
IJICIS, Vol. 16 No. 3 July 2016

International Journal of Intelligent Computing and
Information Sciences

AUTOMATIC DETECTING AND REMOVAL DUPLICATE CODES CLONES

Z. D. Al-Saffar
	 S. S. Sarhan 	 S. Elmougy

Department of Computer Science, Faculty of Computers and Information, Mansoura University, Mansoura 35516, Egypt.

zyad_thafer@yahoo.com 	 shahenda_sarhan@yahoo.com 	 mougy@mans.edu.eg

Abstract: Code clones is considered now an important part of improving the overall design of software
structure and software maintenance through making the source code more readable and more capable
for maintenance. To remove code clones from a written code, refactoring technique could be used.
Copying and pasting fragments of codes is a type of code clones that should be handled and has many
practical applications such as software and project plagiarism detection clones and copyright
infringements. To overcome this problem, we propose a computerized refactoring system to remove
duplicate code clones. The simulation results of applying the proposed system showed that it increases
the maintainability and quality of software system based on the total lines of code, blank lines and total
methods count for the four used Java open source projects.

Keyword: Code Clones, Duplicated Code, Code Smells, Clone Refactoring, Clones Removing.

1. 	Introduction:

Nowadays, programmers and software developers use code cloning when they are writing a code
because 1) To obtain efficiency, a procedure call may be costly; 2) Programmers and programs
developers mostly prefer copying parts of codes than writing them. They assumed that these copied
parts have no errors because its original parts that copied from are previously tested, and 3) The code
clones increases the difficulty of maintenance of programs because it increases the maintenance effort
and cost, it is more unstable than new code. In addition, it increases the complexity and size of the
source code. In reengineering software, the code clones detection is a main part toward the progression
of refactoring code clones. The main activity of refactoring techniques is improving the source code
without changing the external behaviors of the software system.

For removing code clones occurring because of using copy and paste, an automated refactoring of Java
projects is proposed in this work. It is important to handle this type of clones to improve the quality of
software and make it more readable and maintainable. Code clones detection is a useful tool in building
some practical applications such as software and project plagiarism detection clones and copyright
infringements.

81

. Al-Saffar Et Al: Automatic Detecting And Removal Duplicate Codes Clones

In Section 2, basic definitions and background of code clones, refactoring, code clones types,
techniques, and practical applications are discussed with presenting some previous work. In Section 3,
the proposed system is discussed with illustrating it using a case study. Section 4 summarizes the
experimentation and the final results. Conclusions are discussed in Section 5.

Figure I: Code clone example

2. 	Background and Related Work:

Code clones is copying of the code fragment and then pasting it to another place of the source code
without or with some changes and use it again. It is also called duplicated codes or just clones. The code
clones in software development and maintenance can be considered code smells. Some recent studies
showed that from 5.0% to 20.0% of source codes of systems can have code clones [1]. Figure (1) shows
an example of type-I code clones in Class (B) as a result from copying and pasting a code from a class
(A).

There are many reasons and benefits in reengineering software that push us to discover and to remove
code clones from a code. We listed below some of these reasons and benefits [2]:

• Decrease the bloat of source code: Code clones refactoring decreases the size of original source
code and reduces its executed time.

• Avoid bugs: Code clones may be cause bugs in the source code. When the clones from the source
code are removed, the number of bugs is minimized and so it becomes easy to find such bugs.

• Repair design-flaws: One of the reasons for the problems of the design was code clones such as not
using the inheritance in the source code.

• Making the source code more understandable and readable: Code clones detection may help the
programmers and software developers to understand the software system.

Code clones detection is an important stage in improving the quality of source code. It could be applied
in many applications such as:

• Projects plagiarism: One of the closely related fields to detect code clones is plagiarism detection
clones [2].

82

!MIS, V01.16 No. 3 July 2016

• Software plagiarism: Code clones detection is also used in software plagiarism using program
dependence graphs [3]. Sometimes software plagiarism occurs in the models in a very similar way.

• Copyright infringement: One important application of code clones detection is copyright
infringement. It is represented by similarity measuring between source codes of software systems [4].

