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In this paper, the coupled Kundu-Mukherjee-Naskar (KMN)model in Bragg grating fibers is considered to retrieve some new optical
soliton solutions in (2 + 1) dimensions. Plenty of new exact solutions, including rational function solutions and triangle function
solutions, in addition to the Jacobian elliptic function solutions, are obtained by using a complete discrimination system method.
The 3D-surface plots, 2D-shape plots, and corresponding 2D contour plots of some obtained solutions are drawn, which provides
a visualized structures and propagation of solitons. The novel results are new and show the effectiveness of the proposed method.

1. Introduction

The Kundu-Mukherjee-Naskar (KMN) equation was first
proposed in 2014 to address rogue waves (RWs) in the ocean
[1], which is usually denotes as

iqt + aqxy + ib qq∗x − q∗qxð Þ = 0: ð1Þ

In recent years, many mathematicians and physicists have
devoted themselves to the research and discussion of this
equation. In [2], Qiu et al. considered this model to obtain
first-order oceanic rogue wave solution via the Darboux trans-
formation. In [3], Singh et al. obtained higher-dimensional
nonlinear wave solutions and study the dynamics of deep
water oceanic RWs. In [4], Ekici et al. indicated that the
KMN equation is applicable to study the dynamics of soliton
propagation through optical fibers in (2 + 1) dimensions on
the bases of the fact that RWs are observed in a crystal fiber
[5]. Note that the use of special methods constructing exact
solutions of nonlinear differential models (see [6–13]) is a
main research area of nonlinear optical science, the optical
solitons in KMN equation have been addressed by broad

researchers to recover the exact solutions by applying many
effective methods including Kudryashov’s approach method
[14, 15], the tanh function method [16], the new auxiliary
equation method [17], the new extended direct algebraic
method [18, 19], the method of undetermined coefficients
and Lie symmetry [20, 21], the trial equation technique [22],
the functional variable method [23], and the modified simple
equation approach technique [24]. It is worth mentioning that
Yldrm [25] also used the modified simple equation approach
technique to discuss a new model of coupled KMN equations
in birefringent fibers. Then, Zayed et al. [26] first proposed the
coupled KMN model in the Bragg gratings fibers.

In this study, we consider the nonlinear coupled
(2 + 1)-dimensional KMN model in the Bragg grating
fibers [26]:

iψt + a1ϕxy + i b1ψ
2 + c1ϕ

2� �
ψ∗
x − d1 ψj j2 + e1 ϕj j2� �

ψx

� �
+ iα1ψx + β1ϕ + σ1ψ

∗ϕ2 = 0,

iϕt + a2ψxy + i b2ϕ
2 + c2ψ

2� �
ϕ∗x − d2 ϕj j2 + e2 ψj j2� �

ϕx
� �

+ iα2ϕx + β2ψ + σ2ϕ
∗ψ2 = 0,

ð2Þ
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where ψðx, y, tÞ and ϕðx, y, tÞ are complex-valued functions
that represent the wave profiles, while aj, bj, cj, dj, ej, αj, βj,
and σjðj = 1 ; 2Þ are real-valued constants. The parameters aj
ðj = 1 ; 2Þ are the coefficients of dispersion terms. The param-
eters bj, cj, dj, and ej are the coefficients of nonlinearity. The
parameters αj, βj, and σj give the intermodal dispersions, the
detuning parameters, and the four wave mixing parameters,
respectively. In the same work [26], the modified and adden-
dum Kudryashov’s method are used to obtain optical solitons
for model (2).

Recently, the complete discrimination system for the
polynomial method was first proposed by Liu [27] as it is
modified form of the discrimination system for high degree
polynomial and provides a bit wider range of exact solutions
than the famous methods mentioned above. Many authors
have solved a lot of models in mathematics, physics, engi-
neering, fluid mechanics, plasma, optical fibers, and other
areas of science (see [28–33]). The aim of this paper is to
extract the new exact optical solutions of the model (2) after
utilizing Liu’s method.

The rest of the paper is organized as follows: In Section 2,
a glance of discrimination system for polynomial method is
given. In Section 3, after taking travelling wave transforma-
tion upon (2), the model is reduced to ordinary differential
equations (ODEs). Implementing the complete discrimina-
tion system method to the ODEs, the exact solutions are
obtained. In Section 4, the focus is on the graphical represen-
tation for the obtained solutions. We fix parameters to draw
the 3D-surface plots, 2D-shape plots, and the corresponding
2D contour plots of some obtained solutions. Finally, the
comparison of the obtained results is discussed and conclu-
sions are illustrated in Section 5.

