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Abstract
Two-qubit systems typically employ 36 projective measurements for high-fidelity tomographic
estimation. The overcomplete nature of the 36 measurements suggests possible robustness of the
estimation procedure to missing measurements. In this paper, we explore the resilience of
machine-learning-based quantum state estimation techniques to missing measurements by
creating a pipeline of stacked machine learning models for imputation, denoising, and state
estimation. When applied to simulated noiseless and noisy projective measurement data for both
pure and mixed states, we demonstrate quantum state estimation from partial measurement results
that outperforms previously developed machine-learning-based methods in reconstruction fidelity
and several conventional methods in terms of resource scaling. Notably, our developed model does
not require training a separate model for each missing measurement, making it potentially
applicable to quantum state estimation of large quantum systems where preprocessing is
computationally infeasible due to the exponential scaling of quantum system dimension.

1. Introduction

The intersection of classical machine learning (ML) and quantum information science (QIS) has recently
become an area of intense investigation [1]. Application areas are diverse and include, for example, the
representation and classification of many-body quantum states [2], the verification of quantum devices [3],
quantum error correction [4], quantum control [5], and quantum state tomography (QST) [6, 7]. Early
results indicate that ML approaches to processing classical information associated with executing QIS
protocols may have advantages compared with standard methods such as improved resource scaling [8] and
resilience to noise [6].

Estimating an unknown quantum state using QST requires repeated joint measurements on an ensemble
of identically prepared quantum systems [7, 9]. The computational resources required for state estimation
alone, after the experimental aspects of QST have been performed, scale poorly even in situations where
specific noise models are assumed [10–12]. Recently, various ML approaches for quantum state estimation
have been proposed [6, 13–22] with some techniques indicating a scaling of O(d3) [8].

In principle, two-qubit state tomography is possible from the statistics of only 16 measurements [23, 24].
However, motivated by results showing that the use of mutually unbiased bases for state estimation
minimizes statistical error, two-qubit state tomography is typically performed using 36 different projective
measurement settings [23, 25]. Better understanding the reliance of state estimation fidelity on the number
of input measurements is an essential question for QST on large quantum systems. Enabling an
experimentalist to determine how costly avoiding specific measurement settings would be for a given
experiment is of significant value.

In general, incomplete QST will not specify a unique state, requiring an additional constraint to decide
between physically valid estimations. One of the most popular approaches is the maximum entropy
principle, which finds the state consistent with the measured data with the largest von Neumann entropy
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[26]. Alternatively, variational quantum tomography attempts to find a physically valid state that minimizes
the expectation value of the missing projectors [27, 28]. Similarly, methods that jointly maximize the
likelihood and the entropy have been explored [29, 30]. Additionally, under the assumption of high purity,
compressed sensing techniques become practical [31, 32]. Following an entirely different paradigm in our
previous work, we showed that training a neural network on simulated tomography data, in principle, results
in estimators that still yield high-fidelity quantum state estimation when some measurements are missing
[6]. Nevertheless, this problem required training a different model for each combination of missing data. The
necessity of

(36
k

)
for kmissing measurements makes it computationally impractical when moving to large

dimensional systems. Here we aim to solve this issue with a limited stack of models and data imputation.
In this paper, we diversify and significantly expand our machine learning models and deploy them within

a pipeline for the task of fast and robust quantum state estimation from the partial tomography
measurements of high-dimensional quantum systems. Our approach differs from our previous work, where
we deployed machine learning techniques for tomographic estimation of two-qubit states [6], mainly
through the decoupling of various functionalities gathered in one single model into different models. First,
we trained a one-dimensional convolutional neural network (Conv1D-Regressor), a two-dimensional CNN
(Conv2D-Regressor), and an extreme gradient boosting regression model (XGB-Regressor) for pure and
mixed quantum states using noiseless, simulated measurement data. We trained three regression models for
pure and mixed states, respectively, totaling six regression models for the task of quantum state estimation
from noiseless projective measurements. Each of these models is sensitive to different types of projective
measurements, i.e. predictors or features. Second, we trained a Conv1D based denoising autoencoder
(Conv1D-Denoise), which takes noisy data and outputs noiseless data, using noisy and noiseless simulated
measurement data. Third, we trained a Conv1D based classifier to tell whether a sample of projective
measurements (36 measurements or features) is noisy or not (Conv1D-isnoise). Fourth, we trained another
Conv1D based classifier to tell whether a sample is a pure or mixed state (Conv1D-ispure). Last, we trained a
multivariate imputation by a chained equation model based on extreme gradient boosting estimators
(XGB-MICE) to predict missing measurements using numerically synthesized experimental data.

A schematic of our developed pipeline is shown in figure 1. After training all the models in the pipeline, a
sample of a noisy and incomplete set of projective measurements is first complemented by the XGB-MICE
model during the testing stage. Next, the complemented sample moves to the Conv1D-isnoise classifier; if it
is deemed to be noisy, it moves to Conv1D-Denoise to be denoised; else, it moves to Conv1D-ispure. If the
Conv1D-ispure model deems the sample a pure state, then the sample proceeds to three fast-QST models
trained on pure states (Conv1D, Conv2D, XGB regressors), else it proceeds to their equivalents for mixed
states. At the end of the pipeline, three output reconstructed states are obtained from Conv1D, Conv2D, XGB
regressors.

Our pipeline is a promising technique for reducing the computational resources required for quantum
state estimation. Having trained on synthesized data, we reconstruct states that outperform our previously
developed machine-learning-based approach in reconstruction fidelity and several conventional methods in
terms of resource scaling. Further, our unique method allows for significant resilience to missing and noisy
data without the need to train

(36
k

)
different models for each kmissing measurements.

