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Abstract 
 

The one-step, four hybrid point approach for solving second-order stiff and oscillatory differential 

equations is presented in this study. The continuous hybrid technique was created using the interpolation 

method and the collocation of the exponential function as the basis function. It was then evaluated at non-

interpolating points to produce a continuous block method. When the continuous block was assessed at 

each stage, the discrete block approach was regained. Upon investigation, the fundamental characteristics 

of the techniques were discovered to be zero-stable, consistent, and convergent. The new method is used 

to solve a few stiff and oscillatory ordinary differential equation problems. Based on the numerical results, 

it was found that our approach provides a better approximation than the current method. 
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1 Introduction 

 
This study considers an approximate solution of second order ordinary differential equationsusing the one-

step four off grid point hybrid approach of the type : 
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The analytic solutions of second order ordinary differential equations can be found in a variety of ways. 

Equation (1) is of particular interest to researchers due to its broad range of applications in a variety of 

fields, including control theory, fluid dynamics, mathematical systems without dissipation, modeling 

scientific and engineering, celestial mechanics, and so on. There are more functions to evaluate when 

solving higher order derivatives using a first-order approach, which increases the computing load as seen in 

[1, 2]. For the solution of (1), several approaches, including hybrid and predictor-corrector approaches, have 

been put forth. Although predictor-corrector systems have shown promise, a significant drawback is that in 

predictor-corrector the accuracy tends to decrease, particularly at large step-length values and when results 

are observed at overlapping intervals. 

 

Nonetheless, these shortcomings have been the subject of numerous studies [3,4,5,6]. The literature reports 

that the direct techniques of solving (1) yield higher accuracy, speed and are more efficient than the 

reduction method. 

 

Among the scholars who have recently embraced the hybrid approach in lieu of the direct method for 

approximating (1) are [7,8,9,10,11]. 

 

The one-step, four-offgrid hybrid point method we devised in this research and implemented in block allows 

for the direct solution of second-order stiff and oscillatory problems. 

 

 The structure of the paper is as follows: Section 2 covers the materials and techniques used in the method's 

development. In Section 3, the method's basis properties are analyzed, numerical experiments are conducted 

to test the developed method's efficiency on a few numerical examples, and the findings are discussed. 

Finally, we wrapped up in section 4. 

 

2 Derivation of the Method 

  
This section describes the collocation approach by using the exponential function as the approximate 

solution and the objective of which the derivations of the method are used to obtain the algorithm in the form  
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( ), ( )t t

i j

   are constant to be determine 

 
and 00

 and are non zerohere.

 

 

Equation (2) is obtained by considering the exponential function as the basis approximate solution of the 

form 
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6s= and 2d = are the numbers of collocation and interpolation points, the second derivative of (3) gives 
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The continuouos approximation is then constructed by imposing two conditions which are 
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Collocating (4) at all points and interpolating (3) at 
1

0 ,
5

d =

  

result to the system of non linear equation of 

the form 
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The  first derivative of (7) gives  
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evaluating (8) at all points and simplifying gives the  discrete hybrid block method of the form   
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3 Analysis of Basic Properties of the Method  

 
3.1 Order of the Block 

 
According to fatunla (1991) and lambert (1973) the truncation error associated with (2) is defined by 
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Definition 1: the linear operator and the associated continuous linear multistep method (11) are said to be of 

order 
p
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stable if as 0→h  , the root 1, 0 1
5

z ii

 
 
 
 
 
 
 

=  of the first characteristic polynomial ( ) 0=z
,
 that is   

( ) 0det

0

)( =













= 

=

−
k

j

iki zAz  Satisfies 1iz  and for those roots with iz =1, multiplicity must not exceed 

two.  

 

3.4 Convergency 

 
The compulsory terminolgy for the exponential fitted to be convergent is that they must be consistent and 

zero-stable. Hence, our method converges since all conditions are satisfied. 

 

3.5  Linear stability 

 
According to Hairer and Wanner, the concept of A-satbility is discussed by applying the test equation 

 

 

 

to yield 

 

 

 

where is the amplification matrix given by  

C8  
863

787 500 000
, 37

49 218 750
,  87

87 500 000
, 16

24 609 375
,  11

6300 000

T

ykky

Ym zYm1 , z h
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The matrix  has eigen values where is called the stability function. Thus, ths 

stability function of our method with four off-grid points is given by  

 

 
 

3.6 Region of absolute stability 

 
The stability polynomial of our method is found to be 

 

 
 

 
 

Fig. 1. The stability Region of our method 

 

3.7 Mathematical Computation of the method 

 
Problem I We consider the stiff equation (Source: Adeniran et al. [5]) 

 

'' 1001 ' 1000 , 0 1 , ' 0 1 0.1y y y y y h
   
   
   
   
   

=− − = =− =  

 

Exact Solution: ,y x e x 
 
 