	

2.1 	Types of Code Clones
Code clone is two similar fragments in two places in source code. It has the main types [1]:
• Type 1: Same parts of codes except for whitespace differences, and/or comments and may also be

differences in the planning.
• Type 2: In this code clone type, syntactically or structurally same parts of codes except for the

differences in variable layout, names, and comments.
• Type 3: Two code fragments with new changes such as change in statements, removed or added

variable, layout and comments.
• Type 4: Two or more code fragments run the similar job but implemented through changed syntactic

modifications.

	

2.2 	Clone Detection Processes
The main objective of code clones detector is find similarity parts in the source code of software
system. There is only one problem facing us when we try to find the code clones, which we do not
know the place of code clones in source code. So, to detect the code clones, the comparison in the
detector should compare every possible part of code with every other possible part of code in the
original code [5]. The process of code clones detection is shown in Figure (2).

2.2.1 Preprocessing
The preprocessing step found in any code clones detector as an initial step, preprocessing step has three
main objectives:

• Removing uninteresting parts: Remove uninteresting parts from the source code by filtered out the
uninteresting parts to comparison, like embedded code to attached different languages, such as SQL
embedded in Java code.

• Determining source units by splitting the remaining source code after removing the uninteresting
parts to fragment. These fragments named source units.

• Determining comparison units: in the preprocessing step we need to determine the comparison units,
comparison units is a smallest units of source units, we obtained the comparison units by split the
source units. For example: "(if-statement) can be separated to (conditional) expression, (then) and
(else) blocks".

2.2.2 Transformation
The comparison unit in the code is mapped to another intermediate internal representation. There are
two types of transformation of source code:

• Extraction: In this type, the source code mapped to a suitable input format to be used in the matched
algorithm, extraction have three forms: (a) Tokenization: this form divides each line of the code into
tokens, (b) Parsing: this form parses the source code to generate abstract syntax tree or a parse tree,
and (c) Data and control flow analysis: this form builds from the source code a program dependence

83

Al-Saffar Et Alt Automatic Detecting And Removal Duplicate Codes Clones

graphs, where the node in program dependence graphs represents the statements, and edges represent
the data and control dependencies.

• Normalization: This is an optional type, the main objective of this type is to remove superficial
differences like differences in commenting, whitespace and/or identifier names.

2.2.3 Match Detection

The transformed comparison units from the previous step are compared to each other to detect the
matches. The result of this step is a set of code clone pair candidates.

2.2.4 Formatting

The code clone pair list is converted to a corresponding clone pair list for the original code base. Source
coordinates of each code clone pair obtained in the comparison phase are listed to their locations in the
original source code.

2.2.5 Post-processing

Code clones are filtered or ranked in this step, there are two ways using to rank the code clones, they are
manual analysis and automated heuristics.

2.2.6 Aggregation

In the final step, the code clones pairs should be aggregated into clone classes to reduce the amount of
data, collect overview statistics or to make later analyses.

2.3 	Code Clone Detection Techniques

Code clones detection techniques can be used to reduce the clones in the code. These techniques have a
similar processing for code clone detection, but they differ in data representation [6]. The following
sub-sections summarize these techniques.

2.3.1 Text-Based Technique

The simplest, fastest and oldest way to detect code clone is text based technique. The input is each line
of the code. It deals with type-I code clones, and with type-II code clones when there is an additional
data transformation. It is fast because it does not execute any syntactical or semantically analysis.
Where lexical analysis is "the process of converting a sequence of characters into a sequence of
tokens".

2.3.2 Token-Based Technique

This type deals with both of type-I and type-II code clones. This technique takes a sequence of token as
input. It converts each line of the code using a lexical analyzer to a sequence of token using lexical
analyzer. The tokenization step makes this technique slower than text-based technique.

84

410 1111•1•,1 	code. tractmiloc ■ottrt‘'..31111
c■•■••Fnitis4

• --• 	--,,.
..e' 	 N.,.