2. Outline of the Complete Discrimination
System Method

We consider a nonlinear differential equation takes the form
as follows:

G p, pt , px, pxt , pxx, pxxx,⋯ð Þ = 0, ð3Þ

where p = pðt, xÞ is an unknown function and G is a polyno-
mial of all the derivatives of p = pðt, xÞ.

By applying the classical complex traveling wave trans-
formation pðx, tÞ = uðξÞeiϕ, we can convert Equation (3)
into an ordinary differential equation (ODE), which can
be written as

F u, u′, u′′,⋯
� �

= 0, ð4Þ

where F is a polynomial of u and its derivatives, notation “′”
denotes the derivative with respect to ξ.

Next, Equation (4) can be reduced to

± ξ − ξ0ð Þ =
ð duffiffiffiffiffiffiffiffiffiffi

F uð Þp , ð5Þ

where ξ0 is an integral constant and FðuÞ denotes a n degree
polynomial. According to the complete discriminant system
method, we can retrieve all types of single wave solutions of
Equation (2) from Equation (5) by classifying the roots for
polynomial FðuÞ.

3. Applications to the Model

Firstly, we assume Equation (2) have solutions in the form:

ψ x, y, tð Þ = u ξð Þeiζ x,y,tð Þ, ϕ x, y, tð Þ = v ξð Þeiζ x,y,tð Þ,
ξ = K1x + K2y − νt, ζ x, y, tð Þ = −k1x − k2y + ωt + θ,

ð6Þ

where uðξÞ and vðξÞ are the functions stand for the profile
for optical pulse, and ζðx, y, tÞ describes the phase portion.
Here, the parameters K1 and K2 in the amplitude compo-
nent stand for the direct cosines of the solitons along the x
- and y-directions, respectively, and ν denotes the soltion
velocity. The parameters k1 and k2 in the amplitude compo-
nent signify the frequencies of the solitons along the x- and y
-directions, respectively, while ω is the wave number and θ is
the phase constant.

Inserting (6) into (2) and decomposing into the real and
imaginary parts, we get the real parts for the uðξÞ and vðξÞ as

a1K1K2v′′ ξð Þ + β1 − a1k1k2ð Þv ξð Þ + α1k1 − ωð Þu ξð Þ
− b1 + d1ð Þk1u3 ξð Þ + σ1 − c1 + e1ð Þk1½ �u ξð Þv2 ξð Þ = 0,

ð7Þ

a2K1K2u′′ ξð Þ + β2 − a2k1k2ð Þu ξð Þ + α2k1 − ωð Þv ξð Þ
− b2 + d2ð Þk1v3 ξð Þ + σ2 − c2 − e2ð Þk1½ �u2 ξð Þv ξð Þ = 0,

ð8Þ
while the imaginary parts are

α1K1 − νð Þu′ ξð Þ − a1 k2K1 + K2k1ð Þv′ ξð Þ
+ K1 b1 − d1ð Þu2 ξð Þu′ ξð Þ + K1 c1 − e1ð Þv2 ξð Þu′ ξð Þ = 0,

ð9Þ

α2K1 − νð Þv′ ξð Þ − a2 k1K2 + K1k2ð Þu′ ξð Þ
+ K1 b2 − d2ð Þv2 ξð Þv′ ξð Þ + K1 c2 − e2ð Þu2 ξð Þv′ ξð Þ = 0:

ð10Þ
In the view of physical reality, we suppose that

v ξð Þ = Au ξð Þ, ð11Þ

where A ≠ 0 is a constant.
Then, implementing the condition (11) in (7)–(8), the

real parts are rewritten as

a1K1K2Au′′ ξð Þ + A β1 − a1k1k2ð Þ + α1k1 − ωð Þ½ �u ξð Þ
+ A2 σ1 − c1 + e1ð Þk1½ � − b1 + d1ð Þk1
	 


u3 ξð Þ = 0,
ð12Þ
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a2K1K2u′′ ξð Þ + β2 − a2k1k2ð Þ + A α2k1 − ωð Þ½ �u ξð Þ
+ A σ2 − c2 + e2ð Þk1½ � − A3 b2 + d2ð Þk1
	 


u3 ξð Þ = 0:
ð13Þ

Making Equations (12) and (13) equal for convenient,
the coefficients satisfy the following results:

a1A = a2, ð14Þ

A β1 − α2k1 + ωð Þ = β2 − α1k1 + ω, ð15Þ

A2 σ1 − c1 + e1ð Þk1½ � − b1 + d1ð Þk1 =A σ2 − c2 + e2ð Þk1½ � − A3 b2 + d2ð Þk1:
ð16Þ