2. Methods

2.1. Simulating measurement results
We define an arbitrary set of orthogonal basis states as

|U+⟩ =
[
1
0

]
, and |U−⟩ =

[
0
1

]
. (1)

The orthogonal vectors |U+⟩ and |U−⟩ can be supplemented with |V±⟩= (|U+⟩± |U−⟩)/
√
2 and

|W±⟩= (|U+⟩± i|U−⟩)/
√
2 to form a mutually unbiased bases (MUB). Further, we notate the tensor

product |U±⟩⊗ |V±⟩ as |U±V±⟩, with the other bases combinations treated similarly. These definitions are
general and independent of physical implementation, making them equally applicable to any physical
instantiation of a qubit under investigation. For example, for polarization qubits, the U±, V±, andW± could
be related to the horizontal/vertical, diagonal/anti-diagonal, and right/left circular polarization states,
respectively.

The MUB defined above are over-complete, and a determination of detection probability in each of the
six states is sufficient to reconstruct an unknown quantum state [9]. In principle, state reconstruction is
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Figure 1.Machine learning pipeline for quantum state estimation.

possible using a more judiciously chosen set of measurement operators; for a single qubit, only four are
required [23]. However, typical QST systems use the over-complete set defined by the MUB since it
minimizes the statistical errors associated with estimating probability distributions from finite samples
[23, 25]. Extensions of QST to n qubits can be made simply by determining the joint probabilities associated
with all 6n measurement combinations on all qubits [9].

We are now ready to summarize the process of QST on an n qubit system; to establish, through repeated
measurement, the probabilities associated with all 6n measurement combinations and then determine the
quantum state most consistent with those results. The inversion of the measurement probabilities into a valid
quantum state is the computationally expensive part of QST. Details about conventional methods for
reconstructing the quantum state from measurement statistics using maximum likelihood estimation can be
found in [9]. Alternatively, as in our previous work, machine learning systems can be trained on large
amounts of simulated measurement results to perform the inversion with generally equivalent performance
[6].

In standard quantum theory the measurement probabilityM associated with a given projector P is given
byM[P] = Tr(ρP). The aim of QST for n qubits, then, is to simultaneously and consistently invert a set of 6n

measurement resultsM to determine the state ρ. To reconstruct the two-qubit system we are interested in, we
need to determine 36 joint probabilities. Each of these probabilities is associated with a projection operator
of the following form

3
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P=



u+ ⊗ u+ u+ ⊗ u− u− ⊗ u− u− ⊗ u+ u− ⊗w+ u− ⊗w−
u+ ⊗w− u+ ⊗w+ u+ ⊗ v+ u+ ⊗ v− u− ⊗ v− u− ⊗ v+
v− ⊗ v+ v− ⊗ v− v+ ⊗ v− v+ ⊗ v+ v+ ⊗w+ v+ ⊗w−
v− ⊗w− v− ⊗w+ v− ⊗ u+ v− ⊗ u− v+ ⊗ u− v+ ⊗ u+
w+ ⊗ u+ w+ ⊗ u− w− ⊗ u− w− ⊗ u+ w− ⊗w+ w− ⊗w−
w+ ⊗w− w+ ⊗w+ w+ ⊗ v+ w+ ⊗ v− w− ⊗ v− w− ⊗ v+

 , (2)

where u± = |U±⟩⟨U±|, v± = |V±⟩⟨V±|, and w± = |W±⟩⟨W±|. For this set of projective measurements the
joint detection probability for a state ρ is given by

M[6i+ j] = Tr(ρP[i, j]); for i, j = 0, 1, 2, 3, 4, 5. (3)

Here the matrix has been unrolled into a 1× 36 dimensional row vector and the sampling occurs by the
row-major ordering of matrices.

Any density matrix ρ reconstructed from a set of measurement resultsM must be physically valid, that is,
it must be a non-negative definite Hermitian matrix of trace one. To ensure this is the case, we do not predict
a density matrix ρ directly from measurement results, and instead design our network so that the output
(firing of 16 neurons) comprises the elements of the τ -matrix, which can be listed as (τ 0,τ 1,τ 2,τ 3, …, τ 15).
These outputs are then rearranged to form a lower triangular matrix as given by

τ = [τ0, τ1, τ2, τ3, . . . , τ15]→


τ0 0 0 0

τ4 + iτ5 τ1 0 0
τ10 + iτ11 τ6 + iτ7 τ2 0
τ14 + iτ15 τ12 + iτ13 τ8 + iτ9 τ3

 , (4)

which always maps to a physically valid density matrix [33] by

ρ=
τ †τ

Tr(τ †τ)
. (5)

For training purposes it is also essential to be able to generate the τ matrix associated with a given density
matrix ρ. This can be accomplished using the methods of [33] given by

τ =



√
Det(ρ)
m00

1
0 0 0

m01
1√

m00
1 m00,11

2

√
m00

1

m00,11
2

0 0

m01,12
2√

ρ33
√

m00,11
2

m00,12
2√

ρ33
√

m00,11
2

√
m00,11

2
ρ33 0

ρ30√
ρ33

ρ31√
ρ33

ρ32√
ρ33

√
ρ33


, (6)

wheremij
1 for i, j∈ {0, 1, 2, 3}, andmpq,rs

2 (p ̸= r and q ̸= s) for p, q, r, s∈ {0, 1, 2, 3} are the first and second
minor of ρ, respectively.

