dynamic programming is a general type of approach [4] to problem solving, and 

the particular equations used must be developed to fit each situation. Therefore, a certain degree of ingenuity 

and insight into the general structure of dynamic programming problems is required to recognize when and how 

a problem can be solved by dynamic programming procedures. These abilities can best be developed by an 

exposure to a wide variety of dynamic programming applications and a study of the characteristics that are 

common to all these situations. 

 

Observing the outcomes of a sequence of measurements usually increases our knowledge about the state of a 

particular system we might be interested in. An informative measurement is the most efficient way of gaining 

this information, having the largest possible statistical dependence between the state being measured and the 

possible measurement outcomes. 

 

Our general dynamic programming framework allows sub-optimal solution methods to be implemented in a 

straightforward manner by approximate dynamic programming [5] and reinforcement learning [6], avoiding the 

need to develop new approximation methods for each specific situation. 

 

The aim of this work is to develop from first-principles a general-purpose dynamic programming for finding 

optimal sequences of informative measurements. We do not consider measurement problems with hidden states, 

such as hidden Markov [7] models, that can only be observed indirectly through noisy measurements. This leads 

to a tractable algorithm that constructs an optimal sequence of informative measurements by sequentially 

maximizing the entropy of measurement outcomes. In addition to planning a sequence of measurements for a 

particular measurement problem, our algorithm can also be used by an autonomous agent or robot exploring a 

new environment to plan a path giving an optimal sequence of informative measurements. The framework we 

use for dynamic programming is very general, and includes Markov decision processes (MDPs) [8] as a special 

case. 

 

By the use of dynamic programming, Kapur [9,10] maximized measure of entropy subject to the given 

constraints and for optimal sub division of out-comes for obtaining maximum gain in information subject to a 

given budget. Kapur [9,10] maximized Shannon’s [11] entropy: 

 

           
 
                                                                        (1.1) 

 

subject to the constraints   

 

      
   ,                                                                       (1.2) 

 

by dynamic programming,  
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2 Our Results 
 

2.1 Maximization of Verma [1,2]      hybrid Burg measures of entropy 
 

                                 
   ,        .                                                         (2.1.1) 

 

For the application of this principle, we consider the maximization of: 

 

                                   
   

 
   

 
     

 

subject to the constraints   

 

      
   ,                ,                  .                                                                               (2.1.2) 

 

Let the maximum value be      , then obviously  

 

                            .                                                                                    (2.1.3) 

 

If we choose    arbitrarily between   and  , we have to maximize 

 

                             
   

 
   

 
     

 

Subject to the constraints 

 

        
 
   ,                ,                  .  

 

This maximum value will be           . The principle of optimality then gives the recurrence relation  

 

                                                                                      (2.1.4) 

 

On setting    , in (9.2.4) we achieve the following result, on using (9.2.3) 

 

         
      

                                     

    
      

 
                          

                                    
  

                                    
                          

                                   
  

                                
  

 
    

 

 
      

  

 
    

 

 
          

                                 
  

 
     

 

 
                                                                          (2.1.5) 

 

we achieve the maximum value, when       
 

 
. 

 

Again, setting    , in (2.1.4) we achieve the following result, on using (2.1.5) 

 

                                                                      

                                      
                          

   
           

 
    

      

 
              

    

                                  
  

 
    

 

 
 

 

 
            

        

 
     

 

 
 

  

 
         

                                   
  

 
     

 

 
                                                                        (2.1.6) 

 

we achieve the maximum value, when          
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It thus seems to be 

 

           
    

 
     

 

 
                                                                                           (2.1.7) 

 

The above result arises, when            
 

 
. 

 

Obviously, it will be true for a specific value of  , equation (2.1.4) gives  

 

                                                                     

                                            
         

 
     

      

 
   

                                                                                 

                                 
      

   
         

 

   
         .                                         (2.1.8) 

 

Thus from (2.1.3), (2.1.5), (2.1.6) and (2.1.7) and the principle of mathematical induction, the result (2.1.7) and 

(2.1.8) are true for all value of   and  . Putting    , we get the result that  

 

                             
   

 
   

 
      

 

is maximum subject to       
   ,when            

 

 
 and the maximum value is   

  

     
   

 
     

 

 
        .  