Putting (11) into (9) and (10), the imaginary parts become

α1K1 − ν − a1A k2K1 + K2k1ð Þ½ �u′ ξð Þ
+ K1 b1 − d1ð Þ + A2 c1 − e1ð Þ� �

u2 ξð Þu′ ξð Þ = 0,
ð17Þ

A α2K2 + vð Þ − a2 k1K2 + K1k2ð Þ½ �u′ ξð Þ
+ AK2 A2 b2 − d2ð Þ + c2 − e2ð Þ� �

u2 ξð Þu′ ξð Þ = 0:
ð18Þ

Taking into account the linear independence of (17) and
(18) and making the coefficients to zero, we obtain the
constrain conditions:

α1K1 − ν − Aa1 k2K1 + K2k1ð Þ = 0, A α2K1 − νð Þ − a2 k1K2 + K1k2ð Þ = 0,

ð19Þ

b1 − d1ð Þ + A2 c1 − e1ð Þ = 0, A2 b2 − d2ð Þ + c2 − e2ð Þ = 0:
ð20Þ

Implementing (14) in (19), the velocity of the soliton is
obtained as

ν = α1K1 − a2 k1K2 + K1k2ð Þ = α2K1 − a1 k1K2 + K1k2ð Þ:
ð21Þ

Multiplying u′ on both sides of (12) and integrating it on ξ,
we get

u′ ξð Þ
h i2

= b1 + d1ð Þk1 − A2 σ1 − c1 + e1ð Þk1½ �
2a1K1K2A

u4 ξð Þ

+ ω − α1k1ð Þ − A β1 − a1k1k2ð Þ
a1K1K2A

u2 ξð Þ + C0,

ð22Þ

where C0 is an arbitrary constant.

For obtaining exact solutions, the following transforma-
tions are selected:

u = ±
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 b1 + d1ð Þk1 − 2A2 σ1 − c1 + e1ð Þk1½ �

a1K1K2A

� �−1/3
w

s
,

ξ1 =
2 b1 + d1ð Þk1 − 2A2 σ1 − c1 + e1ð Þk1½ �

a1K1K2A

� �1/3
ξ:

ð23Þ

Inserting (23) into (22), we yield

wξ1
′

h i2
=w3 ξ1ð Þ + pw2 ξ1ð Þ + qw ξ1ð Þ, ð24Þ

where q is the an arbitrary constant and coefficient p has
the forms:

p = 4 ω − α1k1ð Þ − A β1 − a1k1k2ð Þ
a1K1K2A

� 2 b1 + d1ð Þk1 − 2A2 σ1 − c1 + e1ð Þk1½ �
a1K1K2A

� �−2/3
:

ð25Þ

It is easy to reformulate Equation (24) with an integral
representation as

± ξ1 − ξ0ð Þ =
ð dwffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

w w2 + pw + qð Þp , ð26Þ

where ξ0 is the integration constant.
Note that the sign Δ = p2 − 4q and p comprise the com-

plete discriminant system for the polynomial FðwÞ =w3 +
pw2 + qw, and we retrieve the exact solutions of (24) by
applying the complete discrimination system method in
the paragraph below.

Case 1. Δ = 0. Then, we have FðwÞ =wðw + p/2Þ2. When w
> 0, the exact traveling wave solutions for Equation (2) are
recovered as below:

If −p/2 > 0, the exact solutions for Equation (2) are

ψ1 x, y, tð Þ = ±
ffiffiffiffiffiffi
−
p
2

r
2 b1 + d1ð Þk1 − 2A2 σ1 − c1 + e1ð Þk1½ �

a1K1K2A

� �−1/6

× ei −k1x−k2y+ωt+θð Þ × tanh

�
ffiffiffiffiffiffiffiffiffi
−p/2p
2

2 b1 + d1ð Þk1 − 2A2 σ1 − c1 + e1ð Þk1½ �
a1K1K2A

� �1/3 "