Finally, we note that our metric for estimation accuracy between a generated matrix ρ and a target matrix
ρ0 is the fidelity, given by

F=
∣∣∣Tr√√

ρpredρtarg
√
ρpred

∣∣∣2. (7)

2.2. Simulation noisy measurement results
To simulate noisy measurement results, we introduce arbitrary rotations into the projective bases of P. This
noise model is experimentally inspired and represents the difficulty of correctly determining and aligning
measurement bases. Arbitrary rotations to the measurement bases are applied using the rotational operator
R given by

R(ϑ,φ,ξ) =

[
eiφ/2 cos(ϑ) −i eiξ sin(ϑ)
−i e−iξ sin(ϑ) e−iφ/2 cos(ϑ)

]
, (8)

where I is the identity matrix. The variables ϑ,φ, ξ are sampled from the normal distribution with zero mean
and σ2 variance. Application of this noise model toM results in

Mnoise[6i+ j] = Tr(ρ(I⊗R)P[i, j](I⊗R†)). (9)
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Throughout this paper, the elements ofR are treated as random variables and are sampled individually for
each element i and j ofM. Therefore, each of the 36 measurements inM has independent noise, meant to
reflect how an experimentalist might individually align each bases measurement inM.

2.3. Generating random two-qubit states
So that our QST system applies to all possible input states, we train and test it against both pure and mixed
states generated at random. Random pure states of two-qubits are created by generating Haar random 4× 4
unitary matrices and taking the first column as the state’s coefficients. Specifically, given a Haar random
unitaryA the accompanying pure state is

|ψ⟩=A00|U+U+⟩+A10|U+U−⟩+A20|U−U+⟩+A30|U−U−⟩, (10)

whereAij represents the ith row and jth column ofA. Note that we add a tiny perturbation term ε (1× 10−7)
to the simulated pure states as ρpure = (1− ϵ)|ψ⟩⟨ψ|+ ϵ

4 I to avoid the possible convergent issue under
Cholesky decomposition [34].

Random mixed states are generated from the Ginibre ensemble [35] given by

G= N
(
0,1, [4,4]

)
+ iN

(
0,1, [4,4]

)
, (11)

where N
(
0,1, [4,4]

)
represents the random normal distribution of size of 4× 4 with zero mean and unity

variance. The random mixed state is extracted from this ensemble using

ρmix =
GG†

Tr(GG†)
, (12)

where Tr represents the matrix trace.

2.4. Generating training sets
In order to train the models on our state estimation pipeline we start by randomly generating 1 million pure
states, 1 million mixed states, and their corresponding tomography measurements. This yields design
matrices, Xnoiseless_pure, of size 1M× 36 for projective measurements from noiseless pure states,
Xnoiseless_mixed of size 1M× 36 for measurements from noiseless mixed states, and regression target matrices
Ynoiseless_pure of size 1M× 16 of τ elements for pure states, and Ynoiseless_mixed of size 1M× 16 for mixed
states. We split each of them into training, validation (hold-out), and test sets with ratios of 90% (900 K), 5%
(50 K), and 5% (50 K), respectively.

Next, we generate noisy measurements. For that purpose, we generate 400 sets of noisy measurements
per density matrix we created. The random rotation angles ϑ,φ, ξ for the unitary matrix given in equation
(8) are randomly sampled to generate random matrices to create measurements using equation (9). For each
of these sets of 400 measurements (400 random matrices) the angles ϑ,φ, ξ are sampled from the following
distributions of mean zero, and standard deviation of σ; 100 of them from the normal distributionN (0,σ),
100 of them from the Laplace distribution L(0,σ), 50 of them from brown noise Br(0,σ), 50 of them from
blue noise Bl(0,σ), and 50 of them from pink noise Pink(0,σ). Normal and Laplacian noise are sampled
using Numpy [36], while colored noises are sampled by modifying the colorednoise package [37] following
the recipe given in [38]. Next, we create another 9000 pure states and 9000 mixed states, separating each of
them into three sets of 3000, then splitting these sets of 3000 s into separate training (90%, 2700), validation
(5%, 150), and test sets (5%, 150). From each of these sets of 3000 states, we create 1.2M noisy measurements
through 400 random unitary rotations such that we get 1080 K training, 60 K validation, and 60 K test
measurements per set of 3000. We sample random angles with different standard deviations for each of these
in 3 sets of 3000 by standard deviations of π/24, π/12, π/6 such that we generate 3.6 million noisy pure state
measurements. We do the same to the three sets of 3000s for the mixed states to obtain 3.6 million noisy
mixed state measurements. The respective training-validation-test sets of each get measurements from
different quantum states to prevent over-fitting, e.g. the set of mixed states with noise π/6 has 1.2M
measurements and is split into subsets of 1080K on training, 60 K on validation, and 60K on test sets, but
each of these subsets contain the noisy measurements of different quantum states. These noisy measurement
sets comprise two design matrices Xallnoise and Xnonoise. The former has 400 rows of noisy measurement
samples of size 1× 36 vertically stacked per density matrix, while the latter has 400 copies of the noiseless
measurement stacked per density matrix such that their dimensions match. Also, for the τ matrix elements
to be estimated, each set has the target variable matrix Ynonoise. For regression, there are 400 copies of 1× 16
τ samples stacked per density matrix. At the end we have generated 7.2M noisy measurements; 3.6M from
pure states (1.2M from π/24, 1.2M from π/12, 1.2M from π/6), and 3.6 from mixed states (1.2M from π/24,
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1.2M from π/12, 1.2M from π/6). These correspond to the following three matrices: Xallnoise of size
7.2M× 36 with all original rows, Xnonoise of size 7.2M× 36 with 18K original rows (due to 9K pure and 9K
mixed), and Ynonoise of size 7.2M× 16 with 18K original rows.