 

Which is Verma’s      hybrid Burg [1, 2] result. 

 

2.2 Maximization of modified version of Verma      hybrid Shannon [1, 2] measures of 

entropy 
 

                                  
   ,        .                                                        (2.2.1) 

 

For the application of this principle, we consider the maximization of 

 

                                       
   

 
   

 
      

 

subject to the constraints   

 

      
   ,             ,                 .                                                                                   (2.2.2) 

 

Let the maximum value be      , then obviously  

 

                            .                                                                                     (2.2.3) 

 

If we choose    arbitrarily between   and  , we have to maximize   

 

                              
   

 
   

 
     

 

Subject to the constraints 

 

        
 
   ,                ,                  .  

 

This maximum value will be           . The principle of optimality then gives the recurrence relation                   
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On setting    , in (2.2.4) we achieve the following result, on using (2.2.3) 

 
                                                      

                                   
                           

                                          
  

                                   
                           

                                         
  

                              
  

 
  

 

 
  

 

 
      

  

 
  

 

 
  

 

 
           

                               
  

 
     

 

 
                                                                                             (2.2.5) 

 

we achieve the maximum value, when       
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Again, setting    , in (2.2.4) we achieve the following result, on using (2.2.5)  

 
                                                                      

                                     
                           

   
           

 
         

      

 
              

    

                                
  

 
  

 

 
  

 

 
     

        

 
  

  

 
  

 

 
           

                                 
  

 
     

 

 
                                                                             (2.2.6) 

 

we achieve the maximum value, when          
 

 
. 

 
It thus seems to be 

 

                         
    

 
     

 

 
                                                                                             (2.2.7) 

 

The above result arises, when            
 

 
. 

 
Obviously, it will be true for a specific value of  , equation (2.2.4) gives  

 
                                                                          

                                              
         

 
          

      

 
  

                                                                               

                                          
      

   
     

 

   
         .                                             (2.2.8) 

 
Thus from (2.2.3), (2.2.5), (2.2.6) and (2.2.7) and the principle of mathematical induction, the result (2.2.7) and 

(2.2.8) are true for all value of   and  . Putting    , we get the result that 

 
                                                              

   
 
   

 
      

 

is maximum subject to       
   ,when            

 

 
 and the maximum value is    
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Which is modified Verma’s      hybrid Shannon [1, 2] result. 
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2.3 Maximization of Verma [2] measures of probabilistic entropy involving two 

parameters 
 

        
 

   
  

   
      

   

   
  

   

,                                                                            (2.3.1) 

 

For the application of this principle, we consider the maximization of 

 

      
 

   
      

     

 

   

      
 

 

   

  

 

subject to the constraints   
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Let the maximum value be      , then obviously  
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If we choose    arbitrarily between   and  , we have to maximize   

 
 

   
      

      
         

  
      

 

Subject to the constraints 
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This maximum value will be           . The principle of optimality then gives the recurrence relation  
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On setting    , in (2.3.4) we achieve the following result, on using (2.3.3) 
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we achieve the maximum value, when       
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Again, setting    , in (2.3.4) we achieve the following result, on using (2.3.5)  
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It thus seems to be 
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The above result arises, when            
 

 
. 

 

Obviously, it will be true for a specific value of  , equation (2.3.4) gives  
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Thus from (2.3.3), (2.3.5), (2.3.6) and (2.3.7) and the principle of mathematical induction, the result (2.3.7) and 

(2.3.8) are true for all value of   and  . Putting    , we get the result that 
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Which is Verma’s [2] result.  

 

3 Concluding Remarks 
 

In this communication, when we maximize the Verma [1, 2] entropy by splitting any optimization event into 

finite number of subevents      by dynamic programming, then we conclude the following results for all cases: 

 

(i) As the probability increases, the allotment of subevents also increases. This is again expected for let 

          be arranged in ascending order and let           be the optimal assignments so that 

    
  

  
 
  

  
      

  

  
 
  

  
 . Since      , this implies that       for if      , then 

  

  
 

  

  
 and 

this contradicts our assumption that the given allotment is optimal. 

(ii) As we subdivide the events, the value of the maximum entropy increases or remains unchanged.            
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