Get t du:
(Original t nee 	j
‘‘, 	 -..... --- 	..■.-

()ILI: 	111<11: Oa. dirtil•11 :KW t■I 	1111.11i0I1 l:0•111[ItIC> tnt: upplixtl rat tht
itt-entozcs.c.1 cotIc 111 l•:••11 In ink:rm.:di:it,: 0ate,m1:11n,r1 ttr r11c code.

;;011 ,1•11 ieV I, .6111,1. 	1/1N60, VU1,11L16.:(i 14. 1110,' 111111 1) 	I.
:o.lortnyti I.. !Intl 4111i1.31. ,..r.-1: tow , in itt.• ittnt,Int ncti cod:,

Clunes on Transformed Code

In till: po,l-prot:etsiity: 	.trc Cs:tract:LI frnin thk•.0111N... • 1•41:111,C.1
1••1111 L01,1, i 	l 111:41l1:11IN :10:11) /Ca to tilt“ ottt 	Ntsitik.e,

•

klapps,1 to 1113. 	\

Clour 	I•ti:atittrts ai the tt:Insloonttll code are mooted to hit o1
1.••.1. 	tiii0 I•limburs .131.1

Filtered Clone Poirs/Chases

In order fa reduce Are usuoung or data or lin case or analysis. clone
pairs arc ttvgrog3to41 sal fttrnt t:Lttu• ttIttm..tt: or 10111

4.11111111111w

IJICIS. Vol. 16 No. 3 JO, 2016

Figure 2: The Process of Code Clones Detection [5]

2.3.3 Abstract Syntax Tree (AST)

AST parses the code to get a syntactical representation and thus calculates the hash code of each sub
tree, and compares results with others to find the similar sub-trees in the AST. AST has an advantage in
easiest understanding of the code structure because it uses AST as code representation. It deals with all
types of code clones.

85

. Al-Saffar Et Al: Automatic Detecting And Removal Duplicate Codes Clones

2.3.4 Program Dependence Graph (PDG)

This technique is based on the relationship between the data and structure because it represents the
control and data dependencies. The isomorphic sub graphs are computed following the dependence
order from any equal node. So, the code clone pairs can be extracted from the isomorphic sub graph. In
addition, PDG is the only technique that has information of control and data dependency that makes this
technique able to deal with type 3 code clones precisely.

2.3.5 Metric-Based Technique

Metric-based technique depends on different metrics of source code. By comparing these metric, the
code clone pairs are obtained. Also, by parsing the source code, these metrics are calculated into AST
and PDG representation. These metrics were calculated form layout, expression, names, and simplicity
of functions control flow. A clone is detected only when pairs that have the same metrics values are
recognized.

2.3.6 Hybrid Technique

In addition to above code clones detection techniques, many research had been investigated in this area
of using a hybrid of different code clone technique to give better accuracy.

	

2.4 	Refactoring Techniques

Refactoring techniques is used to improve the internal structure of software with preserving the external
behaviors. The main objective of the refactoring techniques is to increase the quality of software
systems. Programmers and software developers use the refactoring techniques to avoid errors like bugs
and to provide an easy way for adding features to software systems. Therefore, refactoring techniques
preserve the structure's quality of the source code with saving time and effort [7].

	

2.5 	Related Work

Singh and Sharma [8] proposed a hybrid technique based on metric based and text based approaches to
detect code clones. They implemented their proposed approach to able to work on different
programming language. Li et al. [9] proposed hybrid technique based on metric-based technique and
AST techniques for code clone detection depending on four steps: "code standardization, generation of
comparison units, node mapping, and similarity calculation". In addition, they tested the proposed
approach only in C language.

Sajnani et al. [10] proposed code clones detector uses a token-based technique, named SourcererCC.
The proposed detector based on improved inverted index to quickly query the potential code clones of
an assumed code block. Kaur and Lal [1 1] proposed hybrid technique based on text-based technique
and metric-based technique for code clone detection. In this approach, first metric-based technique is
used to detect any presented potential code clone, then template conversion is done following by text-
based technique comparison is executed.