Finally, we generate matrices for our classifier, which detects whether a state is pure is mixed. We
vertically stack one million measurements from pure noiseless states, 3.6 million from pure noisy states, one
million from noiseless mixed states, and 3.6 million from noisy mixed states to create the matrix Xispure. The
corresponding the target vector tispure has the first 4.6 million rows as zeros and the next 4.6 million rows as
ones. Similarly, we vertically stack 1 million measurements from the pure noiseless stack with 1 million from
the noiseless mixed states and stack them with 7.2 million from the noisy states to create the matrix Xisnoise.
We generate a target label vector tisnoise that has its first 2 million entries for noiseless states as zero and the
next 7.2 million entries as ones.

2.5. Imputation withMICE-BR
Imputation is a statistical technique to infer missing values of input predictors from the rest of the data on
hand. Single imputation using regression (Buck method) first fills the missing values with the given
predictor’s sample mean. It then fits a linear regression model for each predictor given predictors are highly
correlated [39]. The overcomplete nature of state tomography with mutually unbiased bases, totaling 36
measurement probabilities for two-qubits, means the measurement results are strongly correlated for a wide
array of input states. Therefore, linear regression models for each of 36 measurement probabilities using
other values can be fitted to predict missing tomography measurements [40]. Despite the circular
dependence, i.e. fitting a model to predict xa using xb, then fitting another for vice versa, this single
imputation technique works remarkably well for such correlated variables [41]. In our case, it corresponds to
fitting simple linear regression models (design matrix composed only of predictors as features) with the
zeroth measurement, x0, as the target variable while using the other 35 inputs as features, then fitting a model
with x1 as targets while using the rest of 35 measurements as features, with the pattern continuing. With
fitted probabilistic linear models, stochastic regression imputation can sample imputation values from the
imputation model’s normal predictive distribution (e.g. a Gaussian on stochastic regression’s predicted mean
and variance) fit on features [41].

We employ a technique known as Multiple Imputation by Chained Equations (MICE), which runs
multiple stochastic imputation models with different random seeds that can be used to sample and pool
multiple values [42]. A single imputation algorithm IterativeImputer interatews over multiple imputations in
a round-robin fashion [42] yet still converging to a single value, making it easily corrupted by noise [41]. By
pooling values obtained from different random seeds, MICE is more robust to noise.

We fit four different Bayesian Ridge (BR) models to the concatenated training sets of noiseless pure
(900 K× 36) and mixed (900 K× 36) state measurements (1.8M) with the parameters α1 = α2 =
λ1 = λ2 = 10−6 under the IterativeImputer wrapper. The BR regressions we fit to predict measurements learn
how to regularize the weight of other measurements from the data itself, preventing overfitting (e.g. if
measurement 35 is not affecting measurement 0, it will have a smaller weight while regressing for 0). Then,
during the transform stage, we use t= 15 iterations and four random seeds on the individual iterative
imputations.

To assess training performances of algorithms that impute missing at random (MAR) [43] type data,
Monte Carlo (MC) methods can be used to simulate the imposition of missing data into a complete set. As
the imposition of MAR resembles a simple probit type of regression (i.e. logistic regression of whether the
binary choice of a particular value is missing with a probability), missingness corresponds to random
sampling from the data with respect to a probability density function; i.e. using random masks to turn off
values [44]. The value to be estimated can be obtained through random masks shaped by low discrepancy
sampling (quasi-random numbers) such as Halton sequences [45]. Our quasi-Monte Carlo simulations of
the MICE performance involves generating masks that randomly turn off a given number of measurements
using Halton sequences. For example, to simulate the case of a single measurement gone missing, we may
randomly turn the 20th, 12th, 35th, 3rd (and so on) measurements for the first fourth tomography
measurement samples (and so on) into NaN (not a number), then impute them using MICE. We take 10 K
noiseless samples of measurements, create 50 masks of size 10 K× 36 to emulate one measurement missing,
then 100 to emulate two, etc, increasing by 50 until reaching 500 masks (turning off ten measurements).
Additionally, we use 500 masks to take MC estimates for any number of missing measurements higher than
10. We find that there is almost no noise up to 5 missing measurements. The MSE quadratically increases as
demonstrated by the quadratic polynomial with coefficient a= 1.9× 10−5 (without intercept or linear term)
we fit in figure 2. However, as seen in figure 2, the more measurements are missing, the more statistical noise
is introduced to the recovered measurements.
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Figure 2. Noise induced by missing values imputation.

Having imputed missing measurements using low-level features of MICE-BR, though the contribution
weight of each measurement on imputing another is learned from the data, we need more sophisticated
algorithms for state estimation. Quantum state estimation, formulated as a regression problem, requires
high-level features or high-level predictor segmentation. For that, we turn to the neural network type
algorithms, then boosting trees.