� K1x + K2y − νtð Þ − ξ0

!#
,

ð27Þ
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ϕ1 x, y, tð Þ = ±A
ffiffiffiffiffiffi
−
p
2

r
2 b1 + d1ð Þk1 − 2A2 σ1 − c1 + e1ð Þk1½ �

a1K1K2A

� �−1/6

× ei −k1x−k2y+ωt+θð Þ × tanh

�
ffiffiffiffiffiffiffiffiffi
−p/2p
2

2 b1 + d1ð Þk1 − 2A2 σ1 − c1 + e1ð Þk1½ �
a1K1K2A

� �1/3 "

� K1x + K2y − νtð Þ − ξ0

!#
,

ð28Þ

ψ2 x, y, tð Þ = ±
ffiffiffiffiffiffi
−
p
2

r
2 b1 + d1ð Þk1 − 2A2 σ1 − c1 + e1ð Þk1½ �

a1K1K2A

� �−1/6

× ei −k1x−k2y+ωt+θð Þ × coth

�
ffiffiffiffiffiffiffiffiffi
−p/2p
2

2 b1 + d1ð Þk1 − 2A2 σ1 − c1 + e1ð Þk1½ �
a1K1K2A

� �1/3 "

� K1x + K2y − νtð Þ − ξ0

!#
,

ð29Þ

ϕ2 x, y, tð Þ = ±A
ffiffiffiffiffiffi
−
p
2

r
2 b1 + d1ð Þk1 − 2A2 σ1 − c1 + e1ð Þk1½ �

a1K1K2A

� �−1/6

× ei −k1x−k2y+ωt+θð Þ × coth

�
ffiffiffiffiffiffiffiffiffi
−p/2p
2

2 b1 + d1ð Þk1 − 2A2 σ1 − c1 + e1ð Þk1½ �
a1K1K2A

� �1/3 "

� K1x + K2y − νtð Þ − ξ0

!#
:

ð30Þ

If −p/2 < 0, the solution is

ψ3 x, y, tð Þ = ±
ffiffiffi
p
2

r
2 b1 + d1ð Þk1 − 2A2 σ1 − c1 + e1ð Þk1½ �

a1K1K2A

� �−1/6

× ei −k1x−k2y+ωt+θð Þ × tan

�
ffiffiffiffiffiffiffi
p/2p
2

2 b1 + d1ð Þk1 − 2A2 σ1 − c1 + e1ð Þk1½ �
a1K1K2A

� �1/3 "

� K1x + K2y − νtð Þ − ξ0

!#
,

ð31Þ

ϕ3 x, y, tð Þ = ±A
ffiffiffi
p
2

r
2 b1 + d1ð Þk1 − 2A2 σ1 − c1 + e1ð Þk1½ �

a1K1K2A

� �−1/6

× ei −k1x−k2y+ωt+θð Þ × tan

�
ffiffiffiffiffiffiffi
p/2p
2

2 b1 + d1ð Þk1 − 2A2 σ1 − c1 + e1ð Þk1½ �
a1K1K2A

� �1/3 "

� K1x + K2y − νtð Þ − ξ0

!#
:

ð32Þ

If −p/2 = 0, we get

ψ4 x, y, tð Þ = ±2 2 b1 + d1ð Þk1 − 2A2 σ1 − c1 + e1ð Þk1½ �
a1K1K2A

� �−1/6

× ei −k1x−k2y+ωt+θð Þ

× 2 b1 + d1ð Þk1 − 2A2 σ1 − c1 + e1ð Þk1½ �
a1K1K2A

� �1/3"

� K1x + K2y − νtð Þ − ξ0

#−1
,

ϕ4 x, y, tð Þ = ±2A 2 b1 + d1ð Þk1 − 2A2 σ1 − c1 + e1ð Þk1½ �
a1K1K2A

� �−1/6

× ei −k1x−k2y+ωt+θð Þ

× 2 b1 + d1ð Þk1 − 2A2 σ1 − c1 + e1ð Þk1½ �
a1K1K2A

� �1/3"

� K1x + K2y − νtð Þ − ξ0

#−1
:

ð33Þ

Case 2. Δ > 0, q = 0. Then, we have FðwÞ =w2ðw + pÞ. When
w > −p, the exact traveling wave solutions for Equation (2)
are obtained as follows.

