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ABSTRACT 
 

This thesis explores an innovative approach to optimizing energy efficiency in smart home 
environments by leveraging reinforcement learning (RL) and Internet of Things (IoT) technologies. 
As global energy demand rises and concerns over environmental sustainability intensify, smart 
homes offer a promising solution to reduce residential energy consumption while enhancing user 
comfort. The study presents a comprehensive architecture integrating IoT devices with RL 
algorithms, allowing for real-time monitoring and intelligent energy management. Through data 
collected from smart sensors, RL agents continuously learn and adapt to occupant behaviors and 
environmental changes, making optimal decisions to minimize energy usage without compromising 
user comfort. A real word-based analysis demonstrates that the proposed system achieves 
significant energy savings compared to traditional rule-based methods. The results underscore the 
effectiveness of combining RL and IoT for adaptive energy management, paving the way for 
scalable solutions that could extend to smart cities and renewable energy systems. This research 
provides valuable insights into how emerging technologies can contribute to sustainable energy 
practices in the residential sector. 
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1. INTRODUCTION 
 
In recent years, the importance of energy 
efficiency has surged due to increasing 
environmental concerns and the rising cost of 
energy. As global energy consumption continues 
to grow, there is a pressing need to develop 
innovative solutions that can reduce energy 
usage without compromising comfort and 
convenience. Smart home automation has 
emerged as a promising approach to address 
this challenge. By leveraging advanced 
technologies such as the Internet of Things     
(IoT), when integrated with machine                     
learning techniques like Reinforcement Learning 
(RL), can dynamically learn, monitor, and 
manage energy consumption more effectively, 
leading to significant energy savings                         
and reduced carbon footprints (Smith & Brown 
2022).  
 
Energy efficiency in smart homes is not only 
critical for reducing overall energy demand but 
also for combating climate change by minimizing 
greenhouse gas emissions. The integration of 
IoT enables the monitoring of appliances, 
lighting, and heating systems, creating a data-
rich environment that can be leveraged by RL 
algorithms. Reinforcement learning, through its 
adaptive learning capabilities, can autonomously 
learn optimal strategies for energy management, 
ensuring that smart homes operate efficiently 
without compromising the comfort of their 
residents (Zhang et al. 2020). 
 

1.1 Problem Statement 
 
Despite the advancements in smart home 
technologies, current systems cannot often 
optimize energy usage dynamically and 
adaptively. Traditional automation systems rely 
on pre-defined rules and schedules, which may 
not account for real-time changes in user 
behavior or environmental conditions. This 
limitation results in suboptimal energy 
management and missed opportunities for 
energy savings. Therefore, there is a need for a 
more intelligent approach that can learn and 
adapt to varying conditions to optimize energy 
efficiency in smart homes. 
 

1.2 Objectives 
 
The main objectives of this research are: 

1. To develop an intelligent energy 
management system for smart homes 
using reinforcement learning and IoT. 

2. To optimize energy consumption by 
dynamically adjusting smart home devices 
in real time. 

3. To improve automation by incorporating 
adaptive learning techniques that minimize 
user intervention. 

4. To evaluate the energy savings and 
efficiency improvements achieved through 
the proposed system. 

5. To provide a cost-benefit analysis 
comparing the proposed approach to 
traditional energy management methods in 
smart homes. 

 

1.3 Scope of the Study 
 
This study focuses on the optimization of energy 
consumption in smart homes through the 
integration of IoT devices and reinforcement 
learning algorithms. The scope is limited to 
typical residential settings equipped with IoT-
enabled appliances such as thermostats, lighting 
systems, and home appliances. The research will 
consider factors such as user behavior, 
environmental conditions, and appliance power 
usage patterns in the design of the reinforcement 
learning framework. Furthermore, the insights 
gained from this research can be applied to other 
domains, such as smart buildings and cities, 
amplifying its impact on global energy efficiency 
efforts (Johnson & Lee 2023). 
 