2.6. Convolutional neural networks and auto-encoders
In comparison to the user-defined features (basis functions and kernels) of predictors supplied within the
design matrix in the linear models, the main advantage of artificial neural networks (ANNs) is that they learn
these features from the data by themselves [46]. The initial layer of ANNs take the bare input predictors, fit a
multiple linear regression model plus a non-linear activation function (ReLu, tanh, etc) towards neurons of
the next layer, and repeats this until reaching the output layer [46]. One specific type of neural network layer,
a convolutional layer, enables learning and the application of complicated convolutional filters [47]. As the
depth of a convolutional neural network (CNN) increases, so does the sophistication of the convolutional
filters and features that can be used for challenging regression and classification tasks [48]. Auto-encoders
(AE), a particular type of ANNs, has an equal amount of input predictor and output target dimensions [46].
The AE is composed of an encoder and a subsequent decoder portion with a signature bottleneck
architecture, starting with neurons (feature weights) and feature-mappings (convolutional feature outputs)
of higher dimensions, moving towards lower dimensions at the bottleneck, and finishing with higher
dimensions again. This bottleneck forces the neural network to learn lower-dimensional, latent
representations as the encoded features (encoder output) that can be reconstructed into higher-dimensional
output targets by the decoder network [46]. As an instance of unsupervised learning, feeding a convolutional
AE’s input and output layers with input predictors (independent variables) enables the user to extract latent
features later used in denoising, regression, and classification tasks from the data. Adding drop-out layers to
these convolutional AEs, as an approximation to Bayesian NNs, further allows the user to weed out redundant
features, which would lead to over-fitting, using the data alone [49]. For example, for the problem of fitting a
model h(t) into the data of a sophisticated, non-linear function f (t), such as y∼ f(t) = 2sin(t)3 − log(t)4,
supplying the predictors t to a convolutional AE enables the user to extract complicated features such as
sin(t), log(t), exp(t), while the drop-out layer disables the redundant feature exp(t). When the user freezes
the weights of the encoder portion that extracted features, and complement it with a simple regression ANN
that takes the dependent, target variable y as the output, the added regressor portion only needs to learn the
simple polynomial function of the previously extracted features. This avoids dealing with the short-comings
of deep neural networks such as slow convergence and vanishing gradients [50, 51]. In the same spirit we use
convolutional autoencoders to extract complicated features out of 36 projective measurements to later use
them for the denoising, regression and classification tasks in our QST pipeline.

We train five different unsupervised auto-encoder models on Keras with Tensorflow backend [52]. We
use a batch size of 256 and shuffle training data at each epoch for our models. First, by supplying a 900 K
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Figure 3. Our 1D convolutional auto-encoder design to be used for denoising and feature extraction for both regression and
classification. The scissor icon is to denote the encoder portion is frozen, and cloned to be used in different neural networks. Our
2D convolutional auto-encoder works in an analogous fashion.

noiseless pure state measurement training set as both the input and the output, while validating on
50 K (validation set of noiseless pure states) again as both input and output, we train two auto-encoders that
use Conv1D-autoencoder and Conv2D-autoencoder architecture using the MSE loss function. For clarity we
include a visualization of the Conv1D-autoencoder in figure 3. The Conv2d-autoencoder is not pictured but
functions analogously. We train both of these AEs using one epoch of Adam optimizer with learning rate
η= 0.003, two epochs of Adam optimizer with learning rate η= 0.001, one epoch of standard gradient
descent (SGD) with learning rate η= 0.001, batch size of 256, and executing early stopping when the
validation set MSE reaches 4× 10−4. As a result we obtain the intermediate models Conv1D-AE-noiseless_
pure and Conv2D-AE-noiseless_pure. Then, we take two clones of Conv1D-AE-noiseless_pure and one clone of
Conv2D-AE-noiseless_pure. The clone of Conv2D-AE-noiseless_pure, and the first clone of Conv1D-AE-
noiseless_pure are re-trained (on top of their previous training as weight initialization) using a 900 K
noiseless mixed state measurement training set as both the input and the output, while validating on their 50
K validation set as the input and output, as the intermediate models Conv2D-AE-noiseless_mixed and
Conv1D-AE-noiseless_mixed. These two models are both trained using one epoch of Adam optimizer with
learning rate η= 0.001, one epoch of SGD with learning rate η= 0.001, and early stopping set for a
validation MSE of 4× 10−4. The second clone of Conv1D-AE-noiseless_pure is also trained further by adding
noiseless mixed state data on top of the previous data as an intermediate model Conv1D-AE-noiseless_both.
Concatenating 900 K from training sets and 50 K from validation sets of the noiseless pure and mixed state
measurements Conv1D-AE-noiseless_bothmodel takes these 1.8M measurements as the training data (both
as input and output) while validating on the 100 K. Conv1D-AE-noiseless_both is then trained with the exact
same epochs and learning rates as the Conv2D-AE-noiseless_mixed.

Second, we transfer the encoder portion of the Conv2D-AE-noiseless_both, use its extracted latent features
and freeze its weights to a NN that uses the Conv1D-Classifier architecture given in figure 4 to a model we
named Conv1D-isnoise in the flow chart given in figure 1. The classifier portion to be trained is initialized
randomly, while the initial encoder layers transferred are not trained. We also clone this model into another
classifier named Conv1D-ispure. Conv1D-isnoise is trained using the training set of the matrix Xisnoise given
the above as the input, and the training set of the vector labeled tisnoise as the output features while validating
on their respective validation sets. Similarly, Conv1D-ispure is trained using the training set of the matrix
Xispure and the training set of the vector labeled tispure as the output features while validating on their
respective validation set. We use binary cross-entropy as the loss function. Due to unsupervised pre-training
using auto-encoders, both Conv1D-isnoise and Conv1D-ispure classifiers obtains a binary prediction
performance of 0.99999 F-score [53] and AUC [54] for the training, validation, and test sets in just one
epoch of training with Adam optimizer and learning rate η= 0.001. The training performance details for
these classification models are given in the table.

Third, we take another clone of pre-trained Conv1D-AE-noiseless_both to train a supervised denoising
auto-encoder model given in figure 1 as Conv1D-denoise. Both in the training and validation stages,
Conv1D-denoise takes 400 noisy measurements per density matrix as the input and tries to map it to the 400
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Figure 4. Our NN design for classification.
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Figure 5. Conv1D-regressor design.

Table 1. 1D ConvNet classifier performances on train-validation-test sets of generated data.