If 0 > −p, we have

ψ5 x, y, tð Þ = ± −
2 b1 + d1ð Þk1 − 2A2 σ1 − c1 + e1ð Þk1½ �

a1K1K2A

� �−1/6

× ei −k1x−k2y+ωt+θð Þ

× p − p tanh2
ffiffiffi
p

p
2

2 b1 + d1ð Þk1 − 2A2 σ1 − c1 + e1ð Þk1½ �
a1K1K2A

� �1/3 "(

� K1x + K2y − νtð Þ − ξ0

!#)1/2

,

ð34Þ

ϕ5 x, y, tð Þ = ±A −
2 b1 + d1ð Þk1 − 2A2 σ1 − c1 + e1ð Þk1½ �

a1K1K2A

� �−1/6

× ei −k1x−k2y+ωt+θð Þ

× p − p tanh2
ffiffiffi
p

p
2

2 b1 + d1ð Þk1 − 2A2 σ1 − c1 + e1ð Þk1½ �
a1K1K2A

� �1/3 "(

� K1x + K2y − νtð Þ − ξ0

!#)1/2

,

ð35Þ
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ψ6 x, y, tð Þ = ± 2 b1 + d1ð Þk1 − 2A2 σ1 − c1 + e1ð Þk1½ �
a1K1K2A

� �−1/6

× ei −k1x−k2y+ωt+θð Þ

× p coth2
ffiffiffi
p

p
2

2 b1 + d1ð Þk1 − 2A2 σ1 − c1 + e1ð Þk1½ �
a1K1K2A

� �1/3 "(

� K1x + K2y − νtð Þ − ξ0

!#
− p

)1/2

,

ð36Þ

ϕ6 x, y, tð Þ = ±A 2 b1 + d1ð Þk1 − 2A2 σ1 − c1 + e1ð Þk1½ �
a1K1K2A

� �−1/6

× ei −k1x−k2y+ωt+θð Þ

× p coth2
ffiffiffi
p

p
2

2 b1 + d1ð Þk1 − 2A2 σ1 − c1 + e1ð Þk1½ �
a1K1K2A

� �1/3 "(

� K1x + K2y − νtð Þ − ξ0

!#
− p

)1/2

:

ð37Þ
If 0 < −p, we have

ψ7 x, y, tð Þ = ± 2 b1 + d1ð Þk1 − 2A2 σ1 − c1 + e1ð Þk1½ �
a1K1K2A

� �−1/6 ffiffiffiffiffiffi
−p

p × ei −k1x−k2y+ωt+θð Þ

× sec
ffiffiffiffiffiffi−pp
2

2 b1 + d1ð Þk1 − 2A2 σ1 − c1 + e1ð Þk1½ �
a1K1K2A

� �1/3 "

· K1x + K2y − νtð Þ − ξ0

!#
,

ð38Þ

ϕ7 x, y, tð Þ = ±A 2 b1 + d1ð Þk1 − 2A2 σ1 − c1 + e1ð Þk1½ �
a1K1K2A

� �−1/6 ffiffiffiffiffiffi
−p

p × ei −k1x−k2y+ωt+θð Þ

× sec
ffiffiffiffiffiffi−pp
2

2 b1 + d1ð Þk1 − 2A2 σ1 − c1 + e1ð Þk1½ �
a1K1K2A

� �1/3 "

· K1x + K2y − νtð Þ − ξ0

!#
:

ð39Þ

Case 3. Δ > 0, q ≠ 0, that is, FðwÞ =wðw − λ1Þðw − λ2Þ. We
note that, in this case, λ1 ≠ λ2 ≠ 0.

If 0 < λ1 < λ2, when 0 <w < λ1, the exact solution for
Equation (2) takes the form