2. LITERATURE REVIEW 
 

2.1 Smart Home Automation 
 
Smart home automation has gained significant 
traction as a means to enhance energy efficiency 
and user convenience. Existing technologies 
primarily focus on automating household 
appliances and systems through pre-defined 
schedules and user inputs. For instance, 
programmable thermostats and smart lighting 
systems allow users to set specific times for 
operation, thereby reducing unnecessary energy 
consumption (Green & White 2021). However, 
these systems cannot often adapt to real-time 
changes in user behavior or environmental 
conditions, leading to suboptimal energy 
management (Patel & Kumar 2020). Moreover, 
the reliance on static rules and schedules can 
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result in energy wastage when unexpected 
changes occur, such as a sudden drop in 
temperature or an unplanned absence from 
home (Lee & Park 2022). 
 
The use of wireless communication protocols, 
such as Zigbee, Z-Wave, and Wi-Fi, has 
significantly enhanced the interconnectivity of 
smart devices. Machine learning and artificial 
intelligence (AI) are also being leveraged to 
predict user preferences and automate tasks in a 
more personalized manner (Smith et al. 2022). 
For instance, smart thermostats use Q-learning, 
a reinforcement learning algorithm, to optimize 
temperature settings based on user behavior and 
environmental factors, thus improving both 
comfort and energy efficiency. However, while 
smart home automation has made great strides, 
energy optimization remains a complex 
challenge, particularly in balancing user comfort 
with efficient energy use. 
 

2.2 Energy Efficiency in Smart Homes 
 

Energy efficiency has become a primary goal in 
smart home systems, driven by the need to 
reduce energy consumption and environmental 
impact. Various techniques have been employed 
to achieve this, including demand response (DR), 
energy scheduling, and load forecasting (Patel & 
Singh 2019). Demand response programs allow 
smart homes to adjust energy usage during peak 
hours in response to signals from utility 
providers, which helps prevent grid overload and 
reduces energy costs. Energy scheduling 
involves automating devices to operate during 
non-peak hours, while load forecasting predicts 
energy consumption patterns based on historical 
data. 
 

One of the main challenges in optimizing energy 
consumption in smart homes is the dynamic 
nature of user behavior. Most energy 
management systems rely on pre-set rules or 
static schedules that do not account for real-time 
changes in user activities or environmental 
conditions. As a result, these systems often fail 
to maximize energy savings. Moreover, 
integrating renewable energy sources, such as 
solar panels, into smart homes introduces 
additional complexities in managing energy 
storage and consumption efficiently (Huang et al. 
2019). 
 

2.3 IoT in Smart Homes 
 

The Internet of Things (IoT) plays a pivotal role in 
smart home automation by enabling devices to 

communicate with each other and with 
centralized control systems. IoT devices, such as 
smart meters, sensors, and actuators, collect 
data on energy consumption, temperature, 
humidity, and occupancy, allowing real-time 
monitoring and control of home systems (Singh & 
Dey 2020). Through this interconnected 
ecosystem, smart homes can optimize energy 
usage by dynamically adjusting device settings 
based on sensor inputs. 
 
For example, motion sensors can detect when a 
room is unoccupied and turn off lights or 
appliances, while smart meters provide detailed 
insights into energy usage, enabling 
homeowners to make informed decisions about 
their consumption patterns. However, the 
massive amount of data generated by IoT 
devices poses challenges in terms of data 
processing, storage, and analysis (Zhao & Lee 
2021). Integrating IoT with machine learning 
algorithms, such as reinforcement learning, can 
help address these challenges by enabling 
automated, data-driven decision-making for 
energy optimization. By integrating IoT with RL, 
smart homes can achieve a higher level of 
automation and efficiency, as the system can 
continuously learn and adapt to new data inputs 
(Yang & Li 2024). 
 

2.4 Reinforcement Learning (RL) 
 
Reinforcement Learning (RL) is a subset of 
machine learning where an agent learns to make 
decisions by interacting with an environment and 
receiving feedback in the form of rewards or 
penalties based on its actions. In the context of 
smart home energy management, RL can be 
used to dynamically adjust device settings (e.g., 
temperature, lighting) to optimize energy 
consumption while maintaining user comfort 
(Sutton & Barto 2018). Unlike traditional rule-
based systems, RL does not rely on predefined 
schedules or static rules; instead, it learns from 
real-time data to adapt to changing conditions 
and user preferences. 
 