Train F-score Validation F-score Test AUC

Conv1D-isnoise 0.9999 0.9999 0.9999
Conv1D-ispure 0.9999 0.9999 0.9999

copies of the original, noiseless measurements from the said density matrix. We use the training set of Xallnoise

given above as the input and Xnonoise as the output features while validating on their respective validation
sets. After training for five epochs using Adam optimizer with learning rate η= 0.001, and two epochs with
SGD with learning rate η= 0.001, we halt the training when the early stopping criteria of training and
validation set MSE of 10−3 is reached. Bench-marking on the test set, we also observe a testing set denoising
performance of 10−3 MSE.

Fourth, the encoder portions of Conv1D-AE-noiseless_pure and Conv2D-AE-noiseless_pure, and
Conv1D-AE-noiseless_mixed and Conv2D-AE-noiseless_mixed are transferred to the Conv1D-regressor_pure,
Conv2D-regressor_pure, Conv1D-regressor_mixed, Conv2D-regressor_mixedmodels, with the one
dimensional designs shown in figure 5, with analogous designs for the two-dimensional case. Again only the
1024 latent features extracted by the pre-trained AEs encoder portion are used, without further training the

9



Mach. Learn.: Sci. Technol. 2 (2021) 035014 O Danaci et al

Table 2. 1D and 2D ConvNet regressor performances on train-validation-test sets of generated data.

Train MSE Validation MSE Validation fidelity Test fidelity

Conv1D-regressor_pure 5× 10−4 4× 10−4 1.0 1.0
Conv2D-regressor_pure 7× 10−4 6× 10−4 0.995 0.995
Conv1D-regressor_mixed 5× 10−4 4× 10−4 1.0 1.0
Conv2D-regressor_mixed 8× 10−4 7× 10−4 0.997 0.997

transferred encoder portion for all the four models. These encoder portions are horizontally stacked with the
regressor NN portions to be trained. Conv1D-regressor_pure and Conv2D-AE-noiseless_pure are trained using
the training set of Xnoiseless_pure as the input predictors, and Ynoiseless_pure as the output regression targets,
while validating on their respective validation sets. Similarly we train Conv1D-regressor_mixed and
Conv2D-AE-noiseless_mixed using the training set of Xnoiseless_mixed as the input predictors, and
Ynoiseless_mixed as the output regression targets, while validating on their respective validation sets. We train
these four models using three epochs of Adam optimizer with learning rate η= 0.001, and two epochs of
SGD with learning rate η= 0.001. Training of those that meet the early stopping criterion of validation set
with MSE 4× 10−4 are halted before the end of epochs. By computing their quantum fidelities, we found
that Conv1D based models have an average fidelity of 1.0 and a standard deviation of 0.0 in their respective
test sets, and Conv2D ones are also nearly unity. The training performance details for these regression
models are given in the table below.

2.7. XGB-regression
In contrast to externally imposing features of predictors (as basis functions in design matrix) to data in linear
models, or learning these advanced features from data as in neural networks, tree based algorithms work
with a completely different formalism of stratifying predictor space into simple regions [55]. The classifying
and regression trees (CART) algorithm fragments the predictor space by splitting nodes of decision trees
with respect to a gain metric [56]. It does so by using the recursive binary splitting algorithm to grow a tree
that stops to yield a split when information gain is maximized for classification, and residue sum of squares
(MSE) is minimized for regression problems by the said split [55]. Despite CART’s ability to agnostically
handle non-linear data, it possesses low predictive power. The contemporary algorithms compensate for this
by using boosting. Instead of hard fitting one complicated CART, boosting sequentially grows simple trees to
the errors of the former such that it learns slowly from the data [57]. In the regression context, this means
fitting a tree model on training data, then fitting another one on the residual of the former, and so on.
However, when these new models are fit into the residuals, residuals of residuals, etc, they are not hard to fit
to get new residuals. Instead, they are scaled by a shrinkage factor to force the algorithm to learn many
different models slowly. The state of the art for tree-based algorithms, Extreme Gradient Boosting Algorithm
(XGB), unlike regular Gradient Boosting Algorithms that use CART, uses its unique tree structure [58]. XGB
first fits a leaf and computes a residual. Then fits an XGB tree onto that residual but scales it with learning
rate η to compute residual of a residual, and so on. For example, for the previously given case
y∼ f(t) = 2sin(t)3 − log(t)4, XGB first fits a leaf using a base score (default is 0.5), meaning it maps all the
independent, input variables to the base score while predicting the dependent variable y. Then calculates the
residuals between the predicted value (base score) and the actual y values to fit a unique XGB tree onto them.
This tree is utilized to make predictions, and these predictions are scaled by η to compute residuals of
residuals, and so on.

We use two models, one for noiseless pure states XGB-regressor_pure, and one for noiseless mixed states
XGB-regressor_mixed, that use the multiple target XGB regression for the state estimation architecture given
in figure 6. The former uses the training and validation sets of Xnoiseless_pure as the input, and Ynoiseless_pure
as the output. The latter uses those of Xnoiseless_mixed and Ynoiseless_mixed. The native Python API of XGB
does not support multiple target regression. Still, it has features like DMatrix data format for parallelization
and computational speed up, automatic early stopping, and XGB’s inherent cross-validation toolset.
Therefore, instead of using XGB’s Scikit-learn API and Scikit-learn’s wrapper for multiple target regression,
MultipleOutputRegression, to combine single XGB regression models from the start at the training and
model-selection (i.e. hyper-parameter tuning) stages, we choose to train and tune 16 different models in
XGB’s native Python API, then combine them withMultipleOutputRegression at the prediction (testing)
stage.