ψ8 x, y, tð Þ = ±
ffiffiffiffiffi
λ1

p 2 b1 + d1ð Þk1 − 2A2 σ1 − c1 + e1ð Þk1½ �
a1K1K2A

� �−1/6 

× ei −k1x−k2y+ωt+θð Þ

× sn
ffiffiffiffiffi
λ2

p
2

2 b1 + d1ð Þk1 − 2A2 σ1 − c1 + e1ð Þk1½ �
a1K1K2A

� �1/3  

· K1x + K2y − νtð Þ − ξ0

!
,m
!
,

ϕ8 x, y, tð Þ = ±A
ffiffiffiffiffi
λ1

p 2 b1 + d1ð Þk1 − 2A2 σ1 − c1 + e1ð Þk1½ �
a1K1K2A

� �−1/6

× ei −k1x−k2y+ωt+θð Þ

× sn
ffiffiffiffiffi
λ2

p
2

2 b1 + d1ð Þk1 − 2A2 σ1 − c1 + e1ð Þk1½ �
a1K1K2A

� �1/3  

· K1x + K2y − νtð Þ − ξ0

!
,m
!
,

ð40Þ

when λ2 <w, the exact solution for Equation (2) takes
the form

ψ9 x, y, tð Þ = ± 2 b1 + d1ð Þk1 − 2A2 σ1 − c1 + e1ð Þk1½ �
a1K1K2A

� �−1/6
× ei −k1x−k2y+ωt+θð Þ

×
λ2 − λ1sn2

ffiffiffiffiffi
λ2

p
/2

� �
2 b1 + d1ð Þk1 − 2A2 σ1 − c1 + e1ð Þk1½ �� �

/a1K1K2A
� �1/3 K1x + K2y − νtð Þ − ξ0
� �

,m
� �

cn2
ffiffiffiffiffi
λ2

p
/2

� �
2 b1 + d1ð Þk1 − 2A2 σ1 − c1 + e1ð Þk1½ �� �

/a1K1K2A
� �1/3 K1x + K2y − νtð Þ − ξ0
� �

,m
� �

2
4

3
5
1/2

,

ϕ9 x, y, tð Þ = ±A 2 b1 + d1ð Þk1 − 2A2 σ1 − c1 + e1ð Þk1½ �
a1K1K2A

� �−1/6
× ei −k1x−k2y+ωt+θð Þ

×
λ2 − λ1sn2

ffiffiffiffiffi
λ2

p
/2

� �
2 b1 + d1ð Þk1 − 2A2 σ1 − c1 + e1ð Þk1½ �� �

/a1K1K2A
� �1/3 K1x + K2y − νtð Þ − ξ0
� �

,m
� �

cn2
ffiffiffiffiffi
λ2

p
/2

� �
2 b1 + d1ð Þk1 − 2A2 σ1 − c1 + e1ð Þk1½ �� �

/a1K1K2A
� �1/3 K1x + K2y − νtð Þ − ξ0
� �

,m
� �

2
4

3
5
1/2

,

ð41Þ
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where m2 = λ1/λ2.

If λ1 < 0 < λ2, when λ1 <w < 0, the exact solution for
Equation (2) takes the form

ψ10 = ±
ffiffiffiffiffiffiffiffi
−λ1

p
−
2 b1 + d1ð Þk1 − 2A2 σ1 − c1 + e1ð Þk1½ �

a1K1K2A

� �−1/6

× ei −k1x−k2y+ωt+θð Þ

× −1 + sn2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λ2 − λ1

p
2

2 b1 + d1ð Þk1 − 2A2 σ1 − c1 + e1ð Þk1½ �
a1K1K2A

� �1/3  "

� K1x + K2y − νtð Þ − ξ0

!
,m
!#1/2

,

ϕ10 = ±A
ffiffiffiffiffiffiffiffi
−λ1

p
−
2 b1 + d1ð Þk1 − 2A2 σ1 − c1 + e1ð Þk1½ �

a1K1K2A

� �−1/6

× ei −k1x−k2y+ωt+θð Þ

× −1 + sn2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λ2 − λ1

p
2

2 b1 + d1ð Þk1 − 2A2 σ1 − c1 + e1ð Þk1½ �
a1K1K2A

� �1/3  "

� K1x + K2y − νtð Þ − ξ0

!
,m
!#1/2

,

ð42Þ

when λ2 <w, the exact solution for Equation (2) takes the
form

ψ11 = ±
ffiffiffiffiffi
λ2

p 2 b1 + d1ð Þk1 − 2A2 σ1 − c1 + e1ð Þk1½ �
a1K1K2A

� �−1/6

× ei −k1x−k2y+ωt+θð Þ

× cn
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λ2 − λ1

p
2

2 b1 + d1ð Þk1 − 2A2 σ1 − c1 + e1ð Þk1½ �
a1K1K2A

� �1/3  "

� K1x + K2y − νtð Þ − ξ0

!
,m
!#−1

,

ϕ11 = ±A
ffiffiffiffiffiffiffiffi
−λ2

p 2 b1 + d1ð Þk1 − 2A2 σ1 − c1 + e1ð Þk1½ �
a1K1K2A

� �−1/6

× ei −k1x−k2y+ωt+θð Þ

× cn
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λ2 − λ1

p
2

2 b1 + d1ð Þk1 − 2A2 σ1 − c1 + e1ð Þk1½ �
a1K1K2A

� �1/3  "

� K1x + K2y − νtð Þ − ξ0

!
,m
!#−1

,

ð43Þ

where m2 = −λ1/ðλ2 − λ1Þ.
If λ1 < λ2 < 0, when λ1 <w < λ2, the exact solution for