The key advantage of RL in smart homes is its 
ability to autonomously learn optimal strategies 
over time. For instance, an RL-based system can 
learn to reduce heating when the home is 
unoccupied or adjust appliance usage during 
peak energy hours, without requiring constant 
user intervention. Several studies have 
demonstrated the effectiveness of RL in reducing 
energy consumption in smart homes. For 
example, a study by Gao et al. (2020) showed 
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that RL-based energy management systems 
achieved significant energy savings compared to 
traditional methods. 
 

2.5 Existing Solutions 
 
Various approaches to energy optimization in 
smart homes have been developed, combining 
IoT with machine learning techniques. Rule-
based systems, for example, use pre-defined 
rules to manage energy consumption, such as 
turning off appliances at specific times of the day. 
However, these systems are often inflexible and 
cannot adapt to real-time changes in user 
behavior or environmental conditions (Brown & 
Malik 2019). 
 
On the other hand, model-based approaches 
leverage machine learning algorithms to predict 
energy consumption and adjust device settings 
accordingly. These models can be trained on 
historical data to forecast energy demand and 
optimize energy usage patterns. For example, 
neural networks have been used to predict 
electricity consumption in smart homes, allowing 
for more efficient energy management (Ali & 
Mahmood 2021). 
 

2.6 Research Gaps 
 
While previous studies have demonstrated the 
potential of Reinforcement Learning (RL) and the 
Internet of Things (IoT) in enhancing energy 
efficiency, several critical gaps remain 
unaddressed. Current research often lacks a 
holistic approach to integrating multiple IoT 
devices and systems, which is essential for 
comprehensive and effective energy 
management in smart homes. This integration is 
crucial for achieving a seamless interaction 
between devices, enabling more precise control 
and optimization of energy usage.  
 
Moreover, there is a pressing need for scalable 
solutions that can adapt to diverse home 
configurations and varying user preferences. 
Existing solutions frequently fail to account for 
the dynamic nature of smart home environments, 
where user behavior and external conditions can 
change rapidly. Traditional model-based 
approaches, which rely heavily on historical       
data, are often inadequate in such settings             
due to their limited adaptability to real-time 
changes. 
 
Reinforcement Learning offers a more dynamic 
and responsive solution by continuously learning 

from real-time data and making decisions based 
on evolving conditions. Unlike model-based 
approaches, RL can adapt to real-time scenarios, 
making it particularly suitable for environments 
with variable conditions, such as smart homes. 
However, despite its potential, the application of 
RL in this domain faces challenges, including the 
need for significant computational resources and 
the complexity of balancing energy savings with 
user comfort (Kumar & Sharma 2020). 
 
This thesis aims to address these gaps by 
developing a unified RL framework that 
leverages Q-learning and integrates Arduino-
based IoT data to optimize energy usage across 
various smart home systems. The proposed 
approach seeks to enhance overall energy 
efficiency while maintaining user satisfaction by 
learning and adapting to user preferences in real 
time. By addressing the integration and 
scalability challenges, this research contributes 
to the development of more intelligent and 
adaptive energy management solutions for smart 
homes, ultimately leading to significant 
advancements in the field. 
 

3. METHODOLOGY 
 

3.1 System Architecture 
 
The proposed system architecture is designed to 
integrate IoT devices with reinforcement learning 
algorithms to optimize energy consumption in a 
smart home setting. This architecture consists of 
three main layers: the IoT layer, the data 
processing layer, and the reinforcement learning 
layer. 
 

1. IoT Layer: This layer includes various IoT-
enabled devices, such as smart 
thermostats, lighting systems, and 
sensors, that monitor environmental 
parameters like temperature, humidity, and 
occupancy. These devices are 
interconnected through a central hub, 
which enables seamless communication 
and data exchange among them. 

2. Data Processing Layer: Data from the IoT 
devices is aggregated and pre-processed 
in this layer. The data processing unit 
handles real-time data cleansing, 
normalization, and structuring, preparing it 
for use in the reinforcement learning 
algorithm. This layer is also responsible for 
storing and retrieving historical data, which 
can provide additional insights for the RL 
agent. 
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3. Reinforcement Learning Layer: This is 
the decision-making layer, where the 
reinforcement learning agent interacts with 
the environment to learn optimal strategies 
for energy management. The RL agent 
receives state information from the data 
processing layer, takes actions by 
adjusting the settings of IoT devices, and 
receives feedback in the form of rewards 
based on energy efficiency and user 
comfort levels. 