We start the hyper-parameter tuning by a grid search of parameters using 5-fold cross-validation (CV)
on the training set [55]. We split the training set into five subsets, and for five turns, we holdout one of these
subsets for evaluation while training on rest and take the mean of these subset evaluations at the end. We, in
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Figure 6. Our multiple target XGB regression design uses 16 separate XGB regression models fit to each of 16 τ matrix elements,
using 36 tomography measurements.

the beginning, cross-validate while fitting a model only on the τ 0 using 36 tomography measurements by
choosing the objective parameter in native Python API reg:linear for regression. We first create a 2D grid of
parametersmax_depth andmin_child _weight ranging from 9 to 12 and 5 to 8. Scanning through this grid
while keeping learning rate η = 0.3, early stopping rounds of 10, and everything else at default. We obtain the
least root-mean-squared-error (RMSE,

√
MSE) scores as the evaluation metric. We find the best

improvement in CV scores for amax_depth of 9 andmin_child _weight of 6 with a RMSE of 0.099
(9.8× 10−3 MSE). The former parameter determines the maximum depth of XGB regression trees that are
allowed to fit, and the latter determines the minimum sum of weights (Hessians) needed per ‘child’ (when we
do a split). Instead of optimizing all the hyper-parameters together, we save these results from the first 2D
grid search and use them in our upcoming grid search.

This time we create another 2D grid ranging from 0.7 to 1 for the both dimensions to scan the subsample
and colsample_bytree parameters. The first parameter is to control what ratio of training instances (rows) are
randomly sampled to grow trees (e.g. 0.5 uses half) to control over-fitting, and the latter does the same thing,
but for columns. We found the ideal value for both of them to be 1.0, leading to a CV score of 3× 10−2

RMSE (9× 10−4 MSE). Last, we search for optimal Ridge (l2) and Lasso (l1) penalty strengths, λ and α, by
scanning through a square grid with both sides ranging from 0 to 1. The former regularization has the effect
of shrinking the values of predictors (features) to a small but nonzero value. Simultaneously, the latter leads
to parsimony (sparsity) due to completely turning weights for some features. We found that λ= 0 and
α= 0.4 leads to a CV RMSE of 9× 10−3 (8.1× 10−5 MSE). Finally, using the previously optimized
hyper-parameters, by executing a 1D grid search for learning rate η ranging from 0.01 to 0.3, we found 0.1 to
be optimal with CV RMSE of 7× 10−3 (4.9× 10−5 MSE). We found no improvement by running the same
model selection process through a 5-fold CV for the other 15 τ elements.

Using the optimal parameters found above, we fit 32 XGB regression models, 16 for noiseless pure states,
and 16 noiseless mixed states. We set the number of rounds (a.k.a., number of boosts, the equivalent of
epochs for XGB) to 2000. However, due to early stopping, when validation set RMSE does not improve for
ten rounds, training halts. We found most of the 32 models achieved very high accuracy (validation set MSE
of the order ~10−6), even more significant than neural nets, in less than 50 rounds (a couple of seconds in a
laptop with a GPU). Some τ elements were harder to fit, and it took them around 200 rounds to fit with a
validation set MSE of the order ~10−3. Having trained 16 models for pure and 16 for mixed states, we
combine their ‘boosters’ (XGB models) within the Sci-kit learnMultipleOutputRegression wrapper. Both the
model for noiseless pure states and the mixed states achieve training, validation, and test set MSEs on the
order ~10−4, and an average fidelity 1.0 with standard deviation 0.0.

The computational speed needed to fine-tune the model for extreme accuracy via reducing feedback time
and the ability to work with missing values and noise, makes XGB a perfect candidate to work alongside and
fix the mistakes of these other algorithms. In the QST context, there is an incentive to use a meta-model of
different types of models, each with their advantage on interpreting tomography measurements, to tackle

11



Mach. Learn.: Sci. Technol. 2 (2021) 035014 O Danaci et al

Table 3. XGB regressor performances on train-validation-test sets of generated data.

Train MSE Validation MSE Validation fidelity Test fidelity

XGB-regressor_pure 9× 10−5 8× 10−5 1.0 1.0
XGB-regressor_mixed 6× 10−5 5× 10−5 1.0 1.0

Figure 7. Test set fidelity vs. noise strength for (a) pure and (b) mixed states before and after denoising. Solid dots denote the
average fidelity of the test set, while the colored hues denote the variance (standard deviation) of the fidelity. CNNs perform
better for pure states, while XGB performs better for mixed states. Stacking and denoising increases the performance in all cases.
Denoising when no noise is present decreases prediction accuracy.

both the physical noise related to the measurement basis alignment and the statistical noise induced by the
imputation procedure.

2.8. Meta-model
Ensemble learning is the method of using an ensemble of machine learning algorithms as a committee to
make predictions [59]. The boosting method we utilized is an ensemble learning method using subsequent
models, where the latter models are trained on the former’s output. However, ensemble methods are not
restricted to such dependent models. Stacked generalization is an ensemble learning approach that uses
machine learning models that are trained using a training set as level-0 generalizers, and learn a level-1
meta-model on a hold-out (validation) data set to combine the prediction of the low-level models for
predictive performance improvements that originators of the algorithm deemed ‘black art’ [60]. Low-level
model predictions could be averaged or pooled as a weighted sum by giving models with higher accuracy
higher weights, or their combinations for pooling can be learned by the meta-learner altogether [61]. Stacked
generalization could use the same or different models as the level-0 base-learners, including neural networks,
to boost the performance [62]. Due to the resulting performance increase, researchers using stacking
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Figure 8.MC estimation for the estimation of noiseless: (a) pure and (b) mixed states after kmeasurements went missing on test
set. Solid dots denote MC estimate mean for the average fidelity, while the hue denotes the variation of this average fidelity for
different masks. We found stacking of models helps for both pure and mixed states. Passing a sample with imputed missing
measurements through a denoising AE, which is originally trained using simulated experimental noise from basis rotations not the
statistical imputation noise, before QST models in a pipeline improves reconstruction performance. Here ‘NN-zp’ and ‘NN-np’
denote the neural networks with zero-padding and no-padding results on pure states from our previous work for comparison [6].

techniques have won awards in machine learning competitions such as The Netflix Prize [63]. In our case, we
found that pure and mixed states can not be regressed together for state estimation, but they instead need
their own set of machine learning models. We discovered that Conv1D, Conv2D, and XGB models have their
own strengths and weaknesses while processing noisy and incomplete data due to how they interact with
features. Thus, we need one meta-learner of stacked base models for both pure and mixed states. This way,
these stacked level-0 state estimation models cover each others’ mistakes when the level-1meta-model pools
them.

