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ABSTRACT 
 
Weather forecasting is an important subject in the field of meteorology all over the world. The 
pattern and amount of rainfall are the essential factors that affect agricultural systems. The present 
paper describes an empirical study for modeling and forecasting the time series of monthly rainfall 
patterns for Coimbatore, Tamil Nadu. The Box-Jenkins Seasonal Autoregressive Integrated Moving 
Average (SARIMA) methodology has been adopted for model identification, diagnostic checking and 
forecasting for this region. The best SARIMA models were selected based on the Autocorrelation 
Function (ACF) and Partial Autocorrelation Function (PACF) and the minimum values of Akaike 
Information Criterion (AIC) and Bayesian Information Criterion (BIC). The study has shown that the 
SARIMA (0,0,0)(2,0,0)12 model was appropriate for analysing and forecasting the future rainfall 
patterns. The Root Means Square Error (RMSE) values were found to be 52.37 and proved that the 
above model was the best model for further forecasting the rainfall. 
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1. INTRODUCTION  
 
The atmosphere and ocean have warmed, the 
amounts of snow and ice have diminished and 
sea level has risen in the recent past. When the 
temperature increases beyond 2.5°C, then 20 to 
30 per cent of known animal and plant species 
would be at increased risk of extinction. If the 
global average temperature increase exceeded 
3.5°C, models suggested that there would be 
extinctions of 40 to 70 per cent of known species 
[1]. India is one of the 27 countries identified as 
most vulnerable to the impact of global warming. 
[2,3] studied the changes in the frequency of 
rainy days, rainy days as well as heavy rainfall 
days using the daily rainfall data for the period 
1901-2005 all over India. It is a fact that climate 
change is real and is happening across the world 
in different magnitudes. The long term mean 
seasonal and annual rainfall analysis showed 
that South West Monsoon (SWM) rainfall 
observed was 176.9 mm and North East 
Monsoon (NEM) was 336.9 mm with an annual 
rainfall of 674.8 mm at Coimbatore [4]. 
 

The agricultural practices and crop yields of India 
are heavily dependent on the climatic factors like 
rainfall. Out of 142 million ha cultivated land in 
India, 92 million ha (i.e. about 65%) are under 
the influence of rain-fed agriculture [5,6,3]. Unlike 
irrigated agriculture, rain-fed farming is usually 
diverse and risk prone. The monsoon season is 
the principal rain-bearing season and in fact, a 
substantial part of the annual rainfall over a large 
part of the country occurs in this season. Small 
variations in the timing and the quantity of 
monsoon rainfall have the potential to impact on 
agricultural output [7]. 
 

Rainfall is natural climatic phenomena whose 
prediction is challenging and demanding. Its 
forecasts of particular relevance to the 
agriculture sector, which contributes significantly 
to the economy of the nation [8,6]. On a 
worldwide scale, numerous attempts have been 
made to predict its behavioural pattern using 
various techniques. In the last few decades, time 
series forecasting has received tremendous 
attention of researchers.  
 

Time series models have been commonly used 
in a broad range of scientific applications. 
 

Some of the major advantages of time series 
models include their systematic search capability 
for identification, estimation and diagnostic 

checking. Time series models, like the 
Autoregressive Integrated Moving Average 
(ARIMA), effectively consider serial linear 
correlation among observations, whereas 
Seasonal Autoregressive Integrated Moving 
Average (SARIMA) models can satisfactorily 
describe time series thatexhibit non-stationary 
behaviours both within and across seasons [9]. 
 
SARIMA models are the most general 
forecasting models with high degree of accuracy. 
An attempt has been made in the present paper 
to analyse and predict the monthly rainfall 
patterns for Coimbatore, Tamil Nadu using the 
SARIMA model. 
 

2. MATERIALS AND METHODS 
 
2.1 Data 
 
In this study, the time series is the average 
monthly rainfall data of Coimbatore, Tamil Nadu 
from 1991-2018, obtained from Agro Climate 
Research Centre, Tamil Nadu Agricultural 
University. The data processing tool used for the 
study is R software.  
 

2.2 Seasonal ARIMA Model 
 
The general form of multiplicative seasonal 
model SARIMA( , , ) ( , , )s p d q P D Q is given 
by 
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Gaussian white noise process; s is the period of 
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the time series and B is the backshift operator 
[10]. 