 
The entire system architecture is designed to 
operate autonomously, with minimal human 
intervention, continuously learning and adapting 
to improve energy efficiency. 
 

3.2 Data Collection 
 
Data collection involves recording key 
parameters such as energy usage, temperature, 
occupancy, and time-based changes. This data 
is logged locally and updated hourly, with 
particular attention to capturing state changes 
like shifts in occupancy or temperature 
adjustments. The IoT devices collect real-time 
data on several parameters, including: 
 

• Energy Usage: Smart meters record the 
energy consumption of individual 
appliances and systems within the smart 
home. 

• Environmental Factors: Sensors capture 
ambient conditions like temperature, 
humidity, and light levels. 

• Occupancy Patterns: Motion detectors 
and occupancy sensors provide data on 
room usage and occupancy, enabling 
more accurate adjustments for energy 
savings. 

 
The data collected is stored in a centralized 
database, which the RL agent accesses to track 
patterns and make energy management 
decisions. Regular updates of this data allow the 
system to adapt to real-time changes in the 
home environment and user behaviors, 
improving the effectiveness of energy 
optimization. 
 

3.3 Algorithm Development 
 
The Reinforcement Learning (RL) algorithm 
defines state and action spaces, where states 
are characterized by temperature, motion, time, 
light, and fan settings, and actions include 
turning the fan or lights on/off and adjusting the 

fan speed. The reward structure encourages 
energy-saving actions with positive rewards, 
such as a +10 for turning off lights in unoccupied 
rooms, while negative rewards, like -20, penalize 
actions that require user intervention, guiding the 
RL agent to better anticipate user needs. 
 
The RL model used is designed as follows: 
 

1. State Space: The state represents the 
smart home's current environment, 
including data such as room occupancy, 
current temperature, and time of day. By 
defining a comprehensive state space, the 
RL agent can understand the home's 
conditions in real-time. 

2. Action Space: Actions represent the 
possible adjustments the agent can make 
to IoT devices, such as altering the 
thermostat setting, dimming lights, or 
powering down non-essential devices. 

3. Reward Function: The reward function is 
designed to balance energy savings with 
user comfort. The RL agent receives a 
positive reward for actions that reduce 
energy consumption without negatively 
impacting user comfort. Conversely, 
actions that lead to discomfort or increased 
energy usage are penalized. 

 
The agent uses a Q-learning network (QN) to 
approximate the optimal policy for energy 
management, learning from historical data to 
make better decisions in future scenarios. The 
RL agent undergoes extensive training to 
optimize energy usage in various simulated 
conditions before being implemented in the real 
environment. 

 
3.3.1 Justification for using Q-learning in 

dynamic energy management 

 
Q-learning is a popular reinforcement learning 
(RL) algorithm that is particularly effective for 
smart automation tasks, such as dynamic energy 
management. Its suitability for these tasks stems 
from its ability to learn optimal actions through 
interactions with the environment, without 
requiring a model of the environment (Atzori et 
al. 2010). This model-free approach allows Q-
learning to adapt to changes in the environment, 
making it ideal for managing energy consumption 
dynamically. By continuously updating its policy 
based on feedback from the environment, Q-
learning can optimize energy usage in real time, 
leading to more efficient and sustainable energy 
management solutions (Bellman 1957). 
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The algorithm works by maintaining a Q-table, 
which stores the expected utility of taking a given 
action in a particular state. As the system 
interacts with the environment, Q-learning 
updates this table using the Bellman equation, 
which incorporates the reward received from the 
environment and the estimated future rewards 
(Mnih et al. 2015). This iterative process                
enables the algorithm to converge towards an 
optimal policy that maximizes the cumulative 
reward over time. In the context of energy 
management, this means that Q-learning can 
effectively balance energy consumption with      
cost and resource availability, adapting to 
fluctuations in demand and supply (Sutton & 
Barto 2018).  
 