Koschke et al. [12] proposed a code clones detector based on AST. The proposed approach can detect
syntactic code clones. They proved that their approach is linear space and time. Sarkar et al. [13]
proposed hybrid technique based on metrics-based technique, PDG and AST techniques. They
concluded that the process of code clone discovering has higher reliability.

86

pooling —*comparing 	Itering1-4— 	ornpaiing 	
optional

parsing -4 preprocossing

sari wilta
similarity groups filtered slmliarlty groups

morn code
version 2 5 preprocessed

- , source wail

!JIGS, Vo116 No. 3 Juty 2016

3. The Proposed System

In this paper, we propose an automated refactoring system to remove code clones type-1 resulting from
copy and paste. This system works on methods level in Java open source code projects in which Java
Code Clone Detection (JCCD) tool [14] is used. Figure (3) shows the process of (JCCD) tool. The used
tool for code clones detection in our proposed system is based on AST-based technique shown in Figure

source**
= uremia 1

;,i source unite 1 preprocessed
source units 1

(4).

Figure 3: The Process of (JCCD) Tool [14]

X. C.LOOZ.010=Y-7
2. For each old:were... i.

If mman(L)2.mInamoThroohold
Mon hoods i to nuckot

3. For .mete ountroo i and j in the ammo bucket
If ComparoTroo(i,j) > Sicilaritylhr..-hold

Then (For each onbcron - of
If ImMombor(Clonom.m)
They RnenveClonedomir(Clonoo,o)

For words runtroo m of j
If ImUmonar(Clonom,o)
Then RomowoClonsPoir(Clonoo,o)

AddelonoVair(Cloneo.i,j)

Figure 4: AST Algorithm [15]

Figure (5) shows a flow chart of the proposed system. In the proposed automated refactoring system,
the processes of removing code clones depend on giving a weight for each method. These weights are
based on number of calling times in the source code. In addition, the multithreading concept is used to
reduce the execution time. In general, we represent the proposed system in five steps which listed
below:
1. Detect the Code Clones
2. Extracting All Clones Methods' Names
3. Deciding which Methods should be removed
4. Removing Code Clones

87

. Al-Saffar Et Al: Automatic Detecting And Removal Duplicate Codes Clones

5. Fixing Compilation Errors

Figure (6) shows a case study consists of a class ReTest that contains the main method and two main
methods namely (zyadAddl) and (zyadAdd2). (zyadAdd2) method is a copy of (zyadAdd 1) in which
the difference in two methods is variable names. The work of both methods is just collecting two
numbers. In this example, the main objective is to apply the proposed system to remove code cloned
methods. In our proposed system, the process of removing code clones is not random, in general, each
method is given a weight based on number of calling times, and then the methods that have less weight
are removed with keeping the method with the highest weight.

When applying the proposed system to the used case study, the following actions are occurred as shown
in Figure (7):
1. (zyadAdd 1) method is kept because it has the highest weight while the other method (zyadAdd2) is

removed.
2. The access level of remaining method is changed from private to public. This action is highly needed

specially when we deal with code clone existed in more than one class in the source code.
3. The calling method is fixed by replacing the name of removed method with the name of remaining

method.

Figure (8) shows the case study after refactoring. When this class is executed before and after
refactoring, we get the same results. Thus, we have improved the quality of software system as the main
objective of refactoring technique through changing the internal structure of the software system with
preserving the external behavior of it.

4. Experimentations and Results

To apply the proposed system, four Java open source code projects are used to evaluate the proposed
system through measuring the quality of source code including lines of code, blank line, method's
count, and cyclomatic complexity using NetBeans plugin.

Table (1) shows the total lines of code, blank lines and total methods Count in four projects after
refactoring the source code has decreased. In addition, the average cyclomatic complexity has decreased
after refactoring the source code of the four projects, where Cyclomatic Complexity is "a software
metric used to measure the complexity of a program. These metric, measures independent paths through
program source code. This metric was developed by Thomas J. McCabe in 1976 based on a control
flow representation of the program".