= −
 

z0
z0z2


0

1

1
z1z2


1


z 0 , 0 , . . . ,k k


12z5

274z4
3375z3

25 500z2
112 500z225 000

12z5
274z4

3375z3
25 500z2

112 500z225 000


1

9375
h5
h4 149

225 000
w 149

225 000
h3 229

10 800
w2


19

2160
w h2 1873

21 600
w2


1873

21 600
w3

h 163

288
w4


125

288
w3

w5
w4
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Table 1. Comparison of the proposed method with Adeniran et al. [5] 

 

x-values Exact Solution Computed Solution Error in 

our method 

Error in [6] 

0.1 0.90483741803595957316 0.90483741803595977302 1.99860e-16 1.689E-11 

0.2 0.81873075307798185867 0.81873075307798198612 1.27450e-16 1.418 E-11 

0.3 0.74081822068171786607 0.74081822068171808378 2.17710e-16 1.627E-11 

0.4 0.67032004603563930074 0.67032004603563949348 1.92740e-16 1.663E-11 

0.5 0.60653065971263342360 0.60653065971263365646 2.32860e-16 1.710E-11 

0.6 0.54881163609402643263 0.54881163609402665616 2.23530e-16 1.725E-11 

0.7 0.49658530379140951470 0.49658530379140975434 2.39640e-16 1.723 E-11 

0.8 0.44932896411722159143 0.44932896411722182552 2.34090e-16 1.706 E-11 

0.0 0.40656965974059911188 0.40656965974059934996 2.38080e-16 1.676E-11 

1.0 0.36787944117144232160 0.36787944117144255393 2.32330e-16 1.637E-11 

 

Problem II Consider the highly Oscilatory equation (source: Adeniran and Edaogbogun (2021)) 

 

'' , 0 1, ' 0 2, 2 , 0.012y y y y h    
   
   
   

=− = = = =  

 

Exact Solution: cos2 sin2y x x x 
 
 

= +
 

 

Table 2. Comparison of the proposed method with Adeniran and Edaogbogun [5] 

 

x-

values 

Exact Solution Computed Solution Error in our 

method 

Error in [5] 

0.1 1.0197986733599108578 1.0197986733599108578 0.00e+00 4.3881E-11 

0.2 1.0391894408476120998 1.0391894408476120998 0.00e+00 7.9019E-11 

0.3 1.0581645464146487647 1.0581645464146487647 0.00e+00 2.5525E-10 

0.4 1.0767164002717920723 1.0767164002717920723 0.00e+00 1.1525E-10 

0.5 1.0948375819248539184 1.0948375819248539184 0.00e+00 1.9079E-10 

0.6 1.1125208431427856122 1.1125208431427856122 0.00e+00 2.3002E-10 

0.7 1.1297591108568736536 1.1297591108568736537 1.10e-19 2.7014E-10 

0.8 1.1465454899898729124 1.1465454899898729125 1.10e-19 3.1112E-10 

0.9 1.1628732662139455929 1.1628732662139455932 3.10e-19 3.5291E-10 

1.0 1.1787359086363028466 1.1787359086363028469 3.10e-19 3.9545E-10 

 

Problem III The temperature degrees of a body, minutes after being placed in a certain room, satisfy the 

differential equation 0
2

2
3 =+

dt

dy

dt

yd
 . By using the substitution x

dt

dy
=  or otherwise, find y  in terms of t  

given that y=60 when t=0, y=35 and t=6In4. Find out after how many minutes the rate of cooling of the body 

will have fallen below one degree per minute, giving your answer correct to the nearest minute. The problem 

is mathematically modeled as follows:  

 

9
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0',600,
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
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





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
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











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





 yy
ty

ty  

 

Exact Solution: 
3

1003

1

3

80
+

−
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


























t

ety  
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Table 3. Comparison of the suggested method 

 

x-

values 

Exact Solution Computed Solution Error in our 

method 

Error in [3] 

0.1 59.12576267952015738700 59.12576267952015739300 6.00000e-18 9.245422e-16 

0.2 58.28018626750980633900 58.28018626750980636200 2.30000e-17 7.891086e-16 

0.3 57.46233114762558861800 57.46233114762558866700 4.90000e-17 5.926176e-16 

0.4 56.67128850781193210600 56.67128850781193219200 8.60000e-17 4.684342e-15 

0.5 55.90617933041637530800 55.90617933041637543900 1.31000e-16 3.123519e-15 

0.6 55.16615341541284956400 55.16615341541284974900 1.85000e-16 4.647865e-14 

0.7 54.45038843564751105000 54.45038843564751129700 2.47000e-16 3.261193e-14 

0.8 53.75808902305729847200 53.75808902305729878800 3.16000e-16 2.845575e-14 

0.9 53.08848588484580976200 53.08848588484581015400 3.92000e-16 1.167002e-14 

1.0 52.44083494863438001100 52.44083494863438048500 4.74000e-16 3.639360e-13 

 

4 Conclusions 

 
It is evident from the above tables that our proposed method has significant improvement over the existing 

methods. The One-step four hybrid point exponentially fitted method is proposed for direct solution of 

general second order stiff and oscillatory problems where by it is self-starting when implemented. The 

developed method converges and it is of order five. 
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