Moreover, Q-learning's ability to handle high-
dimensional state spaces and its robustness to 
noise and uncertainty make it well-suited for 
complex energy management systems. It can 
integrate data from various IoT devices, such as 
sensors and smart meters, to make informed 
decisions about energy distribution and usage 
(Watkins & Dayan 1992). This integration allows 
for a more granular and precise control of energy 
resources, reducing waste and improving overall 
system efficiency. By leveraging the strengths of 
Q-learning, smart automation systems can 
achieve significant improvements in energy 
management, contributing to sustainability goals 
and reducing operational costs (Yang et al. 
2020). 
 

3.4 Advantages of Reinforcement 
Learning (RL) over Traditional Rule-
based 

 
Reinforcement Learning (RL) offers significant 
improvements over traditional rule-based and 
static automation systems by addressing their 
inherent limitations. Rule-based systems rely on 
predefined rules and conditions, which can be 
inflexible and unable to adapt to new or 
unforeseen situations. Static automation 
systems, similarly, operate based on                        
fixed parameters and lack the ability to learn        
from interactions or changes in the           
environment. 
 
In contrast, RL is a model-free learning approach 
that allows systems to dynamically adapt to user 
behavior and environmental changes. By 
continuously interacting with the environment, RL 
algorithms learn optimal policies through trial and 
error, improving decision-making over time. This 
adaptability makes RL particularly suitable for 

complex and dynamic environments where user 
preferences and external conditions can vary 
significantly. 
 
For example, in energy management systems, 
RL can optimize energy consumption by learning 
from user habits and adjusting device settings in 
real-time, leading to more efficient and 
personalized energy use. This dynamic 
adaptability is a key advantage of RL, enabling 
more responsive and intelligent automation 
solutions. 
 

3.5 Real World Environment 
 
Before deployment, the proposed system is 
tested in an environment to validate its 
effectiveness and refine the RL model. Tools 
such as MATLAB, Simulink, or OpenAI Gym can 
be used to replicate the smart home 
environment, incorporating IoT devices and 
energy consumption data. The model allows for 
the following: 
 

• Model Training and Validation: The RL 
algorithm can be trained to ensure it 
effectively reduces energy consumption 
without compromising comfort. 

• Scenario Testing: Various scenarios, 
such as changes in occupancy patterns 
and extreme weather conditions, are 
simulated to test the adaptability and 
robustness of the system. 

• Parameter Tuning: By adjusting 
parameters like learning rate and discount 
factor in the real world, the performance of 
the RL model can be optimized for real-
world deployment. 

 
The results provide insights into the model’s 
performance, enabling fine-tuning of the 
algorithm and system parameters before real-
time implementation. 
 

3.6 Performance Metrics 
 
The success of the proposed system is 
evaluated using several performance metrics to 
measure its effectiveness in energy optimization 
and user comfort: 
 

1. Energy Savings: This metric represents 
the reduction in energy consumption 
compared to traditional energy 
management systems. It is calculated                   
as the percentage decrease in energy 
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usage achieved by the RL-based             
system. 

2. Response Time: Response time 
measures the system’s efficiency in 
making real-time adjustments based on 
data inputs. A lower response time 
indicates that the system can adapt to 
environmental changes quickly, enhancing 
overall performance. 

3. User Comfort Level: User comfort is 
assessed through room temperature, 
lighting levels, and system 
responsiveness. This metric ensures that 
energy optimization does not compromise 
comfort by balancing reward functions in 
the RL model. 
 

These metrics provide quantitative benchmarks 
for evaluating the system's efficiency and 
practicality, guiding further improvements to 

enhance the smart home energy management 
solution. 
 

3.7 System Testing and Validation 
 

System Testing and Validation include circuit 
testing, where Proteus is used to verify circuit 
functionality, and RL training, where the agent is 
trained on real-time data with adjustments 
refined based on user feedback. 
 

3.8 Flow Charts 
 

Fig. 1 illustrates the architecture of the proposed 
IoT-based smart home automation system, 
detailing the interactions between sensors, the 
Arduino controller, the ESP8266 Wi-Fi module, 
and various actuators (e.g., lights and fan). This 
architecture forms the backbone of the system’s 
communication and control structure. 