Equation (2) takes the form

ψ12 = ± 2 b1 + d1ð Þk1 − 2A2 σ1 − c1 + e1ð Þk1½ �
−a1K1K2A

� �−1/6

× ei −k1x−k2y+ωt+θð Þ ×
"
λ1 − λ2 − λ1ð Þsn2

 ffiffiffiffiffiffiffiffi
−λ1

p
2

�
 � 2 b1 + d1ð Þk1 − 2A2 σ1 − c1 + e1ð Þk1½ �

a1K1K2A

�1/3

� K1x + K2y − νtð Þ − ξ0

!
,m
!#1/2

,

ϕ12 = ±A 2 b1 + d1ð Þk1 − 2A2 σ1 − c1 + e1ð Þk1½ �
−a1K1K2A

� �−1/6

× ei −k1x−k2y+ωt+θð Þ ×
"
λ1 − λ2 − λ1ð Þsn2

 ffiffiffiffiffiffiffiffi
−λ1

p
2

�
 � 2 b1 + d1ð Þk1 − 2A2 σ1 − c1 + e1ð Þk1½ �

a1K1K2A

�1/3

� K1x + K2y − νtð Þ − ξ0

!
,m
!#1/2

,

ð44Þ

when 0 <w, the exact solution for Equation (2) takes
the form

ψ13 x, y, tð Þ = ±
ffiffiffiffiffiffiffiffi
−λ2

p 2 b1 + d1ð Þk1 − 2A2 σ1 − c1 + e1ð Þk1½ �
a1K1K2A

� �−1/6
× ei −k1x−k2y+ωt+θð Þ

×
sn

ffiffiffiffiffiffiffiffi
−λ1

p
/2

� �
2 b1 + d1ð Þk1 − 2A2 σ1 − c1 + e1ð Þk1½ �� �

/a1K1K2A
� �1/3 K1x + K2y − νtð Þ − ξ0
� �

,m
� �

cn
ffiffiffiffiffiffiffiffi
−λ1

p
/2

� �
2 b1 + d1ð Þk1 − 2A2 σ1 − c1 + e1ð Þk1½ �� �

/a1K1K2A
� �1/3 K1x + K2y − νtð Þ − ξ0
� �

,m
� � ,

ϕ13 x, y, tð Þ = ±A
ffiffiffiffiffiffiffiffi
−λ2

p 2 b1 + d1ð Þk1 − 2A2 σ1 − c1 + e1ð Þk1½ �
a1K1K2A

� �−1/6
× ei −k1x−k2y+ωt+θð Þ

×
sn

ffiffiffiffiffiffiffiffi
−λ1

p
/2 2 b1 + d1ð Þk1 − 2A2 σ1 − c1 + e1ð Þk1½ �� �

/a1K1K2A
� �1/3 K1x + K2y − νtð Þ − ξ0
� �

,m
� �

cn
ffiffiffiffiffiffiffiffi
−λ1

p
/2 2 b1 + d1ð Þk1 − 2A2 σ1 − c1 + e1ð Þk1½ �� �

/a1K1K2A
� �1/3 K1x + K2y − νtð Þ − ξ0
� �

,m
� � ,

ð45Þ
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Figure 1: The graph shows solution ψ1 by assuming a1 = 0:1, a2 = 0:2, b1 = 0:24, b2 = 0:03, c1 = 0:03, c2 = 0:06, d1 = 0:16, d2 = 0:02, e1 = 0:01,
e2 = 0:02, α1 = 2:08, α2 = 2:04, β1 = 0:002, β2 = 0:014, σ1 = 0:0256, σ2 = 0:0512, y = 1, θ = 0, and ξ0 = 0. Letting K1 = 0:2, K2 = 0:3, k1 = 0:2,
and k2 = 0:1, then ν = 0:4, ω = 0:41, p = −2, and q = 1.
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Figure 2: The graph shows solution ψ3 by assuming a1 = 0:1, a2 = 0:2, b1 = 0:24, b2 = 0:03, c1 = 0:03, c2 = 0:06, d1 = 0:16, d2 = 0:02, e1 = 0:01,
e2 = 0:02, α1 = 2:08, α2 = 2:04, β1 = 0:002, β2 = −0:768, σ1 = 0:0256, σ2 = 0:0512, y = 1, θ = 0, and ξ0 = 0. Letting K1 = 0:2, K2 = 0:3, k1 = 0:2,
and k2 = 0:1, then ν = 0:4, ω = −0:372, p = 4, and q = 1.
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Figure 3: The graph shows solution ψ7 by assuming a1 = 0:1, a2 = 0:2, b1 = 0:24, b2 = 0:03, c1 = 0:03, c2 = 0:06, d1 = 0:16, d2 = 0:02, e1 = 0:01,
e2 = 0:02, α1 = −1:92, α2 = −1:96, β1 = 0:002, β2 = 0:006, σ1 = 0:0256, σ2 = 0:0512, y = 3, θ = 0, and ξ0 = 0. Letting K1 = 0:2, K2 = 0:3, k1 = 0:2,
and k2 = 0:1, then ν = −0:4, ω = −0:39, p = −2, and q = 0.
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(c) 2D contour plot of u5