We train two linear regression models to find the pooling weights for pure and mixed state models. In
order not to over-fit, stacked generalization training is done using the validation set predictions [60].
Concatenating a 50 K validation set of noiseless pure states with 180 K noisy states to get 230 K
measurements, resulting in 230 K τ predictions from Conv1D-regressor_pure, Conv2d-regressor_pure and
XGB-regressor_puremodels and concatenating them, we obtain a 230 K× 48 input matrix. We use this input
matrix as the design matrix for the linear model. As the dependent target variables, we use the ground-truth
230 K× 16 τ matrix elements. Fitting them for pure states, we obtain meta-model pooling weights
w1 = w2 = 0.4 and w3 = 0.2. This means the Conv1D and Conv2Dmodels generalize better for the noisy pure
states than XGB, yet all these models still cover each others’ faulty predictions for better generalization
performance. On the other hand, when we fit a linear meta-model for the mixed states, we found the pooling
weights to be w1 = w2 = 0.16 while w3 = 0.67, meaning the XGBmodel generalizes better for the mixed
states.
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Figure 9.MC estimation for the estimation: (a) pure and (b) mixed states after imputation using noisy (π/6) measurements. Solid
dots denote MC estimate mean for the average fidelity, while the hue denotes the variation of this average fidelity for different
masks. We found stacking of models helps for both pure and mixed states. Passing a sample that contains both simulated
experimental noise from basis rotations and imputed missing measurements through a denoising AE, which is originally trained
using fiber noise not the statistical imputation noise, before QST models in a pipeline improves reconstruction performance.

3. Results

We start by assessing the performance of state estimation models with respect to noise with or without
denoising. We generate one set of 10 K noiseless measurements and five sets of 10 K noisy measurements of
noise strengths π/24, π/16, π/12, π/8, π/6 for pure states, and the same for mixed states. Plugging them into
our QST models for pure and mixed states and their respective stacks, we, as expected, observed a decrease in
predictive performance with the increasing noise strength, as shown in figure 7. We found that CNN based
models are more resilient to noise for pure states, while the XGB based model has higher predictive power for
mixed states, and the stacking of respective pure and mixed state models helps both. We observed in figure 7
that with the increase of noise, not only does the average fidelity decrease (solid dots), but also the variance
on fidelity (colored hues) increases, meaning noise on some states are tolerated even less. However, turning
on the denoiser has a stabilizer effect. It increases the average fidelities that were reduced with increasing
noise and shrank the test set fidelity variances (hues in the figure). We also observe that denoising when no
noise is present decreases performance; hence it underlines the importance of detecting which measurement
samples are noisy (Conv1D-isnoise).

Next, we use Monte Carlo simulations via Halton sequences, explained in previous sections, to estimate
the QST model performances when kmeasurements are missing and recovered usingMICE-BR. We again
create random masks to emulate missing measurements (50 masks for a single measurement missing, 100 for
double that, etc), calculate average test set fidelity for the measurements recovered byMICE-BR after they
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were turned off for each mask, and compute the Monte Carlo mean of the average fidelity, and the MC
standard deviation of the average fidelity.

First, we use the MC average fidelity estimation scheme for the generated test sets of noiseless pure and
mixed state measurements, see figure 8. We found that the denoiser, which was trained using data coming
from physical noise due to measurement basis misalignment during detection, not the MICE statistical noise,
does not seem to improve imputation noise in terms of MSE between imputed and the original data (thus
not included in that figure). Despite that, we found Conv1D-denoise actually improves prediction accuracy
without improving MSE between Xoriginal and Xrecovered. Even when k= 26 measurements are missing (using
only ten measurements), we still recover average fidelity values above 90%. We found that our current
approach that combines imputation, stacking and denoising performs better than our previous approach that
combines zero-padding or no-padding with 2D convolutional neural networks (figure 8) [6]. In our previous
work, we had two neural networks per kmissing measurements (e.g. for k= 1 we replaced 36th measurement
with zero for zero-padding and used 35-dimensional input vectors for no-padding), our current approach
not only has the advantage of compensating for

(36
k

)
combination of those missing measurements, but it also

outperforms the previous models in terms of fidelity, especially when more than 20 measurements are
missing. When we turn on the physical noise for these imputed measurements, the effects of stacking and the
denoising AE are more pronounced for both the pure and the mixed states, as seen in figure 9.

4. Discussion

In conclusion, we built a pipeline of machine learning models for quantum state estimation using projective
measurements. Projective measurements coming to the pipeline have their missing values imputed, directed
to denoising if they are detected to be noisy, and their quantum states estimated using different models
depending on whether they are deemed to be pure or mixed states.

Unlike our previous work, we decoupled the handling of noise and the treatment of missing
measurements from the models’ training. This approach allows us to generalize our previous results to the
case of any number and combinations of missing, noisy measurements, rather than the limited special cases.
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