 

 
 

Fig. 1. Reinforcement learning 
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4. RESULTS AND DISCUSSION 
 

Table 1. Dataset 
 

Day Light (kWh) Fan (kWh) Total Energy (kWh) 

1 32 300 332 
2 28.5 320 348.5 
3 30 280 310 
4 34.5 300 334.5 
5 29 312 341 
6 30.5 288 318.5 
7 27.5 296 323.5 
8 28 320 348 
9 33.5 290 323.5 
10 31 315 346 
11 29 280 309 
12 33 300 333 
13 28.5 305 333.5 
14 31.5 290 321.5 
15 32 325 357 
16 30 270 300 
17 28.5 320 348.5 
18 31 288 319 
19 30.5 290 320.5 
20 32.5 298 330.5 
21 30 320 350 
22 33.5 305 338.5 
23 28.5 278 306.5 
24 32 285 317 
25 28 320 348 
26 15.5 320 335.5 
27 18 315 333 
28 20 288 308 
29 16 290 306 
30 21.5 295 316.5 
31 23 275 298 
32 19 280 299 
33 24 288 312 
34 15 290 305 
35 25 300 325 
36 18.5 290 308.5 
37 22 280 302 
38 23 275 298 
39 20 310 330 
40 30 290 320 
41 28.5 315 343.5 
42 26 320 346 
43 31 280 311 
44 28.5 330 358.5 
45 30 298 328 
46 32.5 285 317.5 
47 34 320 354 
48 28 270 298 
49 26.5 290 316.5 
50 30 310 340 
51 23.5 320 343.5 
52 27 270 297 
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Day Light (kWh) Fan (kWh) Total Energy (kWh) 

53 30 295 325 
54 25 320 345 
55 23 300 323 
56 26.5 330 356.5 
57 32.5 310 342.5 
58 30 305 335 
59 28 320 348 
60 33 310 343 

 
This dataset represents energy consumption 
data over 60 days, specifically focusing on two 
types of energy usage: lighting and fan usage, 
measured in kilowatt-hours (kWh). Here's a 
breakdown of the dataset: 
 

Day: This column represents the day number, 
ranging from 1 to 60, indicating the sequential 
order of the days the data was collected. 
 

Light (kWh): This column shows the amount of 
energy consumed by lighting each day, 
measured in kilowatt-hours. 
 

Fan (kWh): This column indicates the energy 
consumed by fans on each day, also measured 
in kilowatt-hours. 
 

Total Energy (kWh): This column provides the 
total energy consumption for each day, which is 
the sum of the energy consumed by lighting and 
fans.  
 
The dataset can be used to analyze patterns in 
energy consumption, identify peak usage days, 
and evaluate the effectiveness of energy-saving 
measures. For example, you might look for 
trends in energy usage over time, compare the 
energy consumption of lighting versus fans, or 
assess the impact of specific interventions on 
total energy consumption. 
 

4.1 Report 
 
Data was collected in real-time through a custom 
IoT-based smart home automation system 
centered on the ATmega328P microcontroller 
and equipped with a PIR motion sensor and a 
light sensor. This system, connected to the home 
Wi-Fi network via a Wi-Fi module, transmitted 
data to a central database hosted on a local PC 
running Flask. The PC maintained continuous 
communication with the IoT devices, gathering 
and storing environmental data, including motion 
and lighting changes, in real-time. This setup 
allowed the reinforcement learning model to 
access a live data stream, enabling dynamic 
adjustments to optimize energy consumption in 

response to current occupancy and 
environmental conditions. 
 

4.2 Implementation Overview 
 
The model is deployed using a Flask application, 
which continuously receives environmental data, 
processes it to determine the optimal actions, 
and updates its knowledge based on reward 
feedback. Key elements include: 
 

• Environment Setup: The environment 
consists of the AI agent's states and 
actions to determine optimal control 
settings for lights and fans. 

• States and Actions: The states include 
temperature, motion, time of day, and the 
on/off status of lights and fans. The actions 
involve turning fans and lights on/off or 
adjusting fan speed. 

• Q-Table: A Q-learning table (Q-table) is 
maintained to store and update the 
expected rewards for each state-action 
pair. This table is periodically saved to a 
file for persistence. 

• Exploration and Exploitation: The model 
initially explores actions to build a 
knowledge base but gradually shifts toward 
exploiting learned actions as the 
exploration rate decays. 