Figure 4: The graph shows solution ψ5 by assuming a1 = 0:1, a2 = 0:2, b1 = 0:24, b2 = 0:03, c1 = 0:03, c2 = 0:06, d1 = 0:16, d2 = 0:02, e1 = 0:01,
e2 = 0:02, α1 = −1:92, α2 = −1:96, β1 = 0:002, β2 = 0:032, σ1 = 0:0295, σ2 = 0:059, y = 1, θ = 0, and ξ0 = 0. Letting K1 = 0:2, K2 = 0:3, k1 = 0:2,
and k2 = 0:1, then ν = −0:4, ω = −0:372, p = 4, and q = 0.

Table 1: Comparison between Zayed et al. ([26]) solutions and our solutions.

Zayed et al. (2022) solutions Our solutions

(i) If L1 = 1/2, L2 = −1, ε = 1 then solutions (i) If q = 1, p = −2, then we obtain

(35) reduced to u ξð Þ = −1/
ffiffiffi
2

p
tanh 1/2 ξ − ξ0ð Þð Þ u1 ξð Þ = ± 1ffiffiffi

2
p tanh 1

2 ξ − ξ0ð Þ
� �

(ii) If L1 = 1/2, L2 = −1, ε = −1 then solutions (ii) If q = 1, p = −2, then we obtain

(37) Reduced to u ξð Þ = −1/
ffiffiffi
2

p
coth 1/2 ξ − ξ0ð Þð Þ u2 ξð Þ = ± 1ffiffiffi

2
p coth 1

2 ξ − ξ0ð Þ
� �
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where m2 = ðλ2 − λ1Þ/−λ1. Case 4. Δ < 0. When w > 0, we obtain the exact traveling
wave solutions for Equation (2) as

where m2 = ð2 ffiffiffi
q

p − pÞ/4 ffiffiffi
q

p
.

4. Graphical Representation

In this section, we graphically illustrate the amplitude profile
of some retrieved solutions of four types by using Maple
software. Graphs 1-4 show the 2D, 3D, and corresponding
contour plots for the solutions ψ1, ψ3, ψ5, and ψ7, respec-
tively, by taking suitable choice of free parameters satisfying
all the constrict conditions (14)–(16) and (19)–(20). Figure 1
shows the 2D and 3D views and contour plot of kink soliton
solution of (27) by taking suitable parameters. Figures 2 and
3 elaborate both cases of singular periodic solutions of (31)
and (38) in 2D and 3D shapes and contour plot. The 2D
and 3D views and contour plot of the bright soliton solution
of (34) is depicted in Figure 4. Figures 1–4 express an insight
view of the structures for the solutions of (2) which give us a
better understanding of the propagation and mechanism for
the origin system.

5. Conclusion

The governing model in Bragg grating fibers for the coupled
Kundu-Mukherjee-Naskar model was examined on purpose
of obtaining new optical soliton solutions. The complete dis-
crimination system for the polynomial method was adopted
to uncover the rational function solutions, triangle function
solutions, and the Jacobian elliptic function solutions of this
model. All of the derived solutions are guaranteed by putting
them back into the original equation. Many other structures
can be obtained by choosing free parameters. Comparing the
results with the works done in [26], some of our obtained
solutions are in good agreement with the published results
which is presented in Table 1. The solutions (31) and (32)
and (38) and (39) were not obtained by Zayed et al. [26].
The listed solutions in Case 3 and 4 are reported for the first

time and can hardly be obtained by other methods. As a
rather newly proposed system, there is a lot of scope to
extend the horizon in this context. For this reason, addi-
tional techniques such as the Lie group, the new extended
direct algebraic method, and the new auxiliary equation
method will be considered on this model. These details shall
be revealed, respectively, with time.
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