 
The monthly rainfall took for the study, s=12. 
Hence, the above equation (1) can be written as   

tq
12

Qt
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12p
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P a)B()B(x)B()B( 
 

 
2.3 Model Identification 
 
In time series analysis, the most crucial steps are 
to identify and build a model based on the 
available data. At this stage it is necessary to 
identify the values of (p,d,q) and (P,D,Q)s. The 
goal is to employ computationally simple 
techniques to narrow down the range of 
parsimonious models. The Box-Jenkins method 
is only suitable for stationary time series data.  

 
For this purpose, one should construct a time 
plot of the data and inspect the graph for any 
anomalies [11]. Through careful examination of 
the plot, usually one could get an idea about 
whether the series contains a trend, seasonality, 
outliers; non-constant variances and other non-
normal and non-stationary phenomena. This 
information would help to choose proper data 
transformation. If the variance grows with time, 
we should use variance-stabilizing 
transformations and difference. A series with 
non-constant variance often needs a logarithmic 
transformation.  

 
The next step is to identify preliminary values of 
auto regressive order p, the order of differencing 
d, the moving average order q and their 
corresponding seasonal parameters P, D and Q. 
Here, the autocorrelation function (ACF), the 
partial autocorrelation function (PACF) are the 
most important elements [12]. The ACF 
measures the amount of linear dependence 
between observations in a time series that are 
separated by a lag q. The PACF helps to 
determine how many autoregressive terms p are 
necessary. The parameter d is the order of 
difference frequency changing from non-
stationary time series to stationary time series. 
Furthermore, a time series plot and ACF of data 
will typically suggest whether any differencing is 
needed. If differencing is called for, the time plot 
will show some kind of linear trend. 

 
When preliminary values of D and d have been 
fixed, the next step is to check the ACF and 

PACF of t
dD

12 x to determine the values of P, 

Q, p and q. Further one could choose 
parameters using minimum Akaike’s Information 
Criterion (AIC) and Bayesian Information 
Criterion (BIC).Once the model is tentatively 
established, the parameters and the 
corresponding standard errors can beestimated 
using statistical techniques. 

 
2.4 Diagnostic Checking 
 
Diagnostic checks have become a standard tool 
for the identification of adequate models before 
forecasting the data. The overall test for lack of fit 
for autoregressive moving average models 
proposed by [13] and a measure of lack of fit in 
time series models proposed by [14] are 
considered. The selected appropriate                       
model is used for forecasting the monthly  
rainfall. 

 
2.5 Fitting and Prediction 
 
Once a model has been identified and all the 
parameters have been estimated, we can predict 
future values of a time series with the estimated 
model. 
 

3. RESULTS AND DISCUSSION 
 
The mean monthly rainfall ranged from 7 mm 
(January) to 189.7 mm (October) (Table 1). 
From, April to November, the Co-efficient of 
Variation is less than 100 per cent and the 
dependability of rainfall for these months are 
higher compared to other months. 
 

3.1 Nature of Time Series Data 
 
The nature of the rainfall data from 1991 to 2018 
conveyed the presence of the seasonality trend. 
Hence, forecasting rainfall for successive years 
using SARIMA model was employed in the 
present study (Fig. 1). 
 

3.2 Stationarity 
 
The time series plot showed that the data 
exhibited stationary and the quality of stationarity 
of the observation was further tested by 
Augmented Dickey-Fuller test (ADF), KPSS test, 
PP test (Table 2). The probability value of ADF 
and PP test were less than 0.05 and greater than 
0.05 for KPSS test for the rainfall data [15]. Thus, 
the data set was considered to be stationary at 5 
and 6 lag.  
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Table 1. Descriptive statistics for  rainfall 
 

 Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 
Mean 7.0 14.6 26.4 55.7 66.3 38.3 44.0 40.4 63.8 189.7 142.9 30.2 
SD 15.5 30.9 41.9 48.4 61.2 25.4 31.9 33.4 56.8 96.9 103.3 42.2 
CV 223.3 211.9 158.9 86.9 92.3 66.4 72.6 82.5 89.00 51.1 72.3 139.9 
Min 0.0 0.0 0.0 0.8 6.5 6.8 5.1 0.8 0.0 30.0 3.4 0.0 
Max 72.7 125.6 151.4 168.8 259.0 107.8 125.8 163.6 218.1 352.1 311.1 161.6 