• Reward Calculation:  Rewards are 
calculated to balance energy efficiency 
with user comfort. The agent is rewarded 
for actions that reduce energy 
consumption when no motion is detected 
and prioritizes comfort when motion is 
detected, adapting based on time of day 
and temperature. For instance, if motion is 
detected on a hot day, cooling actions are 
favored; similarly, lights are activated at 
night when motion is sensed to ensure 
comfort. 

 

4.3 Flask API Endpoints 
 

1. Environment Data Endpoint: Accepts 
environmental data such as temperature, 
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motion, fan speed, and light status. This 
data is parsed and mapped to discrete 
states that the agent uses for decision-
making. 

2. Action Selection: Action Selection:                
Once the environment data is processed, 
the agent decides whether to explore                    
or exploit. If it chooses to exploit, it                   
selects the optimal action from the Q-table 
based on learned values. If it chooses                  
to explore, it picks a random action, 
allowing it to gather new data                            
and potentially improve future decision-
making. 

3. Reward Calculation (: The agent receives 
feedback in the form of a reward based on 
the actions taken. The reward is calculated 
considering temperature, motion, light 
state, fan state, and time-based 
preferences. The Q-table is then updated 
with the calculated reward. 

4. Reset Q-Table: Resets the Q-table to its 
initial state and clears all stored updates, 
which is useful for retraining or testing in a 
new environment. 

 

4.4 Q-Learning Parameters 
 

• Learning Rate: Set to 0.1 to gradually 
incorporate new knowledge without 
overwhelming prior learning. 

• Discount Factor: Set to 0.9, which allows 
the agent to prioritize long-term rewards 
over immediate ones. 

• Exploration Rate: Starts at 1.0 and 
decays to 0.01, ensuring an initial phase of 
exploration that gradually shifts to 
exploitation of learned strategies. 

• Q-Table Storage: The Q-table is 
periodically saved to a file to enable 
recovery in case of unexpected application 
restarts or shutdowns. 

 

4.5 Reward System 
 

The reward structure encourages energy 
efficiency and user comfort: 
 

• Energy-Saving Rewards: Positive 
rewards for turning off devices when no 
motion is detected, particularly during 
daylight hours or when the temperatures 
are moderate. 

• Comfort Rewards: Positive rewards for 
turning on fans or lights when motion is 
detected, especially during high 
temperatures or at times when lighting is 
expected. 

• Redundancy Penalties: Small penalties 
are assigned for redundant actions, such 
as turning on a fan already at the desired 
speed, which encourages efficient 
decision-making. 

 
Fig. 2 compares daily energy consumption for AI-
based and normal automation systems over 60 
days. The graph highlights the fluctuating energy 
savings achieved through reinforcement learning. 

 

 
 

Fig. 2. Daily energy consumption for 60 days 
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Table 2. Normal automation energy table (Updated) 
 

Segment Cumulative Days Light (kWh) Fan (kWh) Total Energy (kWh) 

Pre-Override Day 1 to Day 25 729.6 7073.28 7802.88 
Manual Override Day 25 to 37.5 333.6 3225.6 3559.2 
Post-Override Day 37.5 to 60 703.2 6854.4 7560.0 
Total Day 1 to Day 60 1766.4 17153.28 18919.68 

 
Table 3. Comparison to AI automation (Updated) 

 

Segment Cumulative Days Light (kWh) Fan (kwh Total Energy (kWh) 

Pre-Override Day 1 to Day 25 760.0 7368.0 8128.0 
Manual Override Day 25 to Day 37.5 347.5 3360.0 3707.5 
Post-Override Day 37.5 to Day 60 732.5 7270.5 8003.0 
Total Day 1 to Day 60 1840.0 17998.5 19838.5 

 
Table 4. AI automation and normal automation 

 

Segment Automation Type Light(kWh) Fan(kWh) Total Energy(kWh) 

Pre-Override AI Automation 729.6 7073.28 7802.88 
Pre-Override Normal Automation 760.0 7368.0 8128.0 
Manual Override AI Automation 333.6 3225.6 3559.2 
Manual Override Normal Automation 347.5 3360.0 3707.5 
Post-Override AI Automation 703.2 6854.4 7560.0 
Post-Override Normal Automation 732.5 7270.5 8003.0 
Total AI Automation 1766.4 17153.28 18919.68 
Total Normal Automation 1840.0 17998.5 19838.5 

 
Normal automation does not have                                    
the same ability to adjust and optimize                        
based on manual interventions or learned 
behaviors, leading to slightly higher                      

overall energy use. Unlike AI automation, it 
becomes progressively more efficient, 
particularly after learning from manual            
overrides. 