88

Replace this Method with
Max_Method

Clone Detection Tool
(JCCD)

If it contains one of
removed Method

Is there any other
similarity group

Yes

Similarity
Groups

Take One Group

Max_Alethod := Zero
For each line of source code >I 	

Remove all Method except the
Max_Afethod Get all Method's Name

Is
there any Method
in the same group

Ye

Count Method := Zero
Max_Method := Method's Name

Is there any repeated
Method in source code

If
Count_Method >

Max_Method
Max Method := Count Method

IJICIS, Vol. 16 No. 3 July 2016

Get all Method's Declaration

Figure 5: The flow chart of the proposed system

89

package retest;

public class ReTest (

public static void main(String[] args) {

int x = 4yadAddl(9, 6);
System.cu:;.println("x = " + x);

int y = syadAddl(3, 6);

System.cuc.println("y = " + y);

int z = iyadAdd2(2, 6);
System.cut—println("z = "4-2);

private static int zyadAeldflint x, int y) (
return x + y;

I private static int syadAdd2(nt x, int y) 	1

I / 	.j..3 Cloned 1•`e-7h::
return x + y;

/

Code Clone: i Method Calling:

1
2

3
4

5
6
7

8
9

10

11
12

13

14

15
16
17

18

19
20

21
22

23
24
25

26

27
28

r

411—■ Fix the access level of
NI

Keep method that has the
hiahest weight and

Extract the weight of

90

r

Fix the calling methods

. Al-Sall-or El Al: Automatic Detecting And Removal Duplicate Codes Clones

Figure 6: The case study before refactoring

Figure 7: The actions of the proposed system

package retest;
2
3 	public class ReTest f
4
5 	public static void main(Strinqn ergs)

int x = syedliddl (4, 6);
System. out.println ("x = " + x) ;
int y = ayadAdd1(3, 6);
System.our.println ("y = " + y);
int z = syadAck11(2, 6);
System. our. println (z = " + z) ;

12
13
14 E 	public static int zpadAddI(int x, int y) (
15 	return x + y;

6

9
10
11

IJICIS, Vol.16 No. 3 July 2016

Figure 8: The case study after refactoring

Table 1: Project's Metrics

Project's Name Properties
Before Refactoring
(The Original Code)

After Refactoring
(Using the Proposed
System)

Total Line of Code 306207 232514

JFreeChart [16] Total Blank Lines 27758 16230

Total Methods Count 10206 10071

Average Cyclomatic Complexity 1.97844 1.98014

Total Line of Code 209796 174108
JRuby [17]

Total Blank Lines 27318 21385

Total Methods Count 12304 12233

Average Cyclomatic Complexity 2.21740 2.21540

Total Line of Code 65423 45225

JCommon [16] Total Blank Lines 6223 3974

Total Methods Count 1937 1919

Average Cyclomatic Complexity 2.00877 2.00990

Total Line of Code 262042 221529

91

. Al-Saffar Et Al: Automatic Detecting

27574

10894

1.97104

And Removal Duplicate Codes Clones

21860

10810

1.97090

Apache ant [18] Total Blank Lines

Total Methods Count

Average Cyclomatic Complexity

5. 	Conclusions

Through this paper, we proposed an automated refactoring system for removing code clones from Java
open source code project, through removing cloned methods arising from (copy and paste). The results
of applying the proposed system on a case study of four Java open source projects shows that it
improves the software quality by removing cloned codes with the possibility of obtaining more safely to
keep the external behavior of the Java open source code project based on the total lines of code, blank
lines, total methods count and average cyclomatic complexity metrics for the four used Java open
source projects. In future work, we will try to apply automated refactoring on other difficult types of
code clones.

References

1. C. K. Roy and J. R. Cordy, "A survey on software clone detection research," Technical Report
541, Queen's University at Kingston, 2007.

2. E. Merlo. Detection of Plagiarism in University Projects Using Metrics-based Spectral Similarity.
In Proceedings of Dagstuhl Seminar 06301: Duplication, Redundancy, and Similarity in Software,
Dagstuhl, Germany, Dagstuhl, 2007.