 
Table 2. Stationarity test for rainfall 

 
Name of the test Rainfall 
 Value Lag P value 
ADF test -7.821 6 0.01 
KPSS test 0.0719 5 0.1 
PP test  -15.073 5 0.01 

 

 
 

Fig. 1. Time series plot of monthly rainfall 

 
3.3 Model Identification 
 
The correlogram plot (ACF, PACF) for rainfall 
data set was given in Fig. 2. These plots were 
used to find the appropriate values of P, p for 
autoregressive model and Q, q for moving 
average model.  
 
Various models were framed based on p,d, q, 
P,D,Q values. It was clearly observed from Table 
3, the lowest AIC and BIC values were founded 
in SARIMA (0,0,0)(2,0,0)12 Model. Moreover, the 
Root Mean Square Error (RMSE) values for the 
selected model were 52.37 and it was less as 
compared with other models. Hence, the 
SARIMA (0,0,0)(2,0,0)12 model could be used to 
forecast future rainfall. 
 

3.4 Diagnostic Checking of the SARIMA 
Model 

 
This diagnostic check of the model residuals are 
used to check the adequacy of the fitted model. 

The normal time series plot of model residuals 
are shown in Fig. 3.  
 
The residuals were further visualized by ACF and 
PACF plots. Fig. 4 shows the ACF and PACF 
pattern of SARIMA model residuals. The plot 
infers that residual lag values lied within the 
confident intervals. 
 

3.5 Test for Auto Correlation 
 
Ljung-Box test was used to check the 
autocorrelation property of the residuals and the 
results were presented in Table 4. This statistical 
test was used to find whether any group of the 
autocorrelation of a time series would differ from 
zero. The residual coefficients were tested 
statistically to be non-significant with Ljung-Box 
statistics. The probability value for both Ljung-
Box and Box-Pierce test were more than 0.05 
which shows non-significant nature. A non-
significant value would conclude that the models 
were fitted well.  
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Table 3. SARIMA models for rainfall data 
 

Model Maximum temperature RMSE 
 AIC BIC 
SARIMA(2,0,2)(1,0,1)12 3695.06 3652.16 54.39 
SARIMA(1,0,0)(1,0,0)12 3671.65 3686.8 56.25 
SARIMA(0,0,0)(1,0,0)12 3670.27 3681.65 56.28 
SARIMA(0,0,0)(2,0,0)12 3627.21 3642.36 52.37 

 
Table 4. Ljung-box test statistic for fitted models 

 
Test Rainfall 
 Q Statistic lag P value 
Ljung-Box 21.739 20 0.2438 
Box-Pierce 20.799 20 0.2897 

 

 
 

Fig. 2. ACF and PACF plot of rainfall 
 

 
 

Fig. 3. Time series plot of residuals of the selected model 
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Fig. 4. ACF and PACF plot of fitted model residual 

 
 

Fig. 5. Forecasted rainfall for 2019-2020 
 

 
 

Fig. 6. Actual value Vs forecasted values 
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3.6 Forecasted Values 
 
Thus, the selected models were considered to          
be the best model and now used to forecast                 
the rainfall for next two years 2019 and              
2020. Fig. 5 shows the forecasted series lies  
with the original time series data set. The 
forecasted values were indicated with the 
confidence limits.  
 

3.7 Testing Data Set with Forecasted 
Values 

 
Now the forecasted value by the selected model 
was compared with the actual observed value. 
Fig. 6 shows the performance of the                     
selected model by plotting the forecasted                   
series and actual series in a single plot.                  
Having fitted the models to actual data, they are 
used to forecast one step ahead of the                  
observed time series. From the above results               
it  could be concluded that from various                   
models SARIMA(0,0,0)(2,0,0)12 model is the        
best model for forecasting rainfall.  

 
4. CONCLUSION 
 
The study has shown that the 
SARIMA(0,0,0)(2,0,0)12 model was appropriate 
for analysing and forecasting the future rainfall 
patterns.The Root Means Square Error (RMSE) 
values was found to be 52.37 and proved that 
the above model was the best model for further 
forecasting the rainfall. 
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