 

 
 

Fig. 3. Energy consumption distribution 
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Fig. 3 compares daily energy consumption for AI-
based and normal automation systems over 60 
days. The graph highlights the fluctuating energy 
savings achieved through reinforcement learning. 
 
Fig. 4 shows a breakdown of energy 
consumption across different operational phases 
(pre-override, manual override, and post-
override), with distinct energy use for lighting and 

fans. The graph demonstrates how manual 
overrides impact total consumption. 
 
Fig. 5 illustrates the energy consumption over 60 
days, segmented into Pre-Override, Manual 
Override, and Post-Override phases. During the 
Manual Override phase, user interventions 
contributed to a noticeable reduction in total 
energy usage. In the post-override phase, 

 

 
 

Fig. 4. Energy saving using AI automation 
 

 
 

Fig. 5. Energy consumption in phases (Light and Fan) 
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automated control resumed, adapting based               
on patterns observed during manual 
adjustments, leading to continued energy-
efficient operation. 

Fig. 6 displays cumulative energy savings 
achieved through AI automation, indicating the 
manual override period. The steady upward trend 
underscores the effectiveness of the AI system. 

 

 
 

Fig. 6. Cumulative energy savings 
 

4.6 Real-world and Project Diagrams 
 

 
 

Fig. 7. Components required for the smart system 
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Fig. 7 shows all the components used for the automation of the Smart System.  
 

 
 

Fig. 8. Automated smart system (When Device is off) 
 

 
 

Fig. 9. Automated smart system (When Device is Turned On) 
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Fig. 8 shows the internal wiring and components 
of the smart home prototype, including the relay 
and microcontroller setup. This physical setup 
validates the practical implementation of the 
system. 

 

Fig. 9 displays the completed smart home 
prototype with connected appliances, including 
the fan and lighting. This setup demonstrates the 
practical arrangement and packaging of the 
control system. 
 

5. CONCLUSION 
 

The study's findings reveal that the Q-learning 
model successfully optimized energy 
consumption by dynamically controlling lighting 
and fan usage based on real-time environmental 
data. This approach not only achieved 
substantial energy savings but also maintained 
user comfort, showcasing the potential of 
reinforcement learning as a more adaptive and 
efficient alternative to traditional control systems. 
The research contributes to the field by 
introducing a novel framework that integrates IoT 
data for real-time energy management, offering a 
methodological foundation for future studies. The 
practical applications of this system provide 
valuable insights for designing intelligent energy 
management solutions in residential settings, 
with implications for larger-scale smart building 
projects. Looking ahead, the study suggests 
avenues for further research, such as 
incorporating additional IoT devices and 
exploring renewable energy sources. Enhancing 
the model's scalability and computational 
efficiency could facilitate broader adoption and 
implementation, paving the way for more 
sustainable living through advanced smart home 
automation. 
 

6. RECOMMENDATION 
 

1. To enhance the system's capability, 
integrate more IoT devices such as smart 
plugs, energy-efficient appliances, and 
advanced sensors. This will provide a 
richer dataset for the RL model to learn 
from and optimize energy usage more 
effectively. 

2. Incorporate user feedback mechanisms to 
continuously refine the RL model's 
decision-making process. This can help 
balance energy efficiency with user 
comfort, ensuring that the system adapts 
to individual preferences and lifestyles.  

3. Implement robust security protocols to 
protect the data collected by IoT devices. 
Ensuring user privacy and data security is 

crucial for the widespread adoption of 
smart home technologies. 

4. Design the system architecture to be 
scalable, allowing it to be easily adapted 
for larger environments such as smart 
buildings or communities. This involves 
optimizing the computational efficiency of 
the RL algorithms to handle increased data 
loads. 

5. Educate users on the benefits and 
functionalities of the smart home system to 
encourage active participation and trust in 
the technology. Engaged users are more 
likely to provide valuable feedback and 
insights. 
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