3. C. Liu, C. Chen, J. Han and P. S. Yu, "GPLAG: detection of software plagiarism by program
dependence graph analysis," Proceedings of the 12th ACM SIGKDD international conference on
Knowledge discovery and data mining, Pages 872-881, August 20-23, 2006, Philadelphia, PA,
USA.

4. B. S. Baker, "A program for identifying duplicated code," Computing Science and Statistics, pp.
49-49, 1993.

5. C. K. Roy, J. R. Cordy and R. Koschke, "Comparison and evaluation of code clone detection
techniques and tools: A qualitative approach," Science of Computer Programming, vol. 74, no. 7,
pp. 470-495, 2009.

6. Y. Jia and M. Harman, "Clone Detection Using Dependence Analysis and Lexical Analysis,"
M.Sc. project, Department of Computer Science, King's College London, UK, 2007.

7. E. Kodhai, V. Vijayakumar, G. Balabaskaran, T. Stalin and B. Kanagaraj, "Method level detection
and removal of code clones in C and Java programs using refactoring," Int. J Comput. Commun.
Inf. Syst.(IJCCIS), vol. 2, no. 1, pp. 93-95, 2010.

8. M. Singh and V. Sharma, "Detection of File Level Clone for High Level Cloning," Procedia
Computer Science, vol. 57, pp. 915-922, 2015.

9. W. Li, D. Li, C. Qiu and J. Hou, "Efficient Metric Vector-Based Code Clone Detection Using
Function-calling Tree," International Journal of Hybrid Information Technology, vol. 8, pp. 139-
150, 2015.

10. H. Sajnani, V. Saini, J. Svajlenko, C. K. Roy and C. V. Lopes, "SourcererCC: Scaling Code Clone
Detection to Big Code," In Proceedings of the 38th International Conference on Software

92

IJICIS, Vol.16 No. 3 July 2016

Engineering (ICSE 2016), 12 pp., Austin, TX, May 2016 (Accepted for publication). arXiv
preprint arXiv:1512.06448, 2015, http://arxiv.org/pdf/1512.06448v1.pdf, Last Acces: April 2016.

11. M. Kaur and M. Lal, "Code Clone Detection Using Function Based Similarities and Metrics,"
International Journal of Emerging Research in Management &Technology, vol. 4, no. 7, 2015.

12. R. Koschke, R. Falke and P. Frenzel, "Clone Detection Using Abstract Syntax Suffix Trees," 2006
13th Working Conference on Reverse Engineering, Benevento, 2006, pp. 253-262.

13. M. Sarkar, S. Chudamani, S. Roy and N. Mukherjee, "A Hybrid Clone Detection Technique for
Estimation of Resource Requirements of a Job," Advanced Computing and Communication
Technologies (ACCT), 2013 Third International Conference on, Rohtak, 2013, pp. 174-181

14. B. Siegel and S. Diehl, "Highly Configurable and Extensible Code Clone Detection," 2010 17th
Working Conference on Reverse Engineering, Beverly, MA, 2010, pp. 237-241.

15. I. D. Baxter, A. Yahin, L. Moura, M. S. Anna and L. Bier, "Clone detection using abstract syntax
trees," in Proceedings., International Conference on Software Maintenance, Bethesda, 16-20 Nov
1998.

16. "JFree," [Online]. Available: http://www.jfree.org/jfreechart/. [Accessed 25/1/2016].

17. "JRuby," [Online]. Available: http://jruby.org/. [Accessed 25/1/2016].
18. "THE APACHE ANT PROJECT," [Online]. Available: https://ant.apache.org/bindownload.cgi.

[Accessed 25/1/2016].
19. M. Rieger and S. Ducasse. Visual detection of duplicated code. In ' Stephane Ducasse and

Joachim Weisbrod, editors, ' Proceedings ECOOP Workshop on Experiences in Object-Oriented
Re-Engineering, number 6/7/98 in FZI Report. Forschungszentrum Informatik Karlsruhe, 1998.

20. "NetBeans," [Online]. Available: http://plugins.netbeans.org/plugin/9494/simple-code-metrics.
[Accessed 25/1/2016].

93

	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8
	Page 9
	Page 10
	Page 11
	Page 12
